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Abstract

We investigate the structure of a function relevant to cryptography,
given by f : x 7→ xx mod p, for p a prime. We call f the self-power map.
Given x, it is easy to calculate f(x) ≡ xx (mod p). However, it is thought
to be difficult to quickly calculate f−1(xx). That is, given xx ≡ c (mod p),
for a fixed c, it is difficult to quickly solve for x. We call the problem of
finding the inverse of the self-power map the Self-Power Problem. As a
variation of the Discrete Logarithm Problem, the Self-Power Problem is
thought to be difficult to solve and therefore considered safe for use in
some versions of the ElGamal Digital Signature Algorithm. Nonetheless,
utilizing functional graphs to represent the map has revealed non-random
structural properties, which we describe primarily through number theory
and statistics.

1 Introduction

Modern cryptography is the study of transferring messages digitally be-
tween parties in a secure fashion. Cryptosystems considered “secure” are
assumed to rest on problems that are difficult to solve. For example, RSA
is associated with factoring, while protocols like Diffie-Hellman and El-
Gamal are associated with the Discrete Logarithm Problem (DLP). Both
factoring and the DLP are thought to be very hard problems and are cur-
rently well-studied.

Of specific interest to our topic is the ElGamal Digital Signature Al-
gorithm (DSA), a message-signing protocol. Assume Alice would like to
send a message M to Bob, and that she needs to sign this message in
a fashion that allows Bob to easily verify her identity. To execute this
through the ElGamal DSA, Alice first chooses a large prime p and a pri-
vate key a ∈ Z, randomly selected from between 1 and p − 2. She then
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releases the public key (p, α, y), where α is some primitive root modulo p
and y ≡ αa (mod p).

To sign M , Alice chooses a random k between 1 and p− 2 that is rela-
tively prime to p− 1. Her signature (r, s) is given by r ≡ αk (mod p− 1)
and s ≡ k−1(M − ar) (mod p).

Bob receives from Alice both the message M and the corresponding
signature (r, s). He also knows Alice’s public key (p, α, y). To verify
that Alice is indeed the sender, Bob computes v1 ≡ yrrs (mod p) and
v2 ≡ αM (mod p). If the verification equation holds, that is if v1 ≡ v2
(mod p), then Bob deems the signature valid.

To forge a signature in Alice’s name, Frank the forger must be able
to construct a valid verification equation. He needs to find a v1 and v2
such that v1 ≡ yrrs ≡ αM ≡ v2 (mod p), for whatever message M he
would like Bob to read. He knows the public key (p, α, y), but without
the private key a he can’t compute a valid s ≡ k−1(M − ar) (mod p). He
has the following options. Already knowing y, α, and M , Frank can fix r
and rearrange the verification equation to solve the DLP for s:

rs ≡ (yr)−1αM (mod p).

Since solving the DLP is considered intractable, he then tries to fix s
instead. This results in attempting to solve a similar problem to the DLP
for r:

yrrs ≡ αM (mod p).

There are two versions of the ElGamal DSA that rely on, among other
things, the difficulty of computing the inverse map of

f : x 7→ xx mod p

where p is prime. We call this function f the self-power map. In the first
variation of the ElGamal DSA, to take advantage of f , the verification
equation is the following:

v1 ≡ (y)srr ≡ αM ≡ v2 (mod p).

Frank the forger has the following problems to overcome to successfully
forge a signature. Still knowing y, α, and M , he can fix r and then rear-
range to try to solve the DLP for s:

ys ≡ αM (rr)−1 (mod p).

Else, he can fix s and solve the Self-Power Problem for r:

rr ≡ αM (ys)−1 (mod p).

In the other variation of the ElGamal DSA that uses the Self-Power Prob-
lem, the verification equation is

v1 ≡ (y)Mrr ≡ αs ≡ v2 (mod p).
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Forging a signature still presents similar problems. y, α, and M are still
fixed. Frank can fix r and then try to solve the DLP for s:

(y)Mrr ≡ αs (mod p).

Or Frank can fix s and rearrange to solve the Self-Power Problem for r:

rr ≡ (yM )−1αs (mod p).

While the DLP has been studied extensively, the self-power map, to
our knowledge, has seen little attention. Due to the feasibility of applying
tools from DLP investigations directly to the Self-Power Problem, and
the practical concern of whether or not the Self-Power Problem is in fact
a difficult problem, we believe the self-power map merits specific atten-
tion. Overall, our theoretical and statistical methods exposed non-random
structure within the self-power map that suggests there is more to be dis-
covered and possibly exploited. For example, we can predict where some
numbers map to based on their value, as well as rules that apply to large
sets of numbers.

2 Previous Work

The self-power map has been previously studied in papers by Crocker [3,4],
and Balog, Broughan, and Shparlinski [1]. [1] and [4] investigate the num-
ber of distinct residues in the self-power map, and bounds on the number
of solutions for x to xx ≡ a mod p, with a being a fixed residue modulo p.

In [3], Crocker looks specifically at solutions for x to xx ≡ 1 (mod p).
He defines primes where only 1 and p − 1 are solutions as irreducible
primes. In [4] he gives both a lower and an upper bound, respectively
[
√

(p− 1)/2] and p − 4, for the number of distinct residues of a given
self-power map.

Functional graphs for DLP functions, which are related to the self-
power map, have also been examined by earlier parties. Cloutier and
Holden [2] described the method of constructing functional graphs for the
discrete logarithm. They also established attributes of interest for our
graphs, such as number of components and number of terminal nodes (to
be defined later).

Statistics was first applied to these parameters of DLP graphs by Lin-
dle in [8] and later by Hoffman in [7]. None of Lindle’s results relate specif-
ically to the self-power map. Nonetheless, his idea of statistically compar-
ing a given class of functional graphs with random functional graphs has
served as inspiration for the statistical side of this paper.

Hoffman’s work is most closely related to ours. We have reproduced
his methodology of data collection and subsequent statistical analysis of
functional graph parameters. In fact, we gathered our data by executing a
version of his code tailored specifically to the self-power map. We present
these findings in the statistical section of our results.
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3 Definitions and Methods

3.1 Functional Graphs

First, a definition:

Functional Graph. A functional graph (FG) is a directed graph on the
set {1, . . . , n} such that the out-degree of each node is one.

A functional graph allows us to represent a function on a mathematical
object, such as (Z/pZ)∗, where each node x represents an element in the
domain, {1, . . . , p− 1} and the arrow leaving each node points to f(x) for
the given function on (Z/pZ)∗. Both the table and the graph representing
the self-power function for p = 13 can be seen in Figure 1.

x 1 2 3 4 5 6 7 8 9 10 11 12
f(x) 1 4 1 9 5 12 6 1 1 3 6 1

Figure 1: x 7→ xx mod 13

It is useful to model the self-power map as a functional graph. This is
advantageous visually and mathematically because it allows us to inves-
tigate patterns in the graph. Some objects of interest in function graphs
are components, cycles, image nodes, and terminal nodes.

Component. A component is a set of nodes that are connected. All
components are pairwise disjoint and the components form a partition of
the nodes.

In Figure 1, the graph is divided into two components. One component
contains only one node, 5, and the other contains the remaining 11 nodes.

Cycle. A cycle is a set of nodes within a component such that following
the path from any starting node in the cycle will lead back to the starting
node. In functional graphs, there is exactly one cycle within each compo-
nent. We call cycles with n nodes n-cycles. We will also refer to cycles
with one node as fixed points.

In Figure 1, the two cycles are 5 7→ 5 and 1 7→ 1. Both cycles are fixed
points in this case.
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Image Node. An image node is a node that has at least one incoming
arrow. We call the nodes that map to any given image node the pre-
images of the image node. We say that the in-degree of a node is the
number of pre-images of that node.

In Figure 1, the image nodes are 1, 3, 4, 5, 6, 9, and 12.

Terminal Node. A terminal node is a node that has no incoming arrows,
i.e., it is not an image node.

In Figure 1, the terminal nodes are 2, 7, 8, 10, and 11

3.2 Primitive Roots and Quadratic Residues

Quadratic Residue. If m is a positive integer, then the integer n is a
quadratic residue of m if gcd(n,m) = 1 and if there exists a solution to
x2 ≡ n (mod m).

Primitive Root. Let φ be the Euler totient function. If g and m are
relatively prime integers with m > 0 and if φ(m) is the smallest positive
integer n such that gn ≡ 1 (mod m), then g is a primitive root modulo
m.

With regards to number theory, we studied how quadratic residues
and primitive roots behave within the graph. This is a natural thing
to investigate because primitive roots and quadratic residues are large,
disjoint sets of the multiplicative group (Z/pZ)∗. In fact, of the p − 1
elements of the group, there are p−1

2
quadratic residues and φ(p − 1)

primitive roots, which together make up a majority of the group.

3.3 Order of a Node

Order. Let m be a positive integer and let n ∈ {1, . . . ,m−1}. We define
the order of n (mod m), ordm(n), as the smallest positive integer d such
that nd ≡ 1 (mod m).

We know that for each positive d | (p−1) there are exactly φ(d) many
elements in (Z/pZ)∗ of that order. For a prime p, we will define
Sd = {n ∈ (Z/pZ)∗ | ordp(n) = d}, where d | (p − 1). Because there are
exactly φ(d) elements of order d in (Z/pZ)∗, Sd has φ(d) elements. We
will investigate how the order of a node affects its behavior in the self-
power map.

3.4 Statistics

In general, our goal regarding functional graphs is to demonstrate that
self-power functional graphs (SPFG’s) do not look like random FG’s. One
efficient way to test this hypothesis is by applying statistical methods to
properties of functional graphs that have been examined in both random
graphs [5] and in DLP graphs [7, 8] but are not necessarily pliant to our
theoretical tools.

From the collection of parameters described by Flajolet and Odlyzko
in [5] for random functional graphs, we selected the following as pertinent
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to our investigations. We also define one additional parameter, denoted
by ∗, that has not thus far been addressed in DLP-related literature.

Total Sums.

Number of components. Number of components in a given
functional graph.

Number of cyclic nodes. Number of nodes that constitute
the cycles.

Number of terminal nodes. Number of nodes without pre-
images.

Number of n-cycles. Number of cycles comprising exactly
n nodes.

Number of fixed points. Number of 1-cycles.

Total Sums As Seen From a Node.

Total cycle length. For each node in a graph, count the length
of the cycle into which its directed path leads. Sum over
these values for all p− 1 nodes.

Total distance to a cycle. For each node in a graph, count
the number of edges that must be traversed before reach-
ing a cyclic node. (Let this value be 0 for cyclic nodes.)
Sum over these values for all p− 1 nodes.

Maximal Values.

Maximum cycle length. Number of nodes in largest cycle.

Maximum tail length. Number of nodes in longest tail.

Averages.

Average cycle length. Divide “Total cycle length” by p−1.

Average tail length. Divide “Total distance to a cycle” by
p− 1.

Average in-degree.∗ Expected number of pre-images for a
random node, given by p−1

no. image nodes
.

We modified code from previous work on the DLP [7] to generate data
on the above parameters for the self-power map. Specifically, we calcu-
lated these values for maps corresponding to a class of 389 six-digit primes
falling between 100,003 and 130,787, and again for a class of 701 larger
seven-digit primes between 1,000,003 and 1,037,963. This data was then
imported into Minitab for processing.

The primes above were taken in mostly consecutive order, with the
exception of our data for safe primes.

Safe Prime. A prime p is called a safe prime when it is of the form 2q+1,
where q is also a prime.

Safe primes are significant because they are a popular choice for many
security protocols. Because p− 1 has one large factor q and only two fac-
tors total, (Z/pZ)∗ has group structure that is cryptographically “nice”.
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Specifically for protocols dependent upon difficulty of the DLP, it is im-
portant for the order of the generator α, namely p− 1, to not factor into
small primes [6]. SPFG’s corresponding to safe primes also turned out to
be relevant to our results. Because of their relatively sparse distribution
within the primes as a whole, our data on safe primes were gathered par-
tially outside of a consecutive range.

Six-digit Seven-digit

No. Consecutive Primes 238 599

No. Safe Primes 180 132

Total Primes 389 701

Statistical Tests. In Minitab, there were three main tests we used to ex-
amine our data. We list these and give brief explanation of their function
below.

Probability Plot. How is the data distributed for a specific
parameter?

T -Test. Does the observed average value of a parameter differ
significantly from the expected average value?

Analysis of Variance (ANOVA). Within a given parame-
ter, are the average values significantly different between
two or more categories of another variable?

Linear Regression. Does one parameter predict the value of
another? How “good” is this prediction?

4 Results

4.1 Basic Behavior

It is evident upon inspection that 1 and p − 1 always map to 1 for any
prime p. Besides these observations about 1 and p−1, there exist patterns
for the nodes p−1

2
and p+1

2
as well. Crocker proved some of the pattern

for p−1
2

in [3], but we will include the full proof here.

Proposition 1. Let p be prime. Let f denote the self-power map of p.
If p ≡ 1 or 3 (mod 8), then f( p−1

2
) = 1. If p ≡ 5 or 7 (mod 8), then

f( p−1
2

) = −1.

Proof. Consider

f(
p− 1

2
) ≡ (

p− 1

2
)

p−1
2

≡ (−1)
p−1
2 (2−1)

p−1
2 (mod p)

Case 1. Assume p ≡ 1 (mod 8). Then p−1
2

is even and 2 is a quadratic

residue modulo p. Therefore (−1)
p−1
2 (2−1)

p−1
2 ≡ (1)(1)−1 ≡ 1

(mod p) by Euler’s criterion.
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Case 2. Assume p ≡ 3 (mod 8). Then p−1
2

is odd and 2 is not a quadratic

residue modulo p. Then (−1)
p−1
2 (2−1)

p−1
2 ≡ (−1)(−1)−1 ≡ 1

(mod p) by Euler’s criterion.

Case 3. Assume p ≡ 5 (mod 8). Then p−1
2

is even and 2 is not a

quadratic residue modulo p. Therefore (−1)
p−1
2 (2−1)

p−1
2 ≡ (1)(−1)−1 ≡

−1 (mod p) by Euler’s criterion.

Case 4. Assume p ≡ 7 (mod 8). Then p−1
2

is odd and 2 is a quadratic

residue modulo p. Therefore (−1)
p−1
2 (2−1)

p−1
2 ≡ (−1)(1)−1 ≡ −1

(mod p) by Euler’s criterion.

As an example, in Figure 1 we see that p−1
2

= 6 maps to −1 ≡ 12,
because p ≡ 13 ≡ 5 (mod 8).

Proposition 2. Let p be prime. If p ≡ 1 or 7 (mod 8), then f( p+1
2

) =
p+1
2

. If p ≡ 3 or 5 (mod 8), then f( p+1
2

) = p−1
2

.

Proof. Consider

f(
p+ 1

2
) ≡ (

p+ 1

2
)

p+1
2

≡ (
p+ 1

2
)

p−1
2 +1

≡ (
p+ 1

2
)(
p+ 1

2
)

p−1
2

≡ (
p+ 1

2
)(1)(2−1)

p−1
2 (mod p)

Case 1. Assume p ≡ 1 (mod 8). Then 2 is a quadratic residue modulo

p. Hence ( p+1
2

)(2−1)
p−1
2 ≡ ( p+1

2
)(1)−1 ≡ p+1

2
by Euler’s Criterion.

Case 2. Assume p ≡ 3 (mod 8). Then 2 is not a quadratic residue mod-

ulo p. Hence ( p+1
2

)(2−1)
p−1
2 ≡ ( p+1

2
)(−1)−1 ≡ p−1

2
by Euler’s Cri-

terion.

Case 3. Assume p ≡ 5 (mod 8). Then 2 is not a quadratic residue mod-

ulo p. Hence ( p+1
2

)(2−1)
p−1
2 ≡ ( p+1

2
)(−1)−1 ≡ p−1

2
by Euler’s Cri-

terion.

Case 4. Assume p ≡ 7 (mod 8). Then 2 is a quadratic residue modulo

p. Hence ( p+1
2

)(2−1)
p−1
2 ≡ ( p+1

2
)(1)−1 ≡ p+1

2
by Euler’s Criterion.

Back to Figure 1 for an example, p+1
2

= 7 maps to p−1
2

= 6 because
p ≡ 13 ≡ 5 (mod 8).
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4.2 Quadratic Residues and Primitive Roots in
the Self-Power Map

Now that we have described patterns for p+1
2

and p−1
2

, we will turn our
attention to larger sets of nodes within the self-power map: quadratic
residues and primitive roots. We start by looking at quadratic residues:

Proposition 3. Let p be prime. Let n ∈ (Z/pZ)∗ such that n is a
quadratic residue. Then nn is also a quadratic residue modulo p.

Proof. Since n is a quadratic residue, then x2 ≡ n (mod p) for some
x ∈ (Z/pZ)∗. Since n ≡ x2 (mod p), then

nn ≡ (x2)x2 ≡ (xx2
)2 (mod p)

Hence nn (mod p) is a quadratic residue.

From this fact it is clear that the existence of at least one quadratic
residue in a component implies that the cycle of that component will
consist completely of quadratic residues. For example, in Figure 2, 10
maps to 3 which maps to 1, and all are quadratic residues. The cycle
of their component is a quadratic residue. The next observation gives
another condition where nn (mod p) is a quadratic residue.

Proposition 4. Let p be prime. Let n ∈ (Z/pZ)∗ such that n is even.
Then nn is a quadratic residue modulo p.

Proof. Since n is even, n = 2a for some a ∈ (Z/pZ)∗. Consider

nn ≡ (2a)2a ≡ ((2a)a)2 (mod p)

Hence nn (mod p) is a quadratic residue.

In Figure 2, we see that all nodes that are even map to a quadratic
residue.

Figure 2: x 7→ xx mod 13

Quadratic residues are not the only nodes to follow these patterns.
In fact, any k-th power residue behaves in an analogous fashion. A k-th
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power residue is a number a ∈ (Z/pZ)∗ such that there exists x ∈ (Z/pZ)∗

where xk ≡ a (mod p). For each k | (p− 1) there will be p−1
k

many k-th
power residues.

Now we will examine the set of primitive roots within the self-power
map. These nodes behave differently from quadratic residues and k-th
power residues because primitive roots are not guaranteed to map to other
primitive roots.

Proposition 5. Let p be prime. A primitive root is an image node in
the self-power map if and only if it is mapped to by a primitve root that is
relatively prime to p− 1.

Proof. We first prove in the forward direction. Let g be a primitive root
modulo p that is an image node. Then there exists x ∈ (Z/pZ)∗ such
that xx ≡ g (mod p). Since xx ≡ g (mod p), then

ordp(xx) = ordp(g) = p− 1.

But

ordp(xx) =
ordp(x)

gcd(ordp(x), x)
.

Then
ordp(x) = ordp(xx) gcd(ordp(x), x).

Since ordp(xx) = p− 1 and p− 1 is the largest possible order for an
element in (Z/pZ)∗, then ordp(x) = p − 1. Hence x is a primitive
root. Since x is a primitive root and xx is a primitive root, then
gcd(x, p− 1) = 1 else xx would not be a primitive root.

We now prove in the alternate direction. Let g be a primitive root
modulo p such that gcd(g, p− 1) = 1. Since gcd(g, p− 1) = 1 and g
is a primitive root, then gg is a primitive root.

In Figure 3, 6 is the only image node that is also a primitive root. Its
pre-images are 7 and 11, which are both relatively prime to 12 = p− 1.

Figure 3: x 7→ xx mod 13
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Proposition 6. Let p be prime. A primitive root can never be a fixed
point in the self-power map.

Proof. Let g be a primitive root modulo p. Assume gg ≡ g (mod p). Since
gg ≡ g (mod p), then gg−1 ≡ 1 (mod p). But this is a contradiction since
g − 1 6= p− 1 and g is a primitive root. Hence gg 6≡ g (mod p).

From these two propositions we gain the fact that a primitive root can
only be either a terminal node or the image node of a different primitive
root in the self-power map. Also, by a similar proof to the last proposition,
we see that a primitive root will never be a pre-image of 1 in the self-power
map. Looking at Figure 3, we can see that none of the primitive roots are
fixed points or map to 1.

4.3 Effects of the Order of a Node

Now that we have looked at sets of nodes in the self-power map, we will
look at how order affects the action of each separate node in the self-power
map.

Proposition 7. Let p be prime. A node n is a fixed point in the self-power
map if and only if ordp(n) | (n− 1).

Proof. We first prove in the forward direction. Let n ∈ (Z/pZ)∗. Assume
nn ≡ n (mod p). Then nn−1 ≡ 1 (mod p). Hence ordp(n) | (n− 1).

Now we prove in the alternate direction. Let n ∈ (Z/pZ)∗. Assume
ordp(n) | (n− 1). Then nn−1 ≡ 1 (mod p). Hence nn ≡ n (mod p).

Therefore, fixed points are determined by the orders of the nodes
within the self-power functional graph. In Figure 4, the fixed points are 5
and 1. We see that ord13(5) = 4 divides 4, and also ord13(1) = 1 divides
1. Next, we show that the order of a node always divides the respective
orders of its pre-images.

Proposition 8. The order of a node m divides the respective orders of
its pre-images in the self-power functional graph of p.

Proof. Let p be prime. Let n,m ∈ (Z/pZ)∗ be such that nn ≡ m (mod p).
It follows that

ordp(m) =
ordp(n)

gcd(n, ordp(n))

ordp(m) gcd(n, ordp(n)) = ordp(n).

Hence, ordp(m) | ordp(n).

For example, in Figure 4 we see that 2 7→ 4 7→ 9 and that ord13(9)
divides ord13(4) which divides ord13(2).

Because the order of xx is

ordp(x)

gcd(ordp(x), x)
,
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Figure 4: x 7→ xx mod 13, where superscripts denote the order of a node.

we can calculate the order of the image of a node. This allows us to
start with a terminal node and work our way inwards in a component of
the self-power map, determining the orders of the image nodes as we go.
This fact also shows that a node n with gcd(ordp(n), n) = 1 will map to
another node of the same order. The next corollary is a special case of
this behavior.

Corollary 9. Let p be prime and let a1, a2, . . . , an be the nodes of an n-
cycle, where f(a1) = a2, f(a2) = a3, . . . , f(an−1) = an, and f(an) = a1.
Then all the nodes of the n-cycle have the same order.

Proof. By Proposition 8,

ordp(a1) | ordp(an), ordp(an) | ordp(an−1), . . . , ordp(a2) | ordp(a1).

By transitivity, ordp(ak)|ordp(ai) and ordp(ai)|ordp(ak). Therefore all the
nodes in the cycle have the same order.

From this corollary and the proof of Proposition 8 we know all nodes
in a cycle have the same order and are relatively prime to their order.

As an example we will consider the self-power map for p = 47. In this
graph, the nodes 11, 39, and 43 form a cycle, where 11 7→ 39 7→ 43 and
43 7→ 11. After computation we find that the order of each of these nodes
is 46. Notice also that 11, 39 and 43 are all relatively prime to 46.

Now we look at one more condition of nodes in a cycle:

Theorem 10. Let p be prime. Let a1, a2, . . . , an be the nodes of an n-
cycle in the self-power map for p. Then

n∏
k=1

ak ≡ 1 (mod ordp[an]).

The notation [an] denotes the order of any node in the n-cycle since the
order of all nodes in the same cycle is the same by Corollary 9.

12



Proof. Let f(a1) = a2, f(a2) = a3, . . . , f(an−1) = an, and f(an) = a1.
Since aa1

1 ≡ a2 and aa2
2 ≡ a3 (mod p), then

(a1)a1a2 ≡ a3 (mod p).

Continuing the argument, we get (a1)a1a2...an ≡ a1 (mod p). Then

(a1)a1a2...an−1 ≡ 1 (mod p).

Thus, ordp[an] | (a1a2 . . . an − 1), and
∏n

k=1 ak ≡ 1 (mod ordp[an]).

For example, we consider again the self-power map for p = 47 and the
cycle consisting of 11, 39, 43. We know that the order of each of these
nodes is 46. By multiplying, we get 11 · 39 · 43 = 18447 ≡ 1 (mod 46).

Unfortunately, Theorem 10 does not work in the reverse direction. If
you can find a set of nodes with the same order, that are relatively prime
to their order, and their product is 1 modulo their order, the nodes are
not guaranteed to form a cycle in the self-power map. On the other hand,
given this information, it is possible to construct an upper bound on the
number of components and the maximum cycle size in the self-power map
for a given prime p.

From this knowledge we can also establish a condition under which
nodes of certain orders will form a cycle in the self-power map. This is
based on whether or not Sd contains any pre-images of 1.

Theorem 11. Let d and p be primes such that d | (p− 1). If there does
not exist x ∈ Sd such that xx ≡ 1 (mod p), then there exists at least one
cycle composed of nodes of order d in the self-power map for p.

Proof. Assume there does not exist x ∈ Sd such that xx ≡ 1 (mod p).
Note that ordp(1) = 1, so if there exists x ∈ Sd such that xx ≡ 1 (mod 1),
then

d

gcd(d, x)
= 1.

This would imply gcd(d, x) = d. However, since d is prime and xx 6≡ 1
(mod p) for all x ∈ Sd, then gcd(d, x) = 1for all x ∈ Sd. This means that
for any x ∈ Sd, xx ∈ Sd because

ordp(xx) =
ordp(x)

gcd(ordp(x), x)
=

d

gcd(d, x)
= d.

We know that Sd is finite because it has exactly φ(d) elements. Since Sd

is finite and for every x ∈ Sd, x
x ∈ Sd, then some of the nodes in Sd must

form a cycle.

As an example, let p = 47. The prime divisors of p − 1 are 2 and 23.
The only element of order 2 is p− 1, which maps to 1. By calculation we
see that p − 1, with order 2, is the only pre-image of 1. Therefore, since
there are no pre-images of 1 with order 23, there must be a cycle with
nodes of order 23, and in fact there are two. 21 and 34 form a cycle of
size 2, and their orders are 23. Also, 24 is a fixed point with order 23.

It should be noted that the presence of a pre-image of 1 in Sd does not
prevent other nodes in Sd from forming a cycle. In the next section, we
will see how knowing the pre-images of 1 and p − 1 determine a certain
type of cycle, the fixed point.
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4.4 Investigations of Fixed Points and Pre-images
of 1 and p− 1

We are now going to focus on fixed points in the self-power map and
examine how they are connected to pre-images of 1 and p− 1.

Theorem 12. Let p be prime and n ∈ (Z/pZ)∗ be such that nn ≡ n (mod p).
Then

(p− n)(p−n) ≡ (−1)n+1 (mod p)

Proof. Let n ∈ (Z/pZ)∗ be such that nn ≡ n (mod p). Note that

(p− n)(p−n) ≡ (p− n)(p−1−n+1)

≡ (p− n)p−1(p− n)−n(p− n)

≡ (p− n)−n(p− n) (mod p)

Case 1. Assume n is odd. Then (p− n)−n ≡ −(n−n) ≡ −n−1 (mod p),
because nn ≡ n (mod p). Thus,

(p− n)−n(p− n) ≡ −n−1(p− n) ≡ −n−1p+ 1 ≡ 1 (mod p).

Case 2. Assume n is even. Then (p − n)−n ≡ n−n ≡ n−1 (mod p),
because nn ≡ n (mod p). Therefore,

(p− n)−n(p− n) ≡ n−1(p− n) ≡ n−1p− 1 ≡ −1 (mod p).

As an example, we consider the self-power map for p = 41. The fixed
points of this map are 1, 9, 16, 21, 31 and the additive inverses of these
nodes are 40, 32, 25, 20, 10 respectively. For 16, which is the only even
fixed point, its additive inverse 25 is a pre-image of p − 1. For the rest
of the fixed points, since they are odd, their additive inverses are all pre-
images of 1.

Theorem 12 dictates that the additive inverses of fixed points be pre-
images of either 1 or p − 1. It is interesting to know how the additive
inverses of pre-images of 1 and p − 1 behave in general. Investigation
reveals that these nodes also behave in a predictable pattern.

Corollary 13. Let p be prime and n ∈ (Z/pZ)∗ be such that nn ≡ 1 (mod p).
Then

(p− n)(p−n) ≡ n(−1)n+1 (mod p).

Proof. Let n ∈ (Z/pZ)∗ be such that nn ≡ 1 (mod p). As shown in
Theorem 11,

(p− n)(p−n) ≡ (p− n)−n(p− n) (mod p).

Case 1. Assume n is odd. Then (p− n)−n ≡ −(n−n) ≡ −1 (mod p).
Thus,

(p− n)−n(p− n) ≡ −1(p− n) ≡ n− p ≡ n (mod p).

14



Case 2. Assume n is even. Then (p − n)−n ≡ n−n ≡ 1−1 ≡ 1 (mod p).
Therefore,

(p− n)−n(p− n) ≡ 1(p− n) ≡ p− n ≡ −n (mod p).

Figure 5: x 7→ xx mod 13, where pre-images of 1 and their additive inverses are
highlighted.

Figure 5 illustrates Corollary 13. As an example, 8 is a pre-image of
1, and its additive inverse, 5, is a fixed point. This is because

(−8)−8 ≡ 8(−1)9 ≡ 5 (mod 13).

Corollary 14. Let p be a prime and n ∈ (Z/pZ)∗ be such that nn ≡ −1
(mod p). Then

(p− n)(p−n) ≡ n(−1)n (mod p).

Figure 6: x 7→ xx mod 13, where the pre-image of −1 and its additive inverse
are highlighted.

The proof of Corollary 14 is similar to the proof of Corollary 13. In
Figure 6, we see that 6 is a pre-image of −1 ≡ 12 (mod 13). 7 maps to 6
because (−6)−6 ≡ 6(−1)6 ≡ 6 (mod 13).
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Using both of these corollaries and Theorem 12, it is possible to put
bounds on either the number of components or the number of pre-images
of 1 and p−1, depending on which information is known. With knowledge
about the number of fixed points, one has a lower bound on both the
total number of components and the total number of pre-images of 1
and p − 1. With exact information on which nodes are fixed points, it
is known which additive inverses will map to 1 and p − 1. From the
other direction, if the number of pre-images of 1 and p − 1 is known,
then an upper bound on the number of fixed points follows. And with
exact information on which nodes are pre-images one can obtain an exact
number of fixed points. Thus, significant information about the structure
of the self-power functional graph is gained from solving xx ≡ x, xx ≡ 1
or xx ≡ p− 1 (mod p) for x. If information is known about all the nodes
and their orders, you will be able to pick out which nodes map to 1 and
which map to p− 1 with these facts:

Proposition 15. Let p be prime. A node n maps to 1 in the self-power
map of p if and only if ordp(n) |n.

Proof. We first prove in the forward direction. Assume nn ≡ 1 (mod p).
Then ordp(n) |n.

Now we prove in the alternate direction. Assume ordp(n) |n. Then
nn ≡ 1 (mod 1).

In Figure 4, we see as an example of Proposition 15 that 9 maps to 1
and ord13(9) | 9.
Proposition 16. Let p be prime. A node n maps to p−1 in the self-power
map of p if and only if ordp(n) | 2n and ordp(n) - n.

Proof. We first prove in the forward direction. Assume nn ≡ p − 1
(mod p). Note that ordp(n) - n else nn ≡ 1 (mod p). Since nn ≡
p−1 (mod p), then (nn)2 ≡ (p−1)2 (mod p). But (nn)2 = n2n and
(p− 1) ≡ 1 (mod p). Thus n2n ≡ 1 (mod p). Hence ordp(n) | 2n.

Now we prove in the alternate direction. Assume ordp(n) | 2n and ordp(n) -
n. Since ordp(n) | 2n, then n2n ≡ 1 (mod p). But n2n = (nn)2. So
(nn)2 ≡ 1 (mod p). Then either nn ≡ 1 (mod p) or nn ≡ p − 1
(mod p). But ordp(n) - n, so nn 6≡ 1 (mod p). Hence nn ≡ p − 1
(mod p).

Back to Figure 4, 6 is the only node to map to p − 1 ≡ 12 (mod 13)
because ord13(6) | 12 and ord13(6) - 6.

With this knowledge one can determine which elements of (Z/pZ)∗ are
pre-images of 1 or p−1, and with the information about the factorization
of p − 1, it is possible to construct separate upper bounds for both the
pre-images of 1 and the pre-images of p− 1.

Proposition 17. An upper bound on the number of pre-images of 1 is∑
d|(p−1)

min{φ(d),
p− 1

d
− 1}, for positive d | (p− 1).
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Proof. By Proposition 15, we that the order of a pre-image of 1 must
divide the value of the pre-image. Therefore, pre-images of 1 must be
multiples of d for d | (p− 1). We know there are p−1

d
multiples of d. But

we know there are only φ(d) elements of order d. Also, since p− 1 always
maps to 1 and is always a multiple of d, we take the minimun of φ(d) and
p−1

d
− 1. By summing min{φ(d), p−1

d
− 1} for all positive d | (p − 1) we

get an upper bound on the number of pre-images of 1.

Proposition 18. An upper bound on the number of pre-images of p− 1
is

−1 +
∑

d|(p−1)

min{φ(d),
p− 1

d
}, for positive d | (p− 1), where d is even.

Proof. First, by Proposition 8, note that nodes with odd order cannot be
pre-images of p − 1 because 2, the order of p − 1, does not divide odd
numbers. By Proposition 16, we know that the order of a pre-image of
p − 1 must divide the twice the value of the pre-image. Therefore, pre-
images of p−1 are half of multiples of even d for d | (p−1). We know that
there are p−1

d
multiples of d. But we know there are only φ(d) elements

of order d. Thus we take the minimum of φ(d) and p−1
d

. By summing
min{φ(d), p−1

d
} for all positive and even d | (p−1) we get an upper bound

on the number of pre-images of 1. We subtract 1 from this because p− 1
is the only element of order 2 and p− 1 always maps to 1.

As an example, we will use these equations to find upper bounds on
the pre-images of 1 and p− 1 in the self-power map for 13. The divisors
of 12 are 1, 2, 3, 4, 6, 12. Summing∑

d | 12
min{φ(d),

12

d
− 1}

for these divisors yields a value of 7 as an upper bound on the pre-images
of 1. Likewise, summing

−1 +
∑
d | 12

min{φ(d),
12

d
}

for the even divisors of 12 yields a value of 5 as an upper bound on the
pre-images of p− 1. Putting together the two results, we get 12 as a total
upper bound on the number of pre-images of 1 and p− 1. However there
are only 12 nodes in the self-power map for 13 and we know that all 12
nodes cannot be either a pre-image of 1 or p− 1 since we already know of
at least one node, p+1

2
, that is never a pre-image of 1 or p− 1. Therefore,

we would like to be able to construct a more accurate upper bound for
the pre-images of 1 and p−1. [1] offers an upper bound on the number of
pre-images for any image node in the self-power map but not specifically
for 1 and p− 1.
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4.5 Statistical Analysis[9]

We now turn to statistically examining the structural parameters of self-
power functional graphs. Each of the tests we utilized has a corresponding
p-value, which indicates the likelihood that a positive finding is simply the
result of chance. Note that for this paper, we will consider a finding signif-
icant when its corresponding p-value is 0.05 or less, meaning there is a 5%
or lower probability that we are reporting a random instead of systematic
result.

Given that cycles are one of our main theoretical discussion points,
and that each component contains exactly one cycle, the number of com-
ponents in a functional graph was a parameter of primary interest. We
first examined the distribution of number of components for our group of
238 consecutive six-digit primes. Literature on random functional graphs
led us to expect this would be a normal distribution [5]. Nonetheless, a
probability plot showed that a normal distribution is a very poor fit, with
p < 0.005. The data instead conforms to a lognormal distribution as seen
in Figure 7, the probability plot reporting p = 0.526.

Figure 7: Lognormal Distribution of No. Components

Furthermore, having observed a large number of fixed points in hand-
drawn graphs, we suspected that fixed points account for a large number
of the total cycles in SPFG’s. To this end, we ran a linear regression
that showed the number of fixed points is an excellent predictor of the
number of components. The R-squared (R2) value 92.8% means that ap-
proximately 93% of the variation in the data on number of components
is accounted for by the number of fixed points, indicating a very strong
correlation (Figure 8).
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Figure 8: No. Components versus No. Fixed Points

We also found that the average proportion of fixed points to total cy-
cles is significantly larger for SPFG’s than random FG’s. From [5], the
expected proportion for random functional graphs on n nodes is given by
1
2
log(n). We calculated this expected value by letting n be the average

over our 238 six-digit primes. Our actual value was obtained by averaging
the observed proportion of fixed points to cycles for these same primes.
We then applied a t-test to compare the averages (Figure 9), which indi-
cated a positive result (p < 0.005).

In an effort to confirm our findings thus far, we ran the above tests
again for our class of 599 consecutive seven-digit primes. The lognormal
probability plot was significantly poor (p = 0.011), especially compared to
the six-digit primes (recall p = 0.526). Despite this, fixed points continued
to be a good predictor of the number of components (R2 = 92.5%), and
the average proportion of fixed points to total cycles was still significantly
different from the average on random FG’s (p < 0.005, Figure 9). This
suggested the need to find another factor to account for this effect in the
distribution.

Expected Average Observed Average p-value
six-digit primes 0.1735 0.5248 <0.005

seven-digit primes 0.1447 0.4958 <0.005

Figure 9: t-Test: No. Fixed Points over No. Total Cycles

Because of the cryptographic significance of safe primes mentioned
earlier, we decided to investigate their role as possible effect contributors.

19



Again considering the set of seven-digit primes, we split the data into safe
prime and non-safe prime groups and repeated our distribution analysis
on them separately. Once safe primes are removed from the set, the non-
safe primes did follow a lognormal distribution more closely (p = 0.051).

The safe primes looked more like a normal than lognormal distribu-
tion (p = 0.126 and p = 0.023, respectively). There were, however, only
30 safe primes in this consecutively generated data set. If we consider a
larger set of 132 seven-digit safe primes, neither the normal nor lognor-
mal distributions are acceptable (p < 0.005 for both). The results are
identical for normal and lognormal plots for our set of 180 six-digit safe
primes. This supports the idea that safe primes are a more secure choice,
since their corresponding graphs may be less predictable. For illustrative
purposes, we present a lognormal probability plot for the seven-digit safe
primes (Figure 10).

Figure 10: Distribution of No. Components in the Safe Primes

We note how choppy this plot looks, reminiscent of a bar chart, which
suggests that discrete distributions may be a better fit for safe primes.
Preliminary testing on the set of six-digit safe primes shows promise in
this area, with a χ2-goodness-of-fit test for the Poisson distribution com-
ing out much better than the continuous distributions (p = 0.198). But
the test result drops precipitously in confidence when applied to our seven-
digit safe primes (p < 0.005). Discrete distributions with respect to safe
primes likely merit further investigation.

To improve on the idea of separating our data into safe prime and non-
safe prime categories, we can consider the effect of the number of divisors
of p− 1 on the number of components. This is a natural extension, since
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safe primes are considered good cryptographic choices for the fact that
p− 1 has so few divisors. It is intuitive that there may be a graded effect
on SPFG structure for the number of divisors in general.

We conducted an ANOVA test on our 599 consecutive seven-digit
primes for number of components versus total divisors of p−1 (we will call
this number a “divisor class”). The ANOVA gives us two measurements.
First, it gives us a p-value corresponding to whether or not the average
values (means) for number of components are significantly different be-
tween divisor classes. Second, we get an R2 value that states how good
of a predictor the divisor classes are for number of components.

For number of components, the divisor classes had significantly differ-
ent means (p < 0.001) and were highly successful predictors (R2 = 88.3%).
This is especially significant for us because the number of divisors of p−1
can be explicitly calculated or well-approximated, unlike the number of
fixed points, making it a much more useful predictor.

Having had success with number of components, we decided to run
ANOVA tests against divisor classes for all of our parameters. The differ-
ence in means was significant for all of them, with p < 0.005 in all cases.
The R2 results are listed below.

SPFG Parameter R2-value (%)

Number of components. 88.30

Number of cyclic nodes. 55.81

Number of terminal nodes. 72.91

Number of fixed points. 92.45

Total cycle length. 45.87

Total distance to a cycle. 72.77

Maximum cycle length. 51.94

Maximum tail length. 79.10

Average cycle length. 45.87

Average tail length. 72.71

Average in-degree. 73.51

5 Conclusion

Our work has only begun to reveal the rich structure of the self-power func-
tional graph. It was surprising to find that we can know where seemingly-
uninteresting nodes such as p−1

2
and p+1

2
map to. A more exhaustive

study of other nodes needs to be done to see if they are as predictable. It
was also fruitful to examine well-studied sets of residues modulo p, such
as quadratic residues and primitive roots. For both of them, we were
able to glean information about what type of node their pre-images must
be. Concerning primitive roots, we would expect that the self-power map
would be more secure if p − 1 were chosen such that it has less factors.
That way, there would be less image nodes that are primitive roots, mak-
ing it harder to predict the type of a node’s pre-image. Future work on
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bounds for the number of primitive roots relatively prime to p− 1 would
be useful if this turns out to be valid.

Our investigations into fixed points led to results about the pre-images
of 1 and p−1. Based on whether a node is a fixed point or a pre-image of
1 or p−1, we know exactly where its additive inverse will map to. This is
doubly significant because fixed points are statistically more common in
self-power functional graphs. Investigations to see if this knowledge can
be expanded to the pre-images of other nodes would be helpful in cracking
the Self-Power Problem. For cycles in general, we found that nodes in a
cycle all have the same order. Since studying fixed points proved fruitful,
we would like to find stronger conditions for a node to be in a cycle.

More future work lies in constructing a better bound on the number
of pre-images of 1 and p− 1, since much of the structure in the self-power
functional graph was related to these nodes. Given the relationship be-
tween the pre-images of 1, p− 1, and fixed points, this bound lends itself
to another bound on the number of fixed points. This bound further
contributes to a bound on the number of components and cycles, due to
the high percentage of fixed points within the self-power functional graph.
With current theoretical progress in mind, future work on the Self-Power
Problem is promising.

On the statistical side, we have found a great deal of non-random struc-
ture in these maps. There are still many parameters to be examined which
may reveal more predictable behavior. It would also be useful to consider
more discrete distributions for safe prime data, since any predictable be-
havior in the safe primes would be notable. Perhaps most interesting for
the future is the issue of the number of divisors of p−1. This number is a
strong predictor of many of the parameters for which we have data, and
perhaps an explanation for this could be found in theoretical results.

Other future work in a new direction lies in applying the methods used
in this paper to the problem of solving xgx ≡ c (mod p) for x, where p is
prime, g is a primitive root modulo p, and c is fixed. This congruence ap-
pears in the original version of the ElGamal Digital Signature Algorithm,
when Frank the forger fixes s in the verification equation and attempts to
solve for r, and is a compounded version of the DLP.

In summary, our two-pronged approach with number theoretical and
statistical tools has clearly demonstrated that self-power functional graphs
look unlike random functional graphs, even without exploring the self-
power map exhaustively. The current results and ideas presented here
suggest that future progress on the Self-Power Problem is feasible and
could potentially lead to practical information regarding cryptographic
schemes.
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