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1 Introduction

Language and terminology are so critical to the understanding of modern math-
ematics that it is often difficult for even very good mathematicians from different
fields to discuss their work in any detail. As a result, common phrases often
evolve within each discipline which attempt to capture the flavor of some impor-
tant idea while avoiding technicality and jargon. For example, when algebraic
number theorists are asked why they are so interested in modular forms, it has
become common to say with enthusiasm that the coefficients of a modular form
“encode arithmetic data.” If pressed further, one might go on to say that the
modular form gives rise to a Galois representation (in some cases via an elliptic
curve).

Unfortunately, experts may feel quite satisfied that the phrase does indeed
convey its intended notion, while in reality very little of the meaning is conveyed
to the broader mathematical community. Indeed, this was brought to our at-
tention regarding the above phrase, “encode arithmetic data,” when the results
of this paper were originally presented. The objection was raised by one of the
attendees that although he had heard the phrase before, it was still unclear to
him that anything had been encoded (let alone arithmetic data). Thus, the
phrase either conveyed no information or false information.

So this objection has provided the underlying philosophy of our paper. We
aim to illustrate with a clear and concrete example how the coefficients of a mod-
ular form actually do encode arithmetic data, so that in the future this common
phrase may carry greater meaning for a broader audience. In the process we also
hope to concretely illustrate some of the various connections between modular
forms, elliptic curves, and Galois representations, notions which have enjoyed
considerable prominence in modern Number Theory, particularly due to their
central role in the proof of Fermat’s Last Theorem.

To be slightly more precise, we will verify a fundamental theorem of Shimura
(given below as Theorem 4.1) for one particular modular form f by completely
explicit means. In general, the theorem associates to a certain type of modular
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form f a representation ρf of Gal(Q/Q) into GL2 of some ring. Moreover, the
theorem states that a great deal of information about ρf can be determined
directly from the coefficients of f (indeed, enough to uniquely determine it),
and this is precisely the basis on which we will claim that the coefficients of the
modular form have “encoded” arithmetic data. Now, when the modular form
has rational coefficients, as it will in our example, the representation can be
seen as coming first from an associated elliptic curve. So after a brief review
of some of the basic notions, an outline of our paper would be as follows. We
begin with a specific modular form, associate to it an elliptic curve, compute
the representation, and verify the theorem. We conclude with a few suggested
problems for further exploration by the reader, and by elaborating briefly on
some related results that provide a historical context for the paper.

2 Modular Curves and Modular Forms

Although modular forms can be defined and studied without any mention of
modular curves, our work will center around the curves themselves, and will rely
heavily on the “geometric” interpretation of (some) modular forms as functions
or differentials on the curves. So we begin with a brief review of modular
curves, closely following the development in [K, Ch. III, §1] (to which we refer
the interested reader for more details).

Let H denote the complex upper half-plane, i.e. those complex numbers a+bi
for which b > 0, and let H = H ∪Q ∪ {∞}. Let Γ = SL2(Z), the group of 2× 2
matrices with integer coefficients and determinant 1, under multiplication. It is
straightforward to show that Γ acts on H by fractional linear transformations:[

a b
c d

]
(z) =

az + b

cz + d
.

Of course H also then has an action by any subgroup of Γ. In particular, we
will be most interested in the action of the subgroup, Γ0(N), consisting of those
matrices in SL2(Z) for which the lower left-hand entry is divisible by N . This
action is sufficiently well-behaved that the quotient space, H/Γ0(N), inherits a
complex analytic structure from H, actually forming a compact Riemann surface
(equivalently, a smooth projective curve over C) which is called the “modular
curve X0(N).”

One way to visualize this classical construction of X0(N), for small N , is
to first find an explicit fundamental domain for the group action. By this we
mean a closed subset, F ⊆ H, such that every equivalence class contains at
least one point of F , and no two interior points of F are equivalent. Once a
fundamental domain has been chosen, the modular curve is essentially obtained
by gluing equivalent sections of the boundary of F together. The space is then
compactified by including all the points which come from Q ∪ {∞} (smooth
points which are called the “cusps” of the modular curve).

So how exactly does one find a fundamental domain? Typically one starts
with the well-known (see [K, Ch. III, §1], for example) fundamental domain F
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for all of Γ, given by

F = { z ∈ H
∣∣ − 1

2 ≤ Re z ≤ 1
2 , |z| ≥ 1 }.

Then a fundamental domain for Γ0(N) can be obtained by taking ∪γ−1
i F , where

{γi} is any complete set of left coset representatives for Γ/Γ0(N). For example,
Γ0(3) can be shown to have index 4 in SL2(Z), with left coset representatives:

α0 =
[
1 0
0 1

]
, α1 =

[
0 −1
1 0

]
, α2 =

[
1 1
−1 0

]
, α3 =

[
−1 1
−1 0

]
.

In Figure 1 below, we see the resulting fundamental domain for Γ0(3), letting
Fi denote γ−1

i F for each i. In addition to the lines, Re z = ± 1
2 , and the circle,

|z| = 1, the remaining curves pictured in the diagram are circles given by:

x2 ± 2x+ y2 = 0

x2 ± 2
3x+ y2 = 0

for z = x+yi. When equivalent parts of the boundary are identified as indicated
by the arrows, one arrives at a Riemann surface which is analytically isomorphic
to P 1(C). Note that the (compact) space, which we refer to as the modular curve
X0(3), has precisely two cusps coming from ∞ and 0.

0

8

F3F2

F1

X  (3)0

z0

0

F0

H

z

Figure 1: Classical Construction of X0(3)

With a firm grasp of classical modular curves, consider now the following
classical definition of a modular form.

Definition 2.1. A modular form of weight k ∈ Z for Γ0(N) is a meromorphic1

function f on H such that:

f(γz) = (cz + d)kf(z), ∀ γ =
[
a b
c d

]
∈ Γ0(N).

1This includes meromorphicity at the cusps, which we omit as a technical condition.
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When k = 0, the condition that f(γz) = f(z) simply means that f passes
to a well-defined function on the quotient space, i.e. f may be regarded as a
function on the modular curve. Similarly, when k = 2, f(z)dz gives a well-
defined differential on the modular curve which we denote by ωf . For any other
fixed k, the modular forms of weight k form an invertible sheaf on X0(N), but
for this paper it will suffice to understand these two particular cases.

Now, regardless of N , it is clear that Γ0(N) will always contain the matrix
γ for which c = 0 and a = b = d = 1. Thus, every modular form f satisfies
f(z + 1) = f(z). This implies that f is the pullback of some meromorphic
function on a neighborhood of q = 0 by the map q = e2πiz. The resulting
Laurent series expansion of f in q (i.e. Fourier series expansion for f) is called
the canonical q-expansion of f at infinity and usually denoted simply by f(q).
One should be a little careful here, however, as there is a subtle point about q-
expansions. When k = 0, f(q) really is the Fourier expansion of the function on
X0(N) which corresponds to f . When k = 2, however, the differential on X0(N)
which corresponds to f is actually f(q)dq

q . So in particular, differentials which
are holomorphic at the cusp∞ appear to vanish in their canonical q-expansion.
More generally, differentials which are holomorphic everywhere correspond to
those weight 2 modular forms which appear to vanish at each cusp and hence
are called cusp forms (see [K, Ch. III, §3] for details).

There are a variety of ways that one can obtain the q-expansions of modular
forms. For this article we needed the q-expansions of all weight 2 cusp forms
as well as enough weight 0 forms to generate the function field, for the specific
modular curve, X0(26). For the weight 2 cusp forms (a two-dimensional vector
space in this case), we found the following basis on William Stein’s website.2

f1 = q − q2 + q3 + q4 − 3q5 − q6 +O(q7)

f2 = q + q2 − 3q3 + q4 − q5 − 3q6 +O(q7).

For an initial set of generating functions (i.e. weight 0 forms) on the modular
curve, we chose the following two eta products:

t =
η2
2η

2
13

η2
26η

2
1

u =
η4
2η

2
13

η4
26η

2
1

.

Here we are using ηd as shorthand for the formal q-expansion given by

ηd = q
d
24

∞∏
n=1

(1− qnd).

While ηd is not a modular form, the above eta products are legitimate functions,
which can be verified by means of Ligozat’s criterion (see [L, 3.2.1]).

2These are both Hecke newforms, which is a technical but crucial part of the hypothesis
in Shimura’s theorem. The website is http://modular.fas.harvard.edu/Tables.

4



3 Algebraic Curves and Elliptic Curves

Without going into great technical detail, it may be useful to include here a
brief and intuitive review of the theory of algebraic curves over a field K. We
recommend [Si, §II] as an excellent first introduction for newcomers to the field,
and begin by paraphrasing Remark 2.5 from Ibid.

Remark 3.1. There is an equivalence of categories between smooth, projective
curves defined over K (together with non-constant rational maps over K), and
extensions F/K of transcendence degree 1 such that F ∩K = K (together with
field injections fixing K).

This result provides a dictionary which translates between the geometric
viewpoint (where most of the intuition comes from) and the algebraic viewpoint
(where most of the calculations are done). It also explains the process by which
we obtain our explicit equations for modular curves. In particular, we choose
weight 0 modular forms which can be thought of as functions on the modular
curve. Then, using the q-expansions, we find equations relating the functions.
These functions and equations can then be thought of as generators for the
field extension F described above. In other words, we find an “equation for the
curve” by finding an equation which relates particular functions on the curve.

Now, there are also a few less philosophical results which bear mentioning.
First of all, it may help to briefly review the theory of divisors of functions and
differentials on a (smooth, projective) curve. For a point P on a curve C over
K, the functions which are holomorphic at P form a local ring which we denote
by K[C]P . Any generator f of the maximal ideal, mP , is called a “uniformizer
at P”. For all holomorphic functions f which are not identically zero, we then
define ordP (f) to be the maximal d for which f ∈ md

P . Intuitively, this is the
order to which f vanishes at P . By extending in the obvious way to functions
that have poles at P , we obtain a homomorphism

ordP : K(C)∗ → Z

where K(C) is the full function field of C. If one prefers to think analytically,
functions at a particular point P have Laurent series expansions in any fixed
uniformizer u. With this point of view, the ord of a function at P is simply
the degree of the first term in its Laurent series expansion. For a differential ω
on C, we may either define ordP (ω) = ordP (ω/du), for any uniformizer u, or
expand ω locally at P as (ud + · · · )du.

Let Div(C) denote the divisor group on C, i.e. the free abelian group gener-
ated by the set of points. Once ord at a point has been defined, it makes sense
to define the divisor of a function f (or similarly a differential ω) by

Div(f) =
∑
P∈C

ordP (f) · P ∈ Div(C).

Thus, f 7→ Div(f) defines a homomorphism from K(C)∗ into Div(C). The ker-
nel of this homomorphism consists precisely of the nonzero constant functions.
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If we define the degree of a divisor to be the sum of its coefficients, the image
of the homomorphism is contained in the subgroup Div0(C) consisting of those
divisors which have degree 0. The situation for differentials is quite different,
however. The differentials which are holomorphic everywhere form a finite di-
mensional vector space whose dimension g is called the (geometric) genus of the
curve. The divisor of any differential has degree 2g − 2.

Finally, in order to completely understand the theorem of Shimura, one
should have some understanding of the Jacobian variety of a curve. As a group,
the Jacobian is given by

J(C) = Div0(C)/Div(K(C)∗).

It is not immediate that this will always have the structure of an algebraic
variety, but it does. Moreover, the dimension of J(C) is always equal to the
genus of C. The Jacobian of the modular curve X0(N) is denoted J0(N).

3.1 Elliptic Curves

Elliptic curves over K are smooth projective curves of genus 1 with a point
defined over K. Assuming that the characteristic of K is not 2 or 3, such a
curve always has an equation of the form

y2 = x3 + ax2 + bx+ c,

which is called a Weierstrass equation for the curve (the point at infinity is the
K-rational point). In terms of these parameters, it is easy to check that the
one dimensional space of holomorphic differentials is spanned by the differential,
ω = dx/y, which is both holomorphic and non-vanishing. As this differential
is invariant under translation (by the group law, discussed below), it is often
referred to as the “invariant differential.”

The amazing fact about elliptic curves which makes them so useful for num-
ber theorists is that they have a natural group structure which can be given in
terms of rational functions. Geometrically, we simply take the unique point at
infinity to be the group identity, and then define P + Q + R = ∞ whenever
P , Q, and R are collinear. There is one subtlety here, i.e. that a line which
is tangent at P must be thought of as intersecting the curve twice at P (or 3
times at a point of inflection). Another way to think of the group structure on
the elliptic curve is via its Jacobian. Since the genus of the elliptic curve E is
1, its Jacobian variety J(E) again has dimension 1. The map from E to J(E)
which takes a point P to the class of the divisor P −∞ can be shown to be an
isomorphism between the two curves. Moreover, the group structure on J(E)
which is then passed along to E coincides with the one described above.

The connection between elliptic curves and 2-dimensional Galois represen-
tations comes from looking at torsion subgroups. For any elliptic curve E
over an algebraically closed field, the torsion subgroup E[N ] is isomorphic to
Z/NZ× Z/NZ, as long as N is relatively prime to the characteristic of K (see
[Si, III, Cor 6.4]). Thus, if E is defined over K, we may let the Galois group of
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K/K act on E[N ] to obtain a homomorphism from Gal(K/K) into GL2(Z/NZ).
As a special case, when E is defined over Q, one can take the inverse limit of
the torsion subgroups E[`n], for ` some prime, to obtain a representation from
Gal(Q/Q) into GL2(Z`). This construction of the so-called `-adic Tate module
of E is at the core of Shimura’s theorem and will be discussed in far greater
detail when it comes up in Section 7 below (or see [Si, III, §7]).

4 “Verifying” Shimura’s Theorem

Now that we have reviewed some of the basics of modular forms and elliptic
curves, we are able to state the theorem of Shimura whose verification in a
special case is the central focus our paper. Many references for this theorem
could be given (see [DI, §12.5], for example), but it is really a corollary of [Sh2,
Theorem 1]. In order to most closely match our explicit example, we state
the theorem first under the assumption that the modular form f has rational
coefficients and hence corresponds to an elliptic curve over Q. The more general
case is addressed in Remark 4.2 below.

Theorem 4.1 (Shimura). Let f be a weight 2 newform3 for X0(N) whose q-
expansion at infinity is given by f(q) =

∑∞
n=1 anq

n, with an ∈ Q for all n.

(i) Then X0(N) surjects onto an elliptic curve Ef (defined over Q), such that
the invariant differential of Ef pulls back to a scalar multiple of ωf .

(ii) For any prime `, let ρf,` : Gal(Q/Q)→ GL2(Z`) be the representation on
the `-adic Tate module of Ef . If p is any prime not dividing N`, then ρf,` is
unramified at p and for any Frobenius element σp at p we have

Tr ρf,`(σp) = ap and Det ρf,`(σp) = p.

We will partially verify this theorem in the case where N = 26, ` = 3, and
f is either of the two newforms listed above in Section 2 as f1 and f2. The
first part of the theorem is completely verified when we explicitly demonstrate
the two elliptic curve quotients of X0(26), Ef1 and Ef2 , in Section 6. For the
second part, we are unable to list data for all primes p explicitly, and we can
only approximate the 3-adic calculations. So we are content to handle a few
carefully chosen primes, p, and to work up to (mod 9) precision only.

Remark 4.2. When f is defined over a more general number field K, the
situation is only slightly more complicated. In this case, J0(N) has a direct
factor Af (over Q) which is an abelian variety of dimension [K : Q]. After
extending scalars to Q`, the `-adic Tate module of this Af is a free module of
rank 2 over K⊗Q`. For any prime λ lying over ` in K, the injection of Kλ into
K ⊗ Q` gives rise to a representation ρf,λ : Gal(Q/Q) → GL2(Kλ) for which
property (ii) from above still holds.

3Newforms are normalized cusp forms which are eigenvectors for the ring of Hecke opera-
tors, and which form a basis for the “new subspace.” For full details see [DI, §6].
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5 Explicit Model for X0(26)

In order to verify Shimura’s theorem, our first step is to find an explicit equa-
tion for the modular curve, X0(26). Recall that we have already specified two
functions on the curve, given explicitly by the following eta products.

t =
η2
2η

2
13

η2
26η

2
1

u =
η4
2η

2
13

η4
26η

2
1

To obtain an equation for the curve, we must find an algebraic equation relating
these or some other parameters. By the q-expansion principal, this is equivalent
to finding a relation between their q-expansions. For our final equation, we
chose x = t and y = 2u− t3 + 4t2 + 4t− 1. By comparing q-expansions, one sees
that the following equation is satisfied.

y2 = x6 − 8x5 + 8x4 − 18x3 + 8x2 − 8x+ 1 (1)

Now, there are two important points to make about this equation. First of
all, although we have an algebraic relation between two functions on X0(26),
it is not immediate that the equation describes this curve. A priori, one only
knows that the equation describes a quotient curve. Equivalently, the chosen
parameters may only generate a subfield of the desired function field. One way
to justify that we have the “whole thing,” however, is to compare the genus of
our quotient curve with the known genus of X0(26). Our equation describes
a hyper-elliptic curve of genus 2, and using the well-known genus formula for
X0(N) (see [Sh1, 1.40, 1.43], for example) we see that this is indeed the genus
of the whole curve. Since any nontrivial quotient of a genus 2 curve would have
strictly smaller genus by the Riemann-Hurwitz genus formula (see [Si, II, Thm
5.9]), the two curves must be the same.

The second point to make about our equation is that it is often not necessary
to resort to brute force in finding relations between functions on a curve. The
process is simplified, in the sense that the form of the equation can be deter-
mined in advance using the Riemann-Roch Theorem (see [Si, II, Thm 5.4]), if
one knows where the functions under consideration have zeros and poles. Eta
products are special in that they can only have zeros and/or poles at the cusps,
and it is fairly straightforward to compute their orders by a variety of methods.
We used families of Tate curves as in [M1], although classical methods can also
be used. In this case we found that the divisors of our parameters were:

Div(t) = −(0) + (1/2) + (1/3)− (∞)
Div(u) = 3(1/2)− 3(∞).

Moreover, the value of u at the cusp 0 is 13, so that both u and t(u − 13)
are holomorphic outside of one point (the cusp ∞) where they had poles of
order 3 and 4 respectively. For those familiar with Riemann-Roch Theorem,
this suggested an equation relating functions inside L(12∞) which resulted in
our initial model.
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6 Elliptic Curve Quotients of X0(26)

Now that we have an explicit equation for X0(26), we would like to find for each
f the surjection φf onto an elliptic curve Ef which is guaranteed by the main
theorem. If we were to follow Shimura’s construction literally (as in the proof
of [Sh2, Thm 1]), we would have to determine the appropriate ideals U of the
Hecke algebra and take Ef = J0(26)/UJ0(26). Subsequently we would compose
the corresponding surjection with the canonical embedding of X0(26) into its
Jacobian. There is a far more down-to-earth approach, however. Recall that
f can be identified with a holomorphic differential ωf on the modular curve.
Shimura’s construction is compatible with this identification in the sense that ωf
is the pullback by φf of the unique (up to scalar) holomorphic differential on Ef .
Thus, using q-expansions to match f with an explicit holomorphic differential
on our model for X0(26) reduces the problem of finding Ef to a straightforward
algebraic curves exercise.

Our first step, then, is to find a basis for the holomorphic differentials on
X0(26) in terms of the parameters from Equation (1). We leave it as an ex-
ercise to show that the vector space of holomorphic differentials is spanned by
{dxy , x

dx
y }, and that the q-expansions of the corresponding weight 2 cusp forms

are as follows.

dx

y
(q) = −q2 + 2q3 − q5 + q6 − q7 − q8 +O(q9)

x
dx

y
(q) = −q + q3 − q4 + 2q5 + 2q6 +O(q9)

So just by comparing q-expansions we see that f1 corresponds to the holomor-
phic differential ωf1 = (1 − x)dxy . Thus we know that X0(26) has an elliptic
curve quotient E1 := Ef1 whose invariant differential pulls back to a scalar
multiple of this differential. The only question is how to find it.

The key is to calculate the divisor of ωf1 . While the divisor of the invariant
differential on E1 is of course 0, the divisor of ωf1 is found to be (1, 4i)+(1,−4i).
If one understands how divisors of functions and differentials behave with respect
to maps between curves, it is possible to conclude quite a bit from this about
the quotient map from X0(26) to E1. In particular, it must be doubly ramified
at these two points and unramified elsewhere (see [Si, pg. 28] and [Si, II, Prop.
4.3] for a precise explanation). Assuming the simplest explanation, i.e. that the
quotient is of degree 2 and hence Galois, the problem thus reduces to finding
an involution of X0(26) which fixes these two points. After a brief search, we
found the involution:

α1(x, y) = (1/x, y/x3).

In order to describe the quotient curve, we choose functions which are fixed by
α, and then find a relation between them which follows from the equation for
X0(26). For example, one could take z1 = x + 1/x and w1 = y/x + y/x2 and
obtain the equation

w2
1 = z4

1 − 6z3
1 − 11z2

1 + 8z1 − 4.
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For the more familiar Weierstrass form, and our final equation for E1, we make
the further change of variables x1 = −2(w1 − z2

1 + 3z1 + 10) and y1 = (4z1 −
6)(w1 − z2

1 + 3z1 + 10) + 52 to obtain

E1 : y2
1 = x3

1 + 49x2
1 + 728x1 + 2704. (2)

Analogously, by comparing q-expansions one finds that f2 corresponds to the
holomorphic differential (−1−x)dxy . This has divisor (−1, 2

√
13)+(−1,−2

√
13),

which subsequently leads to the involution α2(x, y) = (1/x,−y/x3). Choosing
parameters z2 = x + 1/x and w2 = y/x − y/x2 on X0(26)/α2 we arrive at the
equation,

w2
2 = z4

2 − 10z3
2 + 21z2

2 − 12z2 + 4.

Again, we may make one final change of variables to obtain a Weierstrass equa-
tion, namely x2 = −2(w2−z2

2+5z2+2) and y2 = (4z2−10)(w2−z2
2+5z2+2)+32.

This results in the equation:

E2 : y2
2 = x3

2 + 33x2
2 + 320x2 + 1024 (3)

Remark 6.1. Inside the function field of X0(26), the subfields corresponding to
our two elliptic curve quotients intersect in K(z) where z = x+1/x. Thinking of
K(z) as the function field of P1, we have decomposed X0(26) as a fiber product:

X0(26) ∼= E1 ×P1 E2

(where both projection maps have degree 2). As the Jacobian of P1 is trivial,
this translates by functoriality of the Jacobian to an explicit splitting of J0(26)
into the product of the two elliptic curves. Moreover, the splitting is essentially
unique, since these two elliptic curves can be shown to be non-isogenous.

7 Associated `-adic Representations

Now that we have good equations for the elliptic curves, E1 and E2, we are
ready to compute the associated `-adic representations by letting Gal(Q/Q) act
on the two `-adic Tate modules. This sounds complicated, but it really isn’t.
Philosophically, the Tate module of an elliptic curve is constructed much like
the `-adic integers themselves. In particular, one can think of Z` as the inverse
limit of the following system of rings (with the usual reduction maps).

· · · → Z/`3Z→ Z/`2Z→ Z/`Z→ 0

So an element of Z` is essentially nothing more than a consistent sequence of
approximations in Z/`nZ for arbitrary n. Similarly, we think of the `-adic Tate
module of E as the inverse limit of the torsion subgroups E[`n], only with
multiplication by ` providing the connecting homomorphisms. Each torsion
subgroup, E[`n], is isomorphic to Z/`nZ×Z/`nZ and is acted upon linearly by
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Gal(Q/Q) (basically because the addition law on E is given by polynomials).
Thus we can construct a sequence of homomorphisms,

ρE,n : Gal(Q/Q)→ Aut(E[`n]) ∼= GL2(Z/`nZ).

The `-adic representation ρE : Gal(Q/Q)→ GL2(Z`) is simply what we get if we
paste together all of these approximations, ρE,n, in the usual `-adic sense. The
only real subtlety is in the “consistency” of the approximations. Since multipli-
cation by ` is the homomorphism we consider between the torsion subgroups,
the approximations will only (necessarily) satisfy

ρE,n(σ) ≡ ρE,n−1(σ) (mod `n−1)

if we choose our basis for E[`n−1] to be ` times the basis for E[`n].

7.1 Representation Associated to E[3]

For brevity, we will treat only the 3-adic representation associated to E := E1,
explicitly computing the approximations coming from E[3] and E[9]. So we
begin by computing the 3-torsion subgroup of the elliptic curve E which is
given by

y2 = x3 + 49x2 + 728x+ 2704.

The easiest way to do this is probably to use the well-known duplication formula
(see [Si, III, 2.3]), along with the facts that 2P = −P whenever 3P = 0 and
x(−P ) = x(P ). This yields the following.

x4 − 1456x2 − 21632x
4x3 + 196x2 + 2912x+ 10816

= x

x(3x+ 52)(x2 + 48x+ 624) = 0

Note that the four x values result in eight points on the curve, which makes
sense as they should form a group isomorphic to Z/3Z× Z/3Z (along with the
infinite point as the identity). Note also that we must specify a basis for E[3]
before the representation can literally take values in GL2(Z/3Z). For our basis,
we choose the ordered points, P = (0, 52) and Q = (−52/3, 104

√
−3/9), which

results in the Z/3Z-module structure explicitly shown below in Table 1.
Now it’s pretty easy to see from the group table how Galois acts on E[3]. If

σ ∈ Gal(Q/Q) happens to fix the square root of −3, well then it acts trivially
on all of E[3]. On the other hand, if σ(

√
−3) = −

√
−3 (the only other option),

then σ fixes P but takes Q to −Q. Remember that the action is linear in any
case. So we can describe ρE,1 explicitly by

ρE,1(σ) =



[
1 0
0 1

]
, if σ(

√
−3) =

√
−3

[
1 0
0 −1

]
, if σ(

√
−3) = −

√
−3.
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+ ∞ (− 52
3
, 104

√
−3

9
) (− 52

3
,− 104

√
−3

9
)

∞ ∞ (− 52
3
, 104

√
−3

9
) (− 52

3
,− 104

√
−3

9
)

(0, 52) (0, 52) (−24− 4
√
−3, 28− 4

√
−3) (−24 + 4

√
−3, 28 + 4

√
−3)

(0,−52) (0,−52) (−24 + 4
√
−3,−28− 4

√
−3) (−24− 4

√
−3,−28 + 4

√
−3)

Table 1: Isomorphism of E[3] with Z/3Z× Z/3Z

The key question remains, however, “Does this agree with what Shimura’s the-
orem predicted?” Well the answer is a very satisfying, “Yes!”

To verify the theorem, we consider only those primes not equal to 2, 3, or
13. For any such p, we basically reduce the whole group table mod p and then
ask how the Frobenius automorphism, defined by σp(a) = ap for a ∈ Fp, acts.
Comparing with the coefficients of our original modular form f1, we should see
in each case that

Tr ρE,1(σp) ≡ ap, Det ρE,1(σp) ≡ p (mod 3).

For example, there is no
√
−3 in F11, and hence σ11 acts in the only allowable

nontrivial way with determinant −1 and trace 0. So this checks, as 11 ≡ −1 and
a11 = 6 ≡ 0 mod 3. For the other type of example, consider p = 19. Since

√
−3

reduces to either ±4 in F19, the whole group table is defined over F19. Therefore
Frobenius acts trivially, with determinant 1 and trace −1. Well this also agrees
with Shimura, since 19 ≡ 1 and a19 = 2 ≡ −1 mod 3. Every other prime will of
course look like one of these two. In fact, quadratic reciprocity makes it possible
to sum up what happens for all p. There is a square root of −3 in Fp (for p ≥ 5)
precisely when p ≡ 1 mod 3. Hence, these are the cases for which ρE,1(σp) has
determinant 1 and trace −1. In such cases, the theorem then tells us that p ≡ 1
(immediate) and ap ≡ −1 mod 3. Likewise, when p ≡ −1 mod 3 (and

√
−3

generates Fp2), the theorem implies that p ≡ −1 (immediate) and ap ≡ 0 mod
3. So verification of the theorem comes down to checking that ap ≡ −1 when
p ≡ 1 mod 3, and ap ≡ 0 whenever p ≡ −1 mod 3. For convenient checking of
the first several ap values, we collect them below in Table 2.

p 5 7 11 13 17 19 23 29 31 37 41 43 47

ap -3 -1 6 1 -3 2 0 6 -4 -7 0 -1 3

Table 2: Values of ap for the modular form f1
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7.2 Representation Associated to E[9]

Having completed the previous calculation as a sort of “warm-up,” we would
like to now compute the representation ρE,2 and verify that Shimura’s theorem
still predicts the correct traces and determinants for Frobenius elements (now
working mod 9). Of course, it is not practical to show the entire group table
for E[9], whose 81 elements lie in an algebraic extension of Q of degree 162.
We don’t really need to do this, though, to verify the theorem. By linearity,
all we need to do is choose a specific basis for E[9], and then see what various
Frobenius automorphisms do to these basis elements.

Remember that we want to see consistency between ρE,1 and ρE,2, and
therefore we must in addition choose the basis so that 3P1 = P and 3Q1 = Q.
In other words, we need to “divide” the points P and Q by 3. The easiest
way to do this is probably just to derive a “triplication formula” on the curve,
analogous to the duplication formula we used earlier. An inductive process
for generating all such formulas is outlined quite explicitly in [Si, Ex. 3.7].
Alternatively, one can simply compute 3R = 2R + R for R = (x, y) directly,
using the addition and duplication formulas in [Si]. Either way, one quickly
arrives at x(3R) = Φ3(x(R))/(Ψ3(x(R)))2, where

Φ3(x) = x9 − 8736x7 − 544960x6 − 12719616x5

− 47244288x4 + 3437584384x3 + 68787683328x2

+ 510994219008x+ 1265319018496

Ψ3(x) = x(3x+ 52)(x2 + 48x+ 624).

Using the formula, we now choose basis vectors for E[9] in the following way.
First we choose roots of Φ3(x)/(Ψ3(x))2 = 0 and Φ3(x)/(Ψ3(x))2 = −52/3,
which are (choices for) the x coordinates of P1 and Q1. Then trial and error
with 3P1 = P and 3Q1 = Q gives us the correct choice (2 options) for the y coor-
dinates. Now, this could be done completely globally, i.e. over a finite extension
of Q. As we are only looking to verify the action of Frobenius automorphisms
on E[9], however, there is no reason not to check prime-by-prime and do all of
our arithmetic over finite fields. So for each prime p, we begin by specifying
(via minimal polynomial) the finite field Fp[γ] over which the coordinates of P1

and Q1 are defined. Then we apply σp to the coordinates of P1 and Q1, and
determine the unique coefficients a, b, c, d ∈ Z/9Z such that σp(P1) = aP1 + bQ1

and σp(Q1) = cP1 + dQ1. This is done by computing all linear combinations of
P1 and Q1 over Z/9Z and comparing, but we note that one already knows what
these coefficients are mod 3 by compatibility with ρE,1 and our previously com-
puted σp(P ) and σp(Q). So this narrows down the search considerably. Thus,
with respect to the basis {P1, Q1}, we will have found

ρE,2(σp) =
[
a c
b d

]
.

For example, when p = 17 we may define P1 and Q1 over the field F17[γ]
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where fmin(γ) = γ6 + 2γ4 + 10γ2 + 3γ + 3. In particular, we may take

P1 = (4γ4 + 16γ3 + 8γ2 + γ + 10, 13γ5 + 12γ4 + 12γ3 + 14γ2 + 5γ + 12)

Q1 = (γ5 + 7γ4 + 13γ3 + 10γ2 + 9γ + 7, 5γ5 + 9γ4 + γ3 + 2γ2 + 10γ + 8).

Note that it is straightforward to check that 3P1 and 3Q1 do indeed equal P
and Q respectively4. Now to understand how σ17 acts on E[9], we raise the
coefficients of P1 and Q1 to the 17th power, and compare with linear combina-
tions of P1 and Q1 over Z/9Z. Doing this, we find that σ17(P1) = 4P1 + 3Q1

and σ17(Q1) = 0P1 + 2Q1. In other words, we find that

ρE,2(σ17) =
[
4 0
3 2

]
.

Does this agree with Shimura? According to the main theorem, we should have
DetρE,2(σ17) ≡ 17 (mod 9) and TrρE,2(σ17) ≡ a17 (mod 9). These clearly
both check, as a17 = −3 from Table 2. Following this same algorithm, we have
also computed ρE,2(σp) for the primes p = 5, 7, 11, and 19, and this data is
summarized in Table 3 below. We invite the reader to verify that the trace and
determinant agree with the values predicted by the main theorem in each case!

p fmin(γ) P1 aP1 + bQ1

Q1 cP1 + dQ1

5 γ6 + γ4 + 4γ3 + γ2 + 2 (4, 3) 1P1 + 0Q1

(4γ4 + γ3 + 2γ2 + 4γ, γ5 + 3γ4 + 4γ3 + 2γ2 + 3γ + 4) 3P1 + 5Q1

7 γ3 + 6γ2 + 4 (4γ + 2, 5γ2 + 2γ + 2) 4P1 + 0Q1

(3γ, γ2 + 5γ + 6) 3P1 + 4Q1

11 γ6 + 3γ4 + 4γ3 + 6γ2 + 7γ + 2 (7γ4 + 7γ3 + 10γ2 + 4γ + 10, γ5 + 8γ2 + 3γ) 7P1 + 0Q1

(9, 3γ5 + 7γ4 + 3γ3 + 6γ2 + 9γ + 1) 0P1 + 8Q1

19 γ3 + 4γ + 17 (15γ2 + 16, 8γ2 + 18γ + 8) 4P1 + 6Q1

(18γ + 7, 4γ2 + 9γ + 9) 0P1 + 7Q1

Table 3: Action of σp on E[9] for various p

4The explicit calculations on elliptic curves for this section will be omitted for brevity,
but were performed using SAGE. The complete session is available for download on the first
author’s website.

14



8 Conclusion

For our main conclusion, we would like to argue on the basis of the preceding
example that the coefficients of a modular form really do “encode arithmetic
data.” In very loose terms, a code is some sort of transformation which can
be applied to data. If it’s a good one, it should be fairly easy to apply in the
forward direction, while attempting to go in the reverse direction should be very
difficult without some sort of key. With the right point of view, this is precisely
what is happening in Shimura’s theorem.

In particular, the analogy works best if we think of the Galois representation
as the original data, the traces and determinants of all Frobenius elements as the
encoded data, and the actual modular form as the key. Remember that in prac-
tice a Galois representation looks like an underlying vector space (or module),
with a basis that is defined over some extension of Q, so that Galois acts linearly.
For our first approximation, this vector space was two dimensional over F3, and
the basis 〈P,Q〉 was defined over Q(

√
−3). The second approximation was two

dimensional over Z/9Z, and the basis 〈P1, Q1〉 was defined over a quadratic ex-
tension of the splitting field of φ3(x) + 53

3 (ψ3(x))2. Given one of these gadgets,
it is of course very straightforward to generate the traces and determinants of
Frobenius elements (precisely as we did in generating Table 3). Moreover, it
follows from the Cebotarev Density Theorem that the representation is com-
pletely determined by these traces and determinants, although determining the
representation from this information alone is very difficult. Thus it makes per-
fect sense to think of the traces and determinants as the encoded data, and by
Shimura’s theorem this is precisely what one sees in the coefficients of a modular
form.

Interestingly, though, the modular form itself is also in some sense the “key”
to unlocking the code. With only the traces and determinants of a two dimen-
sional Galois representation, it would indeed be difficult to work backwards and
come up with a matching module with explicit Galois action. On the other
hand, if we know that the representation is modular, and we know the level, the
problem boils down to the geometric problem of computing torsion points in
the correct modular abelian variety, or in our case torsion points in an elliptic
curve quotient of X0(N). Thus, in one fell swoop, Shimura’s theorem has not
only provided us with an extremely rich family of encoded Galois representa-
tions, but also the keys to unraveling the codes. Philosophically, this begins
to explain why modular forms have been such exciting objects of study for so
many number theorists!

8.1 Suggested Further Exploration

For the curious reader, there are a number of projects which would undoubtedly
strengthen the understanding gained from this paper. For example, the easiest
thing to do would be to simply stay with X0(26) and approximate the `-adic
representations associated to f1 or f2 for various other primes ` (we only did
` = 3 and f1).
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For a similar example taken from a different modular curve, we suggest
looking at N = 49 and then N = 50. The first curve already has genus 1 (so no
quotient is necessary), and an explicit equation is given in [M2, §2]. The second
has genus 2, and the weight 2 cusp forms are spanned by two newforms that are
defined over Q. So this example is extremely similar to our X0(26) example,
with the Jacobian of X0(50) splitting into the product of two elliptic curves.
Also, an explicit model for X0(50) can be easily derived using the equations
for X0(25) given in [M2, §4] and the additional function t2 = (η1/η2)24 which
satisfies j = (t2 + 256)3/t22.

For a slightly more complicated example, we suggest looking at X0(35). An
explicit model can be obtained by crossing X0(7) and X0(5) over the j-line using
equations from [M2, §2, 4]. The curve has genus 3, and the weight 2 cusp forms
are spanned by one newform defined over Q and two Galois conjugate newforms
defined over a quadratic extension K of Q. Thus, the Jacobian of X0(35) splits
into an elliptic curve and an abelian surface. Computing the representation
associated to the unique newform over Q would again be similar to the previous
examples. For both conjugates over K, however, we would obtain just one
representation by computing the `-adic Tate module of the abelian surface and
viewing it as a two dimensional OK ⊗ Z`-module via the action of the Hecke
algebra (as described in Remark 4.2).

Finally, in order to appreciate the encoding principle, it might be interesting
to choose a modular form f and then attempt to construct the associated Galois
representation using only the traces and determinants of Frobenius elements as
determined by the ap values. For example, using the q-expansion for our f1,
one should be able to reduce all of the ap values mod 3 and then come up with
something like Table 1 through pure algebraic number theory means (and no
elliptic curves). This is essentially an explicit Cebotarev density problem for
which various algorithms exist.

8.2 Connections

Another goal in writing this paper has been to assist in making a sizable chunk
of modern number theory, not just a few specific results, more accessible to a
wider range of mathematicians. To this end, we would now like to mention a
few of the ways in which the results of this paper can serve as a bridge to some
of the other results and areas of research in modern number theory.

A natural first connection to make is to the proof of Fermat’s Last Theorem.
We briefly outline that connection here, and recommend the reader to [CSS] as
an excellent reference for more details. Recall that in Section 6, we showed
explicitly that the elliptic curves E1 and E2 were “modular,” in the sense that
they were quotients of the modular curve X0(26). One of the key ingredients
in the proof of Fermat’s Last Theorem, the Shimura-Taniyama-Weil conjecture,
states that in fact all elliptic curves defined over Q are modular in this same sense
(quotients of X0(N) for varying N). Fermat’s Last Theorem was proven when
Andrew Wiles was able to establish the conjecture for all semi-stable elliptic
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curves over Q,5 essentially completing a proof by contradiction. In particular,
any counterexample to Fermat was known to imply the existence of a semi-stable
elliptic curve whose associated `-adic Galois representation would have certain
very special properties. By a theorem of Ken Ribet, any such elliptic curve
could not possibly be modular. Hence, after Wiles, no such counterexample to
Fermat could exist.

Another natural and understandable connection to make is to the recent
proof of Serre’s Conjecture by Khare and Wintenberger. In Theorem 4.1, we
saw a way to attach to a modular form f a representation of Gal(Q/Q) into
GL2 of some `-adic ring. Such a representation can be reduced to obtain a
representation into GL2(F`), and quite a bit of work has been done to understand
how modular forms of different weights and levels can give rise to the same mod `
representation. Serre’s Conjecture (now a theorem of Khare and Wintenberger)
could be seen as a converse of sorts. It states that in fact all sufficiently nice
two-dimensional mod ` Galois representations arise in this manner.

Finally, the concept of a modular form and associated Galois representation
has been generalized substantially in a variety of ways. Overconvergent mod-
ular forms, for example, can be seen as sections of an invertible sheaf over a
rigid-analytic subspace of a modular curve over Qp. Hilbert modular forms are
functions on the m-fold product of complex upper half-planes which transform
nicely under the action of a particular discrete subgroup of GL2(F ), where F
is a totally real number field of degree m. Similarly, Siegel modular forms are
functions on the “Siegel upper half-space” which (almost) respect the action of
a certain subgroup of GL2g(Z). Hilbert and Siegel modular forms (along with
the classical ones) are both examples of Automorphic Forms, which give rise to
what are called Automorphic Representations. The Langlands Program is an
attempt to understand and classify a broad class of representations which in
some sense include these, but with an emphasis on the algebraic groups rather
than concrete individual constructions. For an introduction to the Langlands
Program which shows explicitly how classical and Siegel modular forms fit into
Langlands’ theory, we recommend [G].

References

[CSS] G. Cornell, J. Silverman, G. Stevens, (editors) Modular Forms and Fer-
mat’s Last Theorem, Papers from the Instructional Conference on Number
Theory and Arithmetic Geometry held at Boston University, Aug. 9–18,
1995, Springer-Verlag (1997).

[DI] F. Diamond, J. Im, Modular Forms and Modular Curves, Canadian Math.
Society Conference Proceedings 17 (1995), 39–133.

[DS] F. Diamond, J. Shurman, A First Course in Modular Forms, Graduate
Texts in Mathematics 228, Springer-Verlag (2005).

5The conjecture has since been fully proven by Breuil, Conrad, Diamond, and Taylor.

17



[G] S. Gelbart, An Elementary Introduction to the Langlands program, Bull.
Amer. Math. Soc. (N. S.) 10 (1984), no. 2, 177–219.

[K] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Graduate
Texts in Mathematics 97, Springer-Verlag (1984).

[L] G. Ligozat, Courbes modulaires de genre 1, Bull. Soc. Math. France, Mém.
43 (1975).

[M1] K. McMurdy, Eta Products for Modular Curves, Online Proceedings from
the Workshop on Computations with Modular Forms, Heilbronn Institute,
Bristol (2008). http://www.uni-due.de/ hx0037/CMF/

[M2] K. McMurdy, Explicit parameterizations of ordinary and supersingular re-
gions of X0(pn), Modular Curves and Abelian Varieties (Barcelona, 2002),
165–179, Prog. Math. 224 (2004).

[Sh1] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Func-
tions, Iwanami Shoten and Princeton Univ. Press, Princeton, 1971.

[Sh2] G. Shimura, On the factors of the jacobian variety of a modular function
field, J. Math. Soc. Japan 25 (1973), no. 3, 523–544.

[Si] J. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math-
ematics 106, Springer-Verlag (1986).

18


	Rose-Hulman Institute of Technology
	Rose-Hulman Scholar
	11-30-2008

	Do the Coefficients of a Modular Form Really "Encode Arithmetic Data"?
	Ken McMurdy
	Hari Ravindran
	Recommended Citation


	08-01cover.pdf
	08-01direct.pdf

