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Prime Vertex Labelings of Families of
Unicyclic Graphs

Abstract. A simple n-vertex graph has a prime vertex labeling if the vertices can
be injectively labeled with the integers 1, 2, 3, . . . , n such that adjacent vertices have
relatively prime labels. We will present previously unknown prime vertex labelings
for new families of graphs, all of which are special cases of Seoud and Youssef’s
conjecture that all unicyclic graphs have a prime labeling.
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1 Introduction

Applications of combinatorial graphs can be found everywhere in life, from communication
networks to possible moves in a board game. This paper will focus on graph labeling,
which is the process of assigning labels to either the vertices, edges, or both, following some
predetermined set of rules. More specifically, we study a particular type of labeling of the
vertices of a graph, called a prime vertex labeling, where the labels of adjacent vertices are
required to be relatively prime. The research presented in this paper was inspired by a
conjecture stated in 1999 by Seoud and Youssef [3], namely:

All unicyclic graphs have a prime vertex labeling.

A unicyclic graph is a graph containing exactly one cycle as a subgraph. Instead of attempt-
ing to prove the conjecture outright, which we anticipate would require heavy-duty linear
algebra, we focused our attention on finding prime labelings for specific families of unicyclic
graphs.

The paper will proceed as follows. In Section 2, some basics of graph theory will be
discussed. Then we will define a prime vertex labeling and state some known results. In
Sections 5 and 6, we will present several new families with prime vertex labelings. These
new families will consist of graphs having exactly one cycle together with either pendants
or pendants with ternary trees attached to each cycle vertex. Finally, in Section 7, some
conjectures and potential future work will be described.

2 Graph Theory Terminology

This section will provide an overview of the definitions and terminology that will be used
throughout the rest of the article.

First, a graph G is a set of vertices, V (G), together with a set of edges, E(G), connecting
some subset, possibly empty, of the vertices. If u, v ∈ V (G) are connected by an edge, we say
u and v are adjacent and the corresponding edge is denoted uv or vu. We will restrict our
attention to simple graphs, which are graphs that do not contain multiple edges between pairs
of vertices or have edges that connect a vertex to itself (called a loop). For the remainder of
this paper, all graphs are assumed to be simple.

A graph H whose vertex set and edge set are subsets of the vertex set and edge set of
a given graph G is a subgraph of G. We say that the degree of a vertex u is the number of
edges having u as an endpoint. A graph is connected if it does not consist of two or more
disjoint “pieces.”

Next, we define a few important families of graphs. An n-path (or simply path), denoted
Pn, is the connected graph consisting of two vertices of degree 1 and n− 2 vertices of degree
2. The graph in Figure 1 depicts the path P7. An n-cycle (or simply cycle), denoted Cn,
is the connected graph consisting of n vertices each of degree 2. The graph C12 is shown in
Figure 2. Note that Cn always has n vertices and n edges.



RHIT Undergrad. Math. J., Vol. 16, No. 1 Page 255

Figure 1. The path P7.

Figure 2. The cycle C12.

As mentioned in Section 1, a major focus of this paper will be unicyclic graphs, which
have a unique subgraph isomorphic to a cycle. Every vertex lying on the cycle of a unicyclic
graph will be referred to as a cycle vertex. In a unicyclic graph, a pendant is a path on two
vertices with exactly one vertex being a cycle vertex. The non-cycle vertex of a pendant is
called a pendant vertex. For example, the graph shown in Figure 3 is a unicyclic graph with
five pendants. In this case, the vertices labeled by c1, c2, c3, and c4 are cycle vertices while
the vertices labeled by p1, p2, p3, p4, and p5 are pendant vertices.

c2c1

c4 c3

p1

p2p3

p4

p5

Figure 3. Example of a unicyclic graph consisting of five pendants.

An n-star (or simply star), denoted Sn, is the graph consisting of one vertex of degree n
and n vertices of degree 1. Note that Sn consists of n + 1 vertices and n edges. The star S4

is shown in Figure 4.
A tree is a graph having no subgraph isomorphic to a cycle. One defining characteristic
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Figure 4. The star S4.

of trees is that there exists exactly one “trail” of edges between every pair of vertices. Paths
and stars are examples of trees.

Most graphs in this paper will result from “selectively gluing” copies of trees to the cycle
vertices of an n-cycle. For example, the graph in Figure 5 is a unicyclic graph that results
from attaching a copy of the path P2 to each cycle vertex of C3 followed by attaching copies
of the star S3 at the vertex of degree 3 to each of the pendant vertices. This particular graph
will be denoted by C3 ? P2 ? S3. Note that our ? notation is particular to this paper and is
not a construction typically found in the literature.

Figure 5. An example of the unicyclic graph C3 ? P2 ? S3.

3 Graph Labeling

There are a plethora of ways to label graphs, and their basic premises are similar: assign
numbers to the edges or vertices that follow specified rules. Graph labelings have many
different applications, including cryptography, wireless networking, radar, and even radio
astronomy. The focus of this paper is on prime vertex labelings.

Recall that two integers a and b are said to be relatively prime if their greatest common
factor is 1, denoted (a, b) = 1.
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Definition 3.1. A simple graph with n vertices is said to have a prime vertex labeling (or
simply a prime labeling) if there is an injection f : V → {1, 2, . . . n} such that for each edge
uv ∈ E(G), (f(u), f(v)) = 1. For brevity, if a graph has a prime vertex labeling, we will say
that the graph is coprime.

The graph in Figure 6 depicts one possible prime labeling.

1 2 3 4

6 7 8 5

Figure 6. An example of a prime labeled graph.

When attempting to find or identify prime vertex labelings, the following basic facts from
number theory are useful:

• All pairs of consecutive integers are relatively prime;

• All pairs of consecutive odd integers are relatively prime;

• A common divisor of two numbers is also a divisor of their difference;

• The integer 1 is relatively prime to all integers.

One motivation for our research is the following conjecture first made by Seoud and
Youssef in [3].

Conjecture 3.2. All unicyclic graphs are coprime.

4 Known Prime Vertex Labelings

Prime vertex labelings are known to exist for several infinite families of graphs. We will
discuss a few notable labelings that are relevant to the graphs we study in this paper. It has
been shown that every path Pn is coprime [2]. In particular, one can use the obvious linear
ordering, as seen in Figure 7.

1 2 3 4 5 6 7 8

Figure 7. The path P8 with a prime labeling.

Similarly, every cycle Cn can be labeled using the obvious linear ordering so that the
vertices labeled 1 and n are adjacent [2]. For example, see the labeling given in Figure 8.
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Figure 8. The cycle C12 with a prime labeling.

1
3

2

6

5 4

Figure 9. The star S5 with a prime labeling.

A prime labeling for every star Sn can be constructed by labeling the unique vertex of
degree n with 1 and the remaining vertices with the integers 2 through n in any order [2],
as seen in Figure 9.

The infinite family of graphs that consist of a cycle with a path of length m attached to
each cycle vertex, denoted Cn ? Pm, are also coprime [3, Theorem 2.5].

Additionally, the graph constructed from first attaching a pendant to every cycle vertex
of Cn, then attaching a complete binary tree (i.e., a directed rooted tree with every internal
vertex having two children) at each pendant vertex has a prime labeling [3, Theorem 2.6].
These graphs are the inspiration for our investigation of cycles with pendants having complete
ternary trees attached to the pendant vertices that will be presented in Section 6.

Other examples of infinite families of graphs that are known to be coprime include com-
plete graphs Kn if and only if n ≤ 3 [2], wheels Wn if and only if n is even [2], all helms Hn,
and all books Bn [3, Theorem 2.3]. Consult Gallian’s dynamic survey [2] for a comprehensive
listing of the families of graphs that are known to have or known not to have prime vertex
labelings. In [1], Seoud et al. provide necessary and sufficient conditions for a graph to be
coprime, but we will not elaborate on that here.

5 Hairy Cycles

In this section, the first set of new results will be shown. All of the graphs are constructed
by attaching pendants to the vertices of a cycle. These graphs are called hairy cycles.

Definition 5.1. For all m,n ∈ N with n ≥ 3, an m-hairy n-cycle, denoted Cn ? Sm, is the
cycle Cn with m pendants attached to each cycle vertex.
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In the definition above, the ? notation indicates that we attach a copy of the star Sm at
its vertex of degree m to each cycle vertex of Cn. The resulting graph will have m pendants
at each cycle vertex. In this case, the tree that we attach to the cycle vertex will be referred
to as a clump. Figure 10 depicts the 3-hairy 4-cycle C4 ? S3, which has four clumps, each of
which is equal to S3.

Figure 10. The 3-hairy 4-cycle C4 ? S3.

Consider the graph Cn ?Sm and let c1, c2, . . . , cn denote the cycle vertices labeled consec-
utively. The general technique for finding a prime vertex labeling for Cn ? Sm is to partition
the natural numbers N into n sets of m+ 1 consecutive integers, denoted S1, S2, . . . , Sn. For
each i with 1 ≤ i ≤ n, assign each Si to the clump associated to ci. We then hope to find
one integer in each set Si of n consecutive integers that is relatively prime to every other
integer in the set and assign it to the cycle vertex ci. In this paper we will focus on Cn ? Sm

when m is odd. We begin by tackling 3-hairy n-cycles.

Theorem 5.2. All Cn ? S3 are coprime.

Proof. Note that Cn ? S3 has 4n vertices. Let c1, c2, . . . , cn denote the cycle vertices, and let
the three pendant vertices adjacent to ci be denoted by by pij for 1 ≤ j ≤ 3. Define the
labeling function f : V → {1, 2, . . . , 4n} via

f(ci) =

{
1, i = 1

4i− 1, i ≥ 2

f(pji ) =


j + 1, i = 1, 1 ≤ j ≤ 3

4i− 3, i ≥ 2, j = 1

4i− 2, i ≥ 2, j = 2

4i, i ≥ 2, j = 3

.

Then for i = 1 and 1 ≤ j ≤ 3 it is clear that

(f(c1), f(pji )) = (1, 1 + j) = 1.



Page 260 RHIT Undergrad. Math. J., Vol. 16, No. 1

For i ≥ 2, we will show that the remaining pendant vertices have appropriate labels by
checking individual values for j. If j = 1, then

(f(ci), f(p1i )) = (4i− 1, 4i− 3) = 1,

if j = 2, then
(f(ci), f(p2i )) = (4i− 1, 4i− 2) = 1,

and lastly if j = 3, then
(f(ci), f(p3i )) = (4i− 1, 4i) = 1.

Finally, to see that all adjacent cycle vertices are assigned relatively prime labels, note that

(f(c1), f(cn)) = 1,

and
(f(ci), f(ci+1)) = (4i− 1, 4i + 3) = 1.

Therefore, we can conclude that all 3-hairy n-cycles are coprime.

Figure 11 shows the prime vertex labeling for C4 ? S3 that agrees with the labeling
described in the proof of Theorem 5.2. Next, we address 5-hairy n-cycles.

1

2
3

4

15

13

14

16

7

5

6

811

9
10

12

Figure 11. An example of a prime labeling for C4 ? S3.

Theorem 5.3. All Cn ? S5 are coprime.

Proof. Note that Cn ? S5 has 6n vertices. Let c1, c2, . . . , cn denote the cycle vertices, and let
the pendant vertices adjacent to to ci be denoted by by pji for 1 ≤ j ≤ 5. Define the labeling
function f : V → {1, 2, . . . , 6n} via

f(ci) =

{
1, i = 1

6(i− 1) + 5, i ≥ 2

f(pji ) =


j + 1, i = 1, 1 ≤ j ≤ 5

6(i− 1) + j, i ≥ 2, 1 ≤ j ≤ 4

6(i− 1) + 6, i ≥ 2, j = 5

.
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Then for i = 1 and 1 ≤ j ≤ 5, it is clear that

(f(c1), f(pj1)) = (1, j + 1) = 1.

Similarly, for 2 ≤ i ≤ n and 1 ≤ j ≤ 4, we have

(f(ci), f(pji )) = (6(i− 1) + 5, 6(i− 1) + j) = 1,

and for 2 ≤ i ≤ n and j = 5,

(f(ci), f(p5i )) = (6(i− 1) + 5, 6(i− 1) + 6) = 1.

Finally, to see that all adjacent cycle vertices are assigned relatively prime labels, note that

(f(c1), f(c2)) = (1, 6i− 1) = 1,

and

(f(c1), f(cn)) = (1, 6n− 1) = 1.

This implies that for i ≥ 2, we have

(f(ci), f(ci+1)) = (6(i− 1) + 5, 6(i + 1− 1) + 5) = (6i− 1, 6i + 5) = 1.

We have checked all possible adjacencies, and hence all 5-hairy n-cycles are coprime.

Figure 12 shows the prime vertex labeling for C4 ? S5 that agrees with the labeling
described in the proof of Theorem 5.3. Continuing with an odd number of pendants, we now
handle Cn ? S7.

1

4
5

6

2

3

23

21

22

24

19

20

17

15
16

18

13

14

11

9

10

12

7

8

Figure 12. An example of a prime labeling for C4 ? S5.

Theorem 5.4. All Cn ? S7 are coprime.
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Proof. Note that Cn ? S7 has 8n vertices. Let c1, c2, . . . , cn denote the cycle vertices, and
let the pendant vertices adjacent to ci be denoted by pji for 1 ≤ j ≤ 7. Define the labeling
function f : V → {1, 2, . . . , 8n} via

f(c1) = 1

f(pj1) = j + 1

f(ci) =


8i− 5, i ≡15 2, 3, 6, 8, 9, 11, 12, 14

8i− 3, i ≡15 4, 5, 7, 10, 13

8i− 1, i ≡15 0, 1

f(pji ) ∈ {8i− 7, 8i− 6, . . . , 8i} \ {f(ci)},

where each f(pji ) is a unique element of {8i − 7, 8i − 6, . . . , 8i} \ {f(ci)}, the choice being
immaterial. In essence, the labeling function splits up N into smaller sets of eight consecutive
numbers each, such as {1, 2, 3, 4, 5, 6, 7, 8} and {9, 10, 11, 12, 13, 14, 15, 16}. In each set of 8
numbers, the second, third, or fourth odd number is assigned to the cycle vertex such that
no multiples of 3 or 5 are chosen, and the rest of the numbers are left for the pendants. The
first set is assigned as labels to the first cycle vertex and its associated pendants, the second
set is assigned to the second cycle vertex and its associated pendants and so on. This way,
one of the numbers from each set is assigned to the cycle vertex, and the rest can be assigned
to the pendant vertices in no particular order.

This leaves seven possible cases for which cycle vertices can be adjacent:

Case 1. (f(ci), f(ci+1)) = (8i− 5, 8(i + 1)− 5) = (8i− 5, 8i + 3) = 1,

Case 2. (f(ci), f(ci+1)) = (8i− 5, 8(i + 1)− 3) = (8i− 5, 8i + 5) = 1,

Case 3. (f(ci), f(ci+1)) = (8i− 5, 8(i + 1)− 1) = (8i− 5, 8i + 7) = 1,

Case 4. (f(ci), f(ci+1)) = (8i− 3, 8(i + 1)− 5) = (8i− 3, 8i + 3) = 1,

Case 5. (f(ci), f(ci+1)) = (8i− 3, 8(i + 1)− 3) = (8i− 3, 8i + 5) = 1,

Case 6. (f(ci), f(ci+1)) = (8i− 1, 8(i + 1)− 5) = (8i− 1, 8i + 3) = 1,

Case 7. (f(ci), f(ci+1)) = (8i− 1, 8(i + 1)− 1) = (8i− 1, 8i + 7) = 1.

Cases 1, 5, 6, and 7 correspond to labels that are odd numbers separated by a power of
2. These will always be relatively prime, because if the labels share a common divisor, the
divisor must also divide the difference of the labels, a power of two, meaning the divisor is
even. This cannot be, as both labels are odd. Cases 3 and 4 correspond to labels that are
odd numbers separated by 12 and 6 respectively. Similarly, these are relatively prime: any
shared divisor must also divide their difference, 12 or 6, and since neither label is a multiple
of 3, the shared divisor would need to be even. Case 2 corresponds to labels that are odd
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numbers separated by 10, which are relatively prime because neither label is a multiple of 5
or 2.

Showing the selected label for the cycle vertex is relatively prime to the other 7 numbers
left for the pendant labels requires three cases:

Case 1. f(ci) = 8i− 5,

Case 2. f(ci) = 8i− 3,

Case 3. f(ci) = 8i− 1.

In each of the cases, the fact that a common divisor of two numbers divides their differ-
ences is used extensively. In Case 1, the differences between f(ci) and f(pji ) is either 1, 2, 3,
4 or 5. Since the label for ci is not a multiple of any of these numbers, the cycle vertex label
is relatively prime to the labels of the pendant vertices. Shown below is Case 1.

(f(ci), f(p6i )) = (8i− 5, 8i− 7) = 1,

(f(ci), f(p2i )) = (8i− 5, 8i− 6) = 1,

(f(ci), f(p3i )) = (8i− 5, 8i− 4) = 1

(f(ci), f(p4i )) = (8i− 5, 8i− 3) = 1,

(f(ci), f(p5i )) = (8i− 5, 8i− 2) = 1,

(f(ci), f(p6i )) = (8i− 5, 8i− 1) = 1,

(f(ci), f(p7i )) = (8i− 5, 8i) = 1.

Cases 2 and 3 follow similarly. We have checked all possible adjacencies. Therefore, all
7-hairy n-cycles are coprime.

In Figure 13, we have provided a prime vertex labeling for C3?S7 that follows the labeling
described in the proof of Theorem 5.4.

1

2
3

4 5 6
7

8

19

17
18

20
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23

24
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9

10

12

13

14

15
16

Figure 13. An example of a prime labeling for C3 ? S7.
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It is important to note that our work on m-hairy n-cycles overlaps with the work of
Tout et al., who showed, using an existence proof, that all m-hairy n-cycles are coprime [6].
However, our proofs exhibit an explicit prime vertex labeling for m is 3, 5, or 7.

Some families of graphs have natural generalizations based on uniform visual symmetry,
such as pendant graphs to m-hairy n-cycles. But some non-uniform generalizations can be
formulated. Consider, for instance, the following number theoretic result.

Proposition 5.5 (Bertrand’s Postulate). For every n ≥ 2, there exists a prime p such that
n < p < 2n.

Using Bertrand’s Postulate, we can define the following type of graph, which will naturally
yield a prime vertex labeling.

Definition 5.6. Let n ≥ 3 and consider the cycle Cn, where the cycle vertices are consec-
utively denoted by c1, c2, . . . , cn. We define the Bertrand Weed graph, denoted BWn, to be
the non-uniform hairy graph obtained by attaching 2i − 1 pendants to each ci.

Theorem 5.7. All BWn are coprime.

Proof. By definition of the Bertrand Weed graph, each clump has exactly 2i vertices, specifi-
cally 2i−1 from the pendants, and 1 from the cycle vertex. This allows the natural numbers
to be partitioned into sets of size 2, 4, 8, and so on, such that each set is twice as large as the
previous. Using Bertrand’s Postulate, there is a prime in each set of integers that is assigned
to the vertices of each clump in our graph, which is the label given to the corresponding
cycle vertex. Thus, all Bertrand weed graphs are coprime.

In Figure 14, we have provided a prime vertex labeling for BW3.

1

2

13

10

9

11

14

7

12

8

5

4

3

6

Figure 14. An example of a prime labeling for the Bertrand Weed graph BW3.

6 Cycles with Complete Ternary Trees

This section draws inspiration from the cycles with attached complete binary trees. However,
for this family of graphs, cycles will have attached ternary trees instead.
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Definition 6.1. A complete binary tree is a directed rooted tree with every internal vertex
having two children.

In [3], Seoud and Youssef showed that every cycle with identical complete binary trees
attached to each cycle vertex is coprime. It is natural to ask if cycles with identical complete
ternary trees attached to each cycle vertex have prime vertex labelings. For the simplest
cases the answer is yes.

Definition 6.2. A complete ternary tree is a directed rooted tree with every internal vertex
having three children.

The graphs in Figure 15 depict one and two-level complete ternary trees, respectively.
Observe that a one-level complete ternary tree is equal to the star S3.

ab

c

d ab

c

db1

b2

b3

c1 c2c3

d1

d2

d3

Figure 15. Examples of one and two-level complete ternary trees

Definition 6.3. We define an n-cycle-pendant with 1-level ternary tree, denoted Cn ?P2 ?S3,
to be the graph that results from first attaching a single pendant to each cycle vertex of Cn

followed by attaching a one-level complete ternary tree to each pendant vertex. By extension,
we define an n-cycle-pendant with 2-level ternary tree, denoted Cn ? P2 ? S3 ? S3, to be the
graph that results from attaching another complete one-level ternary tree to each vertex of
degree one in Cn ? P2 ? S3.

The star notation here means to first build a cycle, Cn, with n vertices. Next, attach one
more vertex to each cycle vertex, ci. Now, we have each ci as one side of a path and one
vertex of degree one, which we will denote pi. Finally, attach three more vertices of degree
one to each pi, making each pi the center vertex of a star, S3.

Theorem 6.4. All Cn ? P2 ? S3 are coprime.

Proof. Note that Cn ? P2 ? S3 contains 5n vertices. We will identify our vertices as follows.
Let ci, 1 ≤ i ≤ n denote the cycle vertices, let pi denote the pendant vertex adjacent to ci,
and let the vertices adjacent to pi be denoted by si,j for 1 ≤ j ≤ 3. Define the labeling
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Figure 16. An example of a prime labeling for C3 ? P2 ? S3.

function f : V → {1, 2, . . . , 5n} via

f(ci) = 5i− 4, 1 ≤ i ≤ n

f(pi) =


5i− 2, i is odd

5i− 3, i ≡2 0, i 6≡6 0

5i− 1, i ≡6 0

f(si,j) =


5i− 3 + j, i is even

5i− 2 + j, j 6= 3 and i is odd

5i− 3, j = 3 and i is odd

.

It is straightforward to show that this mapping is injective and all adjacent vertices have
relatively prime labels.

Figure 16 shows the prime vertex labeling for C3 ? P2 ? S3 that agrees with the labeling
described in the proof of Theorem 6.4.

Recall from above that an n-cycle-pendant with 2-level ternary tree, denoted Cn ? P2 ?
S3 ? S3, is the graph that results from gluing a copy of S3, at the center vertex, onto each of
the vertices of degree 1 in the graph Cn ? P2 ? S3.

Theorem 6.5. All Cn ? P2 ? S3 ? S3 are coprime.

Proof. Note that Cn ? P2 ? S3 ? S3 contains 14n vertices. We will identify our vertices as
follows. Let ci, 1 ≤ i ≤ n denote the cycle vertices, let pi denote the pendant vertex adjacent
to ci, let the non-cycle vertices adjacent to pi be denoted si,j for 1 ≤ j ≤ 3, and let the
remaining vertices adjacent to each si,j be denoted li,j,k for 1 ≤ k ≤ 3. Our labeling function
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f : V → {1, 2, . . . , 14n} is best defined by first describing cycle and pendent vertex labels:

f(ci) = 14i− 13, 1 ≤ i ≤ n

f(pi) =

{
14i− 12, i ≡3 1, 2

14i− 10, i ≡3 0
.

The remaining vertex labels are determined by the values of i, j and k as follows. If i ≡3 1, 2,
then define

f(si,j) =


14i− 9, j = 1

14i− 5, j = 2

14i− 3, j = 3

f(li,j,k) =



14i− 11, j = 1, k = 1

14i− 10, j = 1, k = 2

14i− 8, j = 1, k = 3

14i− 7, j = 2, k = 1

14i− 6, j = 2, k = 2

14i− 4, j = 2, k = 3

14i− 2, j = 3, k = 1

14i− 1, j = 3, k = 2

14i, j = 3, k = 3

.

If i ≡3 0, then define

f(si,j) =


14i− 11, j = 1

14i− 7, j = 2

14i− 1, j = 3

f(li,j,k) =



14i− 12, j = 1, k = 1

14i− 9, j = 1, k = 2

14i− 8, j = 1, k = 3

14i− 6, j = 2, k = 1

14i− 5, j = 2, k = 2

14i− 4, j = 2, k = 3

14i− 3, j = 3, k = 1

14i− 2, j = 3, k = 2

14i, j = 3, k = 3

.

Again, it is relatively straightforward to check that this mapping results in a prime vertex
labeling. The details are left to the interested reader.
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Figure 17 shows the prime vertex labeling for C4?P2?S3?S3 that agrees with the labeling
described in the proof of Theorem 6.5.

1

2

5

9

11

3 4
6

7

8

10

12

13

14

15

16

19

23

25

17

18

20

21

22

24
26

2728

29

32

31

35

41

3033
34

36

37

38

39

40

42

43

44

47

51

53

45

46

48

49

50

52
54

55 56

Figure 17. An example of a prime labeling for C4 ? P2 ? S3 ? S3.

7 Conclusion

Seoud and Youssef’s conjecture is still open. This makes an excellent target for further work,
as well as attempting to find more families of coprime graphs. Both hairy cycles and cycle
pendant stars still have more progress that can be made. Specifically, we conjecture that a
similar approach will work for labeling hairy cycles up to fifteen pendants and cycle pendant
stars up to fourteen outer vertices.

The reasoning for labeling techniques for hairy cycles failing at sixteen “hairs” stems
from the following result proved by Pillai [4].

Proposition 7.1. When m ≥ 17, we can find m consecutive integers such that no number
in the set is prime to all the rest in the set.

That is, according to Pillai, in any set of 17 or more consecutive integers, there is a subset
of those integers in which no element is relatively prime to the rest of the elements in the
set. This would imply that at some point, the proposed labeling for hairy cycles would fail.
Thus, a new labeling scheme would need to be devised to label hairy cycles when the number
of pendants becomes large.
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Naturally, the progress we have achieved will not prove Seoud and Youssef’s conjecture.
Doing so would require a drastically different approach, namely not trying to show specific
families of graphs to be coprime. However, in [1], Seoud et al. detail necessary and sufficient
conditions for a graph to be coprime. For readers more interested in graph labeling in general,
additional information can be found in Gallian’s dynamic survey on graph labelings [2].
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