
Rose-Hulman Institute of Technology Rose-Hulman Institute of Technology

Rose-Hulman Scholar Rose-Hulman Scholar

Mathematical Sciences Technical Reports
(MSTR) Mathematics

7-31-2010

Discrete Logarithms on Elliptic Curves Discrete Logarithms on Elliptic Curves

Aaron Blumenfeld
University of Rochester

Follow this and additional works at: https://scholar.rose-hulman.edu/math_mstr

Recommended Citation Recommended Citation
Blumenfeld, Aaron, "Discrete Logarithms on Elliptic Curves" (2010). Mathematical Sciences Technical
Reports (MSTR). 25.
https://scholar.rose-hulman.edu/math_mstr/25

This Article is brought to you for free and open access by the Mathematics at Rose-Hulman Scholar. It has been
accepted for inclusion in Mathematical Sciences Technical Reports (MSTR) by an authorized administrator of
Rose-Hulman Scholar. For more information, please contact weir1@rose-hulman.edu.

https://scholar.rose-hulman.edu/
https://scholar.rose-hulman.edu/math_mstr
https://scholar.rose-hulman.edu/math_mstr
https://scholar.rose-hulman.edu/math
https://scholar.rose-hulman.edu/math_mstr?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/math_mstr/25?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:weir1@rose-hulman.edu

Discrete Logarithms on Elliptic Curves

Aaron Blumenfeld

Adviser: Joshua B. Holden

Mathematical Sciences Technical Report Series
MSTR 10-04

July 31, 2010

Department of Mathematics
Rose-Hulman Institute of Technology

http://www.rose-hulman.edu/math

Fax (812)-877-8333 Phone (812)-877-8193

Discrete Logarithms on Elliptic Curves

Aaron Blumenfeld
University of Rochester

Faculty Advisor: Joshua Holden
Rose-Hulman Institute of Technology

Mathematics Research Experience for Undergraduates (REU)

Summer 2010

DISCRETE LOGARITHMS ON ELLIPTIC CURVES

AARON BLUMENFELD

Abstract. Cryptographic protocols often make use of the inherent hardness

of the classical discrete logarithm problem, which is to solve gx ≡ y (mod p)

for x. The hardness of this problem has been exploited in the Diffie-Hellman
key exchange, as well as in cryptosystems such as ElGamal. There is a similar

discrete logarithm problem on elliptic curves: solve kB = P for k. Therefore,

Diffie-Hellman and ElGamal have been adapted for elliptic curves. There is an
abundance of evidence suggesting that elliptic curve cryptography is even more

secure, which means that we can obtain the same security with fewer bits. In

this paper, we investigate the discrete logarithm for elliptic curves over Fp for
p ≥ 5 by constructing a function and considering the induced functional graph

and the implications for cryptography.

1. Introduction

The two most studied number theoretic problems in cryptography are factoring
integers and solving the discrete logarithm problem. In this paper, we focus on the
latter. The process of modular exponentiation takes a base g (possibly a primitive
root) and an integer x and computes y = gx mod p. The inverse transformation is
known as the discrete logarithm problem — that is, to solve gx ≡ y (mod p) for x.
This is considered one of the hardest problems in cryptography, and it has led to
many cryptographic protocols.

The best known such protocol that employs the hardness of the discrete log-
arithm problem is the Diffie-Hellman key exchange. In Diffie-Hellman, the two
parties, Alice and Bob, agree on a (public) primitive root g and a large prime p.
They choose secret integers, a and b, respectively. Then Alice sends ga mod p to
Bob, and Bob sends gb mod p to Alice. Then they can both compute gab mod p
since gab ≡ (ga)b ≡ (gb)a (mod p). They can use this number as their key or
use some algorithm to extract a key out of this number. Given ga, gb, g and p, it
seems impossible to find gab without finding either a or b, which amounts to solv-
ing the discrete logarithm problem (although this assertion hasn’t been proven).
Similar ideas are the basis of several cryptosystems, the most prominent of which
is ElGamal.

In the past several decades, elliptic curves have entered the scene. Elliptic curves
over finite fields contain finite cyclic groups that we can use for cryptography. There
is no factorization problem for elliptic curves, but what is used is the discrete
logarithm problem, which is to solve kB = P for k. The analog of Diffie-Hellman,
in particular, is as follows. Alice and Bob choose a public elliptic curve E (including
a public prime p that determines Fp) and a public generator B. They then choose
secret integers, a and b, respectively. Alice sends Bob aB and Bob sends Alice
bB. They can then both compute abB since a(bB) = b(aB) = abB. In this case,
abB is a point, so they can use the x-coordinate (or perhaps run it through some

1

2 AARON BLUMENFELD

algorithm) to obtain a key. Similarly, ElGamal and other cryptosystems have been
adapted to elliptic curves.

In this paper, we introduce some of the technical details of elliptic curves over Fp
for p ≥ 5 and functional graphs, which we then use to study the discrete logarithm
problem on elliptic curves. The ultimate goal is, of course, to show that these
cryptographic protocols are indeed secure. It would make sense that they are
secure if discrete “exponentiation” (written additively in this case) behaves like a
“random” map. This map is easier to study through its associated functional graph.
Therefore, we devise a functional graph from elliptic curve discrete “exponentiation”
and consider some of its theoretical properties, as well as observed computational
results.

In particular, we investigate the map k 7→ x(kB),∞ 7→ ∞, where x(P) denotes
the x-coordinate of the point P . We show that these graphs are binary as long as
we have N points on the curve with N ≥ p odd, and we compare various statistics
on these graphs to the expected asymptotic values for random binary functional
graphs. Most of the statistics match up well. A few statistics deviate because there
is a fixed point at infinity by construction. One statistic that deviates that is more
difficult to explain, however, is maximum tail length. This seems to suggest some
subtle structure in discrete exponentiation. We discuss this and the implications
for elliptic curve cryptography in detail in this paper.

2. Background

2.1. Elliptic Curves.

Definition 2.1. An elliptic curve E over a field K is the set{
(x, y) ∈ K2 : y2 = x3 + ax+ b, a, b ∈ K

} ∪ {∞}
with the restriction that 4a3 + 27b2 6= 0. Notationally, once we have specified the
field K, we refer to E as E(K).

Technical Point : There is a more general form of the equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

However, if char K 6= 2 or 3, we can transform it into the above form; in this paper,
we specifically consider curves over Fp for p ≥ 5. Therefore, we may assume that
our curve takes the form given in the definition above.

The requirement that 4a3 +27b2 6= 0 simply means that the equation x3 +ax+ b
must have no multiple roots.

We may think of the point at infinity as taking on coordinates ∞ = (∞,∞).
We will make the convention that all vertical lines pass through ∞. In any case,
we will think of ∞ as a formal symbol computationally, but the idea can be made
more rigorous by considerations from projective geometry. See [9, pp. 18 – 20] for
more details.

Now that an elliptic curve E gives us a set of points, we define a binary operation
+ on E. We will see that this will give us an abelian group. Initially, we define
P +∞ = ∞ + P = P for all P ∈ E. Additionally, we define Q = −P if the y-
coordinates of P and Q are additive inverses. Otherwise, when computing P + Q,
there are three different cases to consider:

• If P = −Q, we define P +Q =∞.

DISCRETE LOGARITHMS ON ELLIPTIC CURVES 3

• If P 6= ±Q, we draw the line through P and Q. It will intersect E in a
third point R. We define P +Q = −R.
• If P = Q, we draw the line tangent to E at P . It will intersect E in a

second point R. We define P +Q = −R.

We can summarize the addition law by stating that P, Q and R are collinear if
and only if P +Q+R =∞ (recalling that every vertical line intersects ∞).

This operation of addition only seems to make sense if we have K = R. However,
we can derive the formulas for addition [9, p. 14] and they work for any field (except
that the formulas that follow must be altered if char K = 2 or 3).

If we are in the third case — i.e., if P 6= ±Q, put

P = (x1, y1), Q = (x2, y2), P +Q = (x3, y3).

Then

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1, where m =
y2 − y1
x2 − x1

.

The formulas for the case where P = Q (with nonzero y-coordinate — if the
y-coordinate is zero, then P +Q =∞) are the following:

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1, where m =
3x2

1 + a

2y1
.

As claimed before, this operation of addition makes E into an abelian group.
The identity is ∞, and if P = (x, y), then −P = (x,−y). Since the coordinates
are in a field, E is closed under addition. That E is abelian follows either from the
formulas or from the fact that the line through P and Q is the same as the line
through Q and P . The hard part is associativity, the proof of which we omit. It
can be verified by using the formulas for all of the different cases. Alternatively, it
can be verified by arguments using projective geometry [9, pp. 20 – 32] or complex
analytic techniques.

Over Fq, an elliptic curve is either a cyclic group or the direct sum of two cyclic
groups (since Fq is finite, such an elliptic curve is always finite) [9, p. 97]. It is these
curves that we will primarily be interested in throughout this paper (particularly
for q = p). When considering curves which are finite cyclic groups, we will use B
notationally to refer to a generator, which means that for every point P on the
curve, we can write P = kB = B +B + . . .+B︸ ︷︷ ︸

k terms

for some k ∈ Z+. We will also use

the notation x(P) to denote the x-coordinate of the point P .
We want to work with cyclic groups because given some group G, we are in-

terested in elements that can be written as a power of a generator g, which are
simply the elements of the cyclic subgroup generated by g. We want to work with
a finite group because we then get “wrap-around.” This disallows us from using
tools such as calculus (not to be confused with the index calculus!) to compute
discrete logarithms.

We now recall the basics of Legendre symbols. For x 6≡ 0 (mod p), the Legendre
symbol is defined as follows:

(
a

p

)
=

{
1 if x2 ≡ a (mod p) has a solution,
−1 if x2 ≡ a (mod p) has no solution.

4 AARON BLUMENFELD

For x ≡ 0 (mod p), we define
(
a
p

)
= 0. One standard fact is that x2 ≡ a

(mod p) has 1 +
(
a
p

)
solutions.

We can use this fact to count the number of points on an elliptic curve over Fp.
One way to count points is to include ∞, then to let x run over Fp and compute
the number of distinct square roots of x3 + ax + b. This gives us the formula
1 +

∑p−1
x=0

(
1 +

(
x3+ax+b

p

))
= p+ 1 +

∑p−1
x=0

(
x3+ax+b

p

)
.

Now that we know that some elliptic curves over Fp are finite cyclic groups,
recall that the discrete logarithm problem we are interested in is the following:
given kB = P on E(Fp), solve for k. Recall also the Diffie-Hellman key exchange:
Alice and Bob choose secret integers a and b, Alice sends Bob aB, Bob sends Alice
bB, and they each obtain the point abB. Since the x-coordinate encodes most of
the information about a point (unless y = 0, there are exactly two square roots
to choose from), some procedure is then followed to extract a key out of the x-
coordinate.

It seems that elliptic curve cryptography provides more security than the classical
discrete logarithm problem [6, p. 180]. What this means is that we can accomplish
the same security with fewer bits. Another advantage is that we have more groups
to choose from. For a fixed prime p, there are a large number of elliptic curves with
around p elements. One other great advantage is that perhaps the best algorithm
that works over finite fields, the index calculus, doesn’t work over elliptic curves
because points on elliptic curves can’t be factored [9, p. 146]. This means that
to solve discrete logs over elliptic curves, we typically need to use much slower
algorithms that work in more general groups, such as Baby-Step Giant-Step or the
Pohlig-Hellman algorithm. One thing to ensure, however, when choosing a curve
over Fq is that the curve not be supersingular (because then the Weil pairing can
be used to reduce the problem to solving discrete logs in Fqk for some k [9, p. 154],
which is usually easier, provided that k is not too large — in fact, k tends to be 2 in
practice [9, p. 154]). Over Fp, this just means that the curve should be restricted
not to have p+ 1 points [9, p. 131]. But it is common practice to ensure that the
curve has a prime number of points in the first place, so this issue should not be a
huge concern.

2.2. Functional Graphs. If we have a function (especially one defined on a finite
set), it is convenient to study its structure by considering a particular graph. We
can do this by creating what is called a functional graph.

First, however, we introduce some graph theory notation. If G = (V,E) is
a directed graph, then edges in E are represented by ordered pairs (v, u) with
v, u ∈ V . If (v, u) ∈ E, we will represent this notationally by v → u.

Definition 2.2. We define the out-degree, denoted deg+(v), of a vertex v to be the
number of vertices u such that v → u. Similarly, the in-degree, denoted deg−(v),
of a vertex v is the number of vertices u such that u → v. We can formalize this
by defining deg+(v) = |{u ∈ V : (v, u) ∈ E}| and deg−(v) = |{u ∈ V : (u, v) ∈ E}|.
Definition 2.3. A functional graph is a directed graph G = (V,E) such that for
every v ∈ V , deg+(v) = 1.

This gives a one-to-one correspondence between functional graphs and functions
f : V → V by including an edge v1 → v2 in E if and only if f(v1) = v2. Conversely,

DISCRETE LOGARITHMS ON ELLIPTIC CURVES 5

if we have a functional graph G = (V,E), we will refer to the function that it
represents by f . This allows us to use the notation f(v), f−1(v) and fk(v) (where
k ∈ Z+) for v ∈ V in the context of functional graphs (we can also use the notation
v 7→ u instead of v → u in the context of functional graphs). It should be noted
that this requires us to define functions from a set V into itself. With the classical
discrete logarithm problem, this is fairly straightforward since everything is an
integer, but on elliptic curves, there are both points that lie on the elliptic curve
and integer “exponents” (but written additively, of course).

It should be clear that the requirement that the out-degree of every vertex be
exactly 1 is to mimic the requirement that a function send every element in the
domain to exactly one element in the target space. One other idea associated with
functions is whether or not they are one-to-one, or more generally, n-to-one. This
motivation leads us to the following definition.

Definition 2.4. A functional graph G = (V,E) is said to be m-ary if for every
v ∈ V , we have deg−(v) ∈ {0,m}. We use the terms unary (or permutation) and
binary for 1-ary and 2-ary, respectively.

Unary graphs are often called permutations because they simply represent bijec-
tive functions (assuming they are defined on a finite set). It can be shown [2] that
the functional graph induced by x 7→ gx mod p (where g is a primitive root modulo
p) is a permutation. We will be particularly interested in binary functional graphs
throughout this paper, however. We show in Section 4.1 that the functional graphs
we create from elliptic curves are binary.

There are a few more definitions regarding graphs and functional graphs in par-
ticular.

Definition 2.5. We say a vertex v is a terminal node if deg−(v) = 0. Otherwise,
we call v an image node.

We say a vertex v is a cyclic node if there is some k ∈ Z+ such that fk(v) = v.
Otherwise, we call v a tail node.

In terms of functions, a vertex v is terminal if f−1(v) = ∅ (otherwise, it is an
image node).

Given a graphG = (V,E), we can break V up into its components (technically, its
weakly connected components since it is a directed graph). We define an equivalence
relation on V by v1 ∼ v2 if there is a path from v1 to v2 in the underlying undirected
graph. The equivalence classes of this equivalence relation are the components of
the graph. Visually, we can think of a component of a functional graph as a cycle
with tail nodes mapping into the cycle (as we will shortly see in Theorem 2.6). This
is illustrated below in Figure 1.

Given any vertex v, there exist distinct i, j ∈ Z≥0 such that f i(v) = f j(v). To
see this, just iterate f |V | times. This gives us the |V |+1 vertices v, f(v), f2(v), . . .,
f |V |(v), but there are only |V | vertices in V , so the claim pops out nicely by the
pigeonhole principle. Assuming i and j are taken to be the smallest two such
integers (with i < j), we define i to be the tail length of v and j − i to be the cycle
length of v. Graphically, the tail length is the number of vertices that v is away
from entering a cycle, and the cycle length is (imagine that!) the length of the cycle
it maps into.

So the average cycle length of a graph could refer to the average size of the cycles
contained in components or the average of the cycle lengths of all vertices. To avoid

6 AARON BLUMENFELD

Figure 1. Functional graph of f(x) = x2 − 2 mod 19 defined on (Z/19Z)∗.

confusion, we refer to the former as average cycle length and the latter as weighted
average cycle length.

We will also be interested in the maximum cycle and tail lengths (in this case,
the maximum cycle length does not depend on whether we find the maximum cycle
length of a vertex or the largest cycle contained in some component).

In Figure 2, we have a functional graph induced by f(x) = 2x mod 13. 2 is a
primitive root modulo 13, so this is a permutation. Every vertex is therefore cyclic,
so the tail length of every vertex is 0. Vertex 10 has cycle length 1, vertices 7 and 11
have cycle length 2, and so on. There are 3 components (and cycles), the average
cycle length is 4, and the weighted average cycle length is 86

12 ≈ 7.17. This example
shows that average cycle length and weighted average cycle length encode different
information about a graph.

We will need a couple of general results about functional graphs later in the
paper, the first of which appears in the paper by Flajolet and Odlyzko [4]. We
state them here.

Theorem 2.6. If f : V → V is a function with V finite, and G = (V,E) is the
induced functional graph, then every component of G has exactly one cycle.

Theorem 2.7. If G = (V,E) is a binary functional graph with n vertices, then G
has exactly n/2 terminal nodes and n/2 image nodes.

Proof. The Handshaking Theorem [8, p. 548] tells us that
∑
v∈V deg−(v) = |E|.

Since there is one edge for every vertex, this is equal to n. The fact that each image
node has exactly two preimages in a binary functional graph (and there can be no

DISCRETE LOGARITHMS ON ELLIPTIC CURVES 7

Figure 2. Functional graph of f(x) = 2x mod 13 defined on (Z/13Z)∗.

overlap since deg+(v) = 1 for all v ∈ V) implies that the number of image nodes is
n/2, which also implies that there are n/2 terminal nodes. �

This can, in fact, be generalized to show that for an m-ary functional graph of
order n, there are (m− 1)n/m terminal nodes and n/m image nodes. We can also
conclude that the number of vertices in every component of an m-ary functional
graph is divisible by m by observing that (after including the necessary edges) a
component of an m-ary functional graph is an m-ary functional graph in its own
right.

2.3. Random Functional Graphs. The whole reason for appealing to functional
graphs is that graph theory is well studied, whereas discrete logs are somewhat
mysterious by comparison. The goal is to create a map based on elliptic curve
discrete exponentiation, from which we can create a functional graph in order to
identify any noticeable patterns. These could lead us to attacks against discrete
logs on elliptic curves, or convince us that such maps are indeed random.

Random functional graphs (where we consider the graph induced by each func-
tion f : V → V to be likely to occur with equal probability) have been fairly
thoroughly studied. Flajolet and Odlyzko, for example, provide an analysis in [4].
They use exponential generating functions and give expected asymptotic values of
various statistics for a random functional graph with n vertices. Similar results

8 AARON BLUMENFELD

regarding binary functional graphs with n vertices appear in Cloutier and Holden’s
paper [3]. We summarize the results below.

Random Functional Graphs:

Statistic Expected Asymptotic Value

Number of Components
1
2

(log (2n) + γ)

Number of Cyclic Nodes
√
πn/2− 1

3
Number of Tail Nodes n−√πn/2 +

1
3

Number of Terminal Nodes e−1n
Number of Image Nodes (1− e−1)n
Number of k-cycles 1/k

Average Cycle Length

√
πn/2− 1

3
2(log (2n) + γ)

Weighted Average Cycle Length
√
πn/8

Average Tail Length
√
πn/8

Maximum Cycle Length c

√
πn

2
≈ 0.78248

√
n

Maximum Tail Length
√

2πn log 2 ≈ 1.73746
√
n ≈ 1.73746

√
n+ 1.61371

Random Binary Functional Graphs:

Statistic Expected Asymptotic Value

Number of Components
1
2

(log (2n) + γ)

Number of Cyclic Nodes
√
πn/2− 1

Number of Tail Nodes n−√πn/2 + 1
Number of Terminal Nodes n/2
Number of Image Nodes n/2

Average Cycle Length

√
πn/2− 1

2(log (2n) + γ)
Weighted Average Cycle Length

√
πn/8

Average Tail Length
√
πn/8

Maximum Cycle Length c

√
πn

2
≈ 0.78248

√
n

Maximum Tail Length
√

2πn log 2− 3 + 2 log 2 ≈ 1.73746
√
n+ 1.61371

Here c refers to the constant∫ ∞
0

(
1− exp

(
−
∫ ∞
v

e−u du
u

))
dv.

It should be noted that cyclic and tail nodes are dual to each other, as are terminal
and image nodes (i.e., knowledge of one is equivalent to knowledge of the other).
Also, the average cycle length is the ratio of cyclic nodes to the number of compo-
nents. The other observation to make is that these are expected asymptotic values,
which means we should compare data against these theoretical values when n is
fairly large.

DISCRETE LOGARITHMS ON ELLIPTIC CURVES 9

We now show that the expected number of k-cycles for a random binary func-
tional graph is 1/k, just as in the more general case.

Exponential generating functions are known [2] for binary functional graphs by
describing them as a set of components, where a component is a cycle with a binary
tree attached to each node to raise its in-degree to two. A binary tree is recursively
described as a node with zero or two (possibly empty) binary trees attached to it;
a node is an atomic unit. Each of these structures has an associated exponential
generating function: f(z) describes a binary functional graph, c(z) describes a
component, and b(z) describes a binary tree. These functions are given below.

f(z) =
1√

1− 2z2
,

c(z) = log
1√

1− 2z2
,

b(z) = z +
1
2
zb2(z).

Now the bivariate exponential generating function for binary functional graphs
with u marking k-cycles is given by

f(u, z) = exp
(

log
(

1
1− 2z2

)
+ (u− 1)

(zb(z))k

k

)
,

where

b(z) =
1−√1− 2z2

z
.

Thus, fu(1, z) =
zkb(z)k

k
√

1− 2z2
. Singularity analysis reveals that the asymptotic be-

havior of the nth coefficient of this is

21/2+n/2

√
1
n

+O

(
2n/2

n3/2

)√
πk

√
πk

.

Normalizing this (dividing by the number of functional graphs and multiplying by
n!) gives rise to

1
k

+O

(
1
n

)
,

and the term that interests us falls out nicely as
1
k

.

3. Prior Work

Daniel Cloutier [2], Nathan Lindle [7] and Andrew Hoffman [5] have worked on
investigating the classical discrete logarithm problem by investigating related func-
tional graphs. Their methods involved computing the number of components, sizes
of cycles, numbers of tail and cyclic nodes, and so on, on thousands of functional
graphs. They used exponential generating functions to calculate the expected val-
ues of random functional graphs, as well as particular classes of random functional
graphs (e.g., random permutations and binary functional graphs). Cloutier chose to

10 AARON BLUMENFELD

look at permutations and binary functional graphs in particular because the data
he collected was quite inconsistent with random functional graphs, but in many
cases turned out to be very accurate compared to the theoretical values for random
permutations and binary functional graphs.

No previous work has been done on functional graphs associated with discrete
logs on elliptic curves. Given an elliptic curve E(Fp) with N points, the author’s
goal has been to investigate them by the map

k 7→ x(kB) for k ∈ {0, 1, . . . , N − 1} , ∞ 7→ ∞.
It turns out these graphs are binary, so the author followed suit in heavy compu-

tation in order to compare the data to what would be expected of random binary
functional graphs.

Ultimately, we would like to be assured that discrete exponentiation actually
behaves like a random map for security reasons. If there is some way to exploit any
structure it imposes, however, we would like to know what it is so that we can either
abandon relying on the discrete log problem if it is breakable (which seems unlikely)
or perhaps ensure that certain conditions are satisfied so that we can continue to
communicate with one another securely (for example, in the classical discrete log
problem, it is common practice to make sure that p− 1 has a large prime factor).

4. Elliptic Curve Functional Graphs

It is relatively straightforward to devise a function to induce a functional graph
that describes discrete exponentiation in the classical case. Simply map x 7→
gx mod p for some nonzero g. With elliptic curves, however, the situation is rather
subtle. Our “exponent” (i.e., the number k in the equation kB = P) is an integer,
but our points are not, and we would like to take an integer k and consider kB.
Two possibilities are the following:

• P 7→ x(P)B
• k 7→ x(kB)

In both cases, x(P) denotes the x-coordinate of the point P , B is a generator,
and we also map ∞ 7→ ∞.

In Appendix A, we show that the first map never induces a binary functional
graph. Therefore, the map P 7→ x(P)B is not as interesting to study. However, we
will shortly see that the map k 7→ x(kB) gives us binary functional graphs as long as
N = #E(Fp) ≥ p is odd. Therefore, we investigate the map k 7→ x(kB),∞ 7→ ∞.
We shall refer to these graphs as ECFGs (elliptic curve functional graphs) from
now on.

We illustrate with an example in Figure 3.

4.1. Theoretical Results. We state one of the most important theoretical results
about ECFGs in the next theorem. First, however, we require a lemma.

Lemma 4.1. If E(Fp) is cyclic of order N (with N odd), then x3 + ax + b ≡ 0
(mod p) is insoluble.

Proof. The order of E(Fp) is p+ 1 +
∑p−1
x=0

(
x3+ax+b

p

)
. Since N and p are odd, the

Legendre sum must also be odd. Therefore, it suffices to show that
∑p−1
x=0

(
x3+ax+b

p

)
has no 0 terms in the sum. Since Fp is a field and the polynomial x3 + ax+ b has
degree 3, there must be at most 3 zeros. If there are no zeros, there is nothing

DISCRETE LOGARITHMS ON ELLIPTIC CURVES 11

Figure 3. ECFG of E(F17) : y2 = x3 + x + 3 with generator
B = (2, 8) (this curve has order N = p = 17).

to prove. Suppose we have one or three 0 terms in the sum. Then since p − 1
and p − 3 are even, a sum of p − 1 or p − 3 odd terms must be even, so the sum
cannot be odd in this case. Now suppose x3 + ax + b has 2 zeros in Fp. Put
x3 + ax + b = (x − α)(x − β)g(x). But then g(x) must be of degree one, which
forces f(x) to have a third zero, a contradiction. �

Proof. Here is an alternative proof. Let x0 ∈ Fp such that x3
0 + ax0 + b ≡ 0

(mod p). Then the point P = (x0, 0) lies on E. Therefore 2P =∞. So P generates
a subgroup of E of order 2. By Lagrange’s theorem, N must be even. �

Now we are ready to prove our theorem.

Theorem 4.2. Let E(Fp) be cyclic of order N (N ≥ p odd). Let B be a generator,
and G = (V,E) be the induced ECFG. Then G is binary, and k and −k map to the
same vertex for all k ∈ Z/NZ.

Proof. Let x0 6= ∞ ∈ V . If deg−(x0) = 0, then there is nothing to prove. If
deg−(x0) ≥ 1, then there is a k ∈ Z/NZ with kB = (x0, y0), so (N−k)B = −kB =
(x0,−y0). This means that both k and −k map to x0. These points are distinct as
long as y0 6≡ 0 (mod p), which holds by Lemma 4.1. Now if there is a third integer
r with rB = (x0, y1), then kB,−kB, and rB lie on the vertical line x = x0, so
kB + −kB + rB = ∞, which forces rB = ∞. Therefore, rB is not a finite point.
So we have shown the result for all finite points.

Now for x0 = ∞, by construction, we have x0 7→ x0. Furthermore, we have
0 7→ x0 since 0B =∞. Now suppose there is a third preimage l — i.e., x(lB) =∞.
This means that lB =∞, which means that l ≡ 0 (mod N), but l must belong to
Z/NZ, so we actually have l = 0. Therefore, ∞ cannot have a third preimage. �

12 AARON BLUMENFELD

Figure 4. ECFG of E(F23) : y2 = x3 + x + 4 with generator
B = (7, 3) (this curve has order N = 29 > p).

An example has been shown previously where N = p. In Figure 4, we illustrate
with an example of an ECFG with N > p.

This proof does not work, however, when N < p. A counterexample is given by
E(F17) : y2 = x3 + 2x + 6 with B = (2, 1). This curve is cyclic of order 11. The
ECFG is shown in Figure 5.

What goes wrong in the proof? Before, reducing the coordinates mod p and
then reducing the exponent mod N did no harm since p ≤ N . However, when
N < p, this changes the face of the situation. In particular, we run into trouble
when we assume that kB+−kB+rB =∞ implies that rB =∞. (In our example,
f−1(2) = {1, 4, 7, 10}. This is not binary since 1 and 10 map to 2, but 4 and 7
would map to 13, which is the same as 2 when working mod 11.)

But is it possible to salvage the situation by letting k ∈ {∞, 0, . . . , p− 1}? If we
try this, then for k = N,N +1, . . . , p−1, we get an in-degree of 3 for many vertices
since a vertex has two preimages in {1, . . . , N − 1} which are inverses of each other,
but when enlarging the domain and computing kB, we reduce k mod N . N is
often large enough to get a third preimage for v. Let us make things concrete and
display the functional graph in Figure 6.

In our example, 13 gets mapped to by 4 and 7, but when extending our domain,
it also gets mapped to 15. The next number congruent to 7 (mod 11), however, is
18, which is too large. As in the previous paragraph, we go wrong in this function
definition when assuming kB + −kB + rB = ∞ implies that rB = ∞ since here

DISCRETE LOGARITHMS ON ELLIPTIC CURVES 13

Figure 5. ECFG of E(F17) : y2 = x3 + 2x + 6 with generator
B = (2, 1) (this curve has order N = 11 < p).

rB = ±kB (i.e., r ≡ ±k (mod N)). The problem here is that r ≡ ±k (mod N)
does not imply that r = ±k.

Therefore, in this paper, we consider elliptic curves over Fp of order N ≥ p
(which is not to suggest that there is no interest in looking at curves of smaller
order, but different techniques must then be applied since they will not result in
binary functional graphs).

Proposition 4.3. If
(
b
p

)
= −1, then G has a component {0,∞}. If

(
b
p

)
= 1,

then ∞ is part of a larger component.

Proof.
(
b
p

)
= −1 means that (0, y) cannot lie on the elliptic curve E(Fp). There-

fore, there is no k ∈ Z/NZ with k 7→ 0. But it is apparent that 0 7→ ∞ 7→ ∞.
If
(
b
p

)
= 1, however, then (0, y) does lie on E(Fp), and since E(Fp) is generated

by a point B, there is some k ∈ Z/nZ such that kB = (0, y). Thus, k 7→ 0 7→ ∞ 7→
∞. �

What happens if
(
b
p

)
= 0? This means b ≡ 0 (mod p), or that E is described

by y2 = x3 + ax. If a = 0, then this is not an elliptic curve; otherwise, we have the
following.

Theorem 4.4. If E is an elliptic curve over Fp with N points and b = 0, then N
is even.

14 AARON BLUMENFELD

Figure 6. ECFG of E(F17) : y2 = x3 + 2x + 6 with generator
B = (2, 1) with domain extended to Z/pZ ∪ {∞} (this curve has
order N = 11 < p).

Proof. Suppose that b = 0. Then the order of E(Fp) is p + 1 +
∑p−1
x=0

(
x3+ax
p

)
.

Suppose to the contrary that this sum is odd. Then the sum
∑p−1
x=1

(
x3+ax
p

)
is also

odd (notice that
(

03+a·0
p

)
contributes nothing to this sum).

Since p ≥ 5, p ≡ 1 or 3 (mod 4). So there are two cases. Notice that x3 + ax
is an odd function. The idea is to pair up the additive inverses in the Legendre
symbols.

Case 1 : If p ≡ 1 (mod 4), then
(
α
p

)
+
(
−α
p

)
= 2

(
α
p

)
, so when pairing up and

adding the Legendre symbols for each pair of additive inverses, the resulting sum
is even. Therefore, the sum

∑p−1
x=1

(
x3+ax
p

)
is even.

Case 2 : If p ≡ 3 (mod 4), then
(
α
p

)
+
(
−α
p

)
= 0, so when pairing up and adding

the Legendre symbols for each pair of additive inverses, the resulting sum is equal
to 0. Therefore,

∑p−1
x=1

(
x3+ax
p

)
= 0.

We have shown that the sum
p−1∑
x=1

(
x3 + ax

p

)
is always even, which yields the result. �

DISCRETE LOGARITHMS ON ELLIPTIC CURVES 15

Proof. Here is an alternative proof. Suppose E(Fp) : y2 = x3 + ax is an elliptic
curve. Then P = (0, 0) ∈ E, and 2P =∞, so we have a subgroup of order 2, which,
by Lagrange’s theorem, implies that N is even. �

Remark. In cryptographic settings, it is typical to ensure that #E(Fp) = q, where
q is a prime (not necessarily q = p). Thus, the importance of this result may
become clearer when stated in the contrapositive: if #E(Fp) = N is odd (perhaps
even prime), then b 6≡ 0 (mod p), so we know there are exactly two cases for what
sort of component∞ can lie in. So while it is still of theoretical interest to consider
curves of even order, we ignore the case b ≡ 0 (mod p) in this paper.

One other thing to count on these graphs is the number of terminal (or equiv-
alently, image) nodes. The reason for the in-degree being 0 could be that for a
particular x0, x3

0 + ax0 + b is not a square in Fp, that the base point B does not
map to this value in this functional graph, or that x > p − 1 since we always re-
duce the coordinates modp. However, the fact that B is a generator eliminates the
second possibility.

It turns out that for N ≥ p odd, there are (N+1)/2 terminal nodes, and therefore
(N + 1)/2 image nodes. We prove this result first when the order of the curve is
exactly p, then for the case where N > p. Note that the following proposition is
equivalent to stating that when N = p, E’s ECFG has exactly (p + 1)/2 terminal
nodes (and therefore also (p+ 1)/2 image nodes).

Proposition 4.5. If x3 + ax + b defines a cyclic elliptic curve E(Fp) of order p,

then there are exactly p+1
2 values of x ∈ Fp such that

(
x3+ax+b

p

)
= −1.

Proof. Since p is odd, we know that x3 + ax + b ≡ 0 (mod p) has no solution by
Lemma 4.1. We also know that

∑p−1
x=0

(
x3+ax+b

p

)
= −1. Therefore, each term in

the sum contributes ±1 to the sum. There are p terms in the sum and we need one
more -1 than 1s in the sum. Let s count the number of 1s. Then s+ 1 counts the
number of -1s. This gives the equation 2s+ 1 = p, which means that s = (p− 1)/2.
Therefore, s+ 1 = (p+ 1)/2. �

Now we prove the result for N > p in the following theorem.

Theorem 4.6. If N > p is odd, there are always (N + 1)/2 terminal nodes (and
therefore (N + 1)/2 image nodes).

Proof. We know that N = p+ 1 +
∑p−1
x=0

(
x3+ax+b

p

)
. Since N > p is odd, it follows

that N = p + r for some r in Z≥2. This means p + 1 +
∑p−1
x=0

(
x3+ax+b

p

)
= p + r,

or
∑p−1
x=0

(
x3+ax+b

p

)
= r − 1. We know that x3 + ax+ b = 0 is unsolvable in Fp by

Lemma 4.1 (so there are only ±1s in the Legendre sum) and that
∑p−1
x=0

(
x3+ax+b

p

)
is positive. So we choose r − 1 (which is odd since N and p are odd, which means
that r must be even) squares in Fp, and let s count the number of -1s. Then
s+ (s+ (r − 1)) = 2s+ (r − 1) = p. This gives s = (p− (r − 1))/2. This number,
plus (N − 1)− (p− 1) = N − p, is the number of terminal nodes. So the following
computation yields the result.

16 AARON BLUMENFELD

s+ (N − p) = (p− (r − 1))/2 + 2(N − p)/2
= (p− (r − 1) + 2(N − p))/2
= (p− (r − 1) + 2r)/2

= (p+ r + 1)/2

= (N + 1)/2.

�

In fact, we can prove this more generally for any binary functional graph. See
Theorem 2.7 for the details.

One question of theoretical interest is the following: can we also look at functional
graphs of proper subgroups of a given elliptic curve? The answer is a resounding
no.

We know we want to look at curves with N ≥ p, but if we want a subgroup, we
want a proper divisor r of N such that r ≥ p. However, Hasse’s Theorem tells us
that an elliptic curve over Fp has N ≤ p+ 1 + 2

√
p points [9, p. 97]. Suppose that

r | N,N > r ≥ p. Then N ≥ 2r ≥ 2p. But for p > 5,

√
p− 2 >

1√
p√

p(
√
p− 2) = p− 2

√
p > 1

p > 1 + 2
√
p

2p > p+ 1 + 2
√
p ≥ N

N ≥ 2r ≥ 2p > N.

This shows that considering such subgroups is fruitless.

4.2. Computational Results. One fact is that B and −B generate the same
group. But they also induce the same ECFG. This can be seen as follows: kB =
(x, y) if and only if k(−B) = −kB = (x,−y), so k 7→ x in the graph with generator
B if and only if −k 7→ x in the graph with generator −B. By Theorem 4.2, in both
graphs, k 7→ x and −k 7→ x for all x 6=∞. The only preimages of ∞ are 0 and ∞
regardless of the generator (in fact, regardless of the curve). This fact allows us to
analyze only half as many graphs as we would otherwise have to.

There is another theoretical idea we can use to speed up computation. The
largest possible cycle is of size N − 1 since there is always a fixed point at ∞
and we also have 0 7→ ∞. By Theorem 2.6, every component in a functional
graph contains exactly one cycle, so the number of cycles is equal to the number
of components. Therefore, if Ci denotes the number of i-cycles, and r denotes the
number of components, then

∑N−1
i=1 Ci = r. It is much quicker to use a cycle-finding

algorithm to compute the number of cycles than it is to construct a graph and use
an algorithm such as depth-first search to partition the graph into its components.

In order to gather statistics, the author wrote three computer programs. The
first is a Java program that takes in a prime N and finds all elliptic curves of
order N over fields Fp with p ≤ N . This uses an array of prime numbers, the
bounds on N implied by Hasse’s Theorem, and a simple search (for each curve, it
also finds the generators for the curve by iterating over Fp and computing square

DISCRETE LOGARITHMS ON ELLIPTIC CURVES 17

roots). It then outputs the values of a, b, p and B (the generator) to a file for each
curve-generator pair. The second program, written in C, reads in this file, and for
each curve-generator pair, computes the number of terminal nodes, image nodes,
fixed points, two-cycles, three-cycles, five-cycles, components (or equivalently, cy-
cles), cyclic nodes, tail nodes, as well as the average cycle length, weighted average
cycle length, average tail length, the maximum cycle length, and the maximum
tail length. These computations are performed by using Brent’s algorithm for find-
ing cycles in iterated functions and by computing Jacobi symbols (a slightly faster
method of computing Legendre symbols). These statistics for each ECFG are then
output to a file.

The third program is a Java program that reads in the file output from the
second program and for each statistic, prints out the expected value, mean and
variation for each statistic (this is all within a particular prime N).

One problem with gathering statistics for all ECFGs of some fixed order N is that
there is an astronomical number of graphs to create. With the classical discrete log
problem, there are p−1 different graphs (and only ϕ

(
p−1
2

)
different binary graphs).

However, in the ECFG case, for a fixed N , p varies when finding the prime fields Fp,
and for each prime field, there seem to be on the order of N different elliptic curves.
Furthermore, for each elliptic curve, there are ϕ(N) graphs to create (which, when
N is prime, is equal to N − 1). Even at a quite small value of N = 83, there are
already 34,112 graphs. For N = 211, there are 549,780 graphs. We know that a
given curve with generators B and −B induce the same ECFG, so this cuts down
on the computation we have to do drastically, but unless we can find deeper results
about when various generators induce isomorphic ECFGs, it seems highly unlikely
that we can record very many asymptotic statistics for these graphs. In any case,
some results are tabulated below.

N = 167 (208,496 graphs)
Statistic Expected Observed Variance
Terminal Nodes 84 84 0
Image Nodes 84 84 0
Fixed Points 1 1.992422 0.976786
2-cycles 0.5 0.475012 0.475874
3-cycles 0.3̄ 0.318932 0.312430
5-cycles 0.2 0.182804 0.177953
Components 3.197163 4.085517 1.972782
Average Cycle Length 4.768229 3.852527 4.191673
Cyclic Nodes 15.244808 15.126151 57.433792
Tail Nodes 152.755192 152.873849 57.433792
Weighted Average Cycle Length 8.122404 7.014287 25.312406
Average Tail Length 8.122404 7.125777 9.990484
Max Cycle Length 10.142100 9.076117 31.394953
Max Tail Length 24.133765 18.032260 34.678483

18 AARON BLUMENFELD

N = 211 (549,780 graphs)
Statistic Expected Observed Variance
Terminal Nodes 106 106 0
Image Nodes 106 106 0
Fixed Points 1 1.994940 0.976805
2-cycles 0.5 0.502165 0.493947
3-cycles 0.3̄ 0.316221 0.315596
5-cycles 0.2 0.189228 0.185972
Components 3.313475 4.238230 2.122886
Average Cycle Length 5.205572 4.279185 5.455133
Cyclic Nodes 17.248529 17.339449 74.948891
Tail Nodes 194.751471 194.660551 74.948891
Weighted Average Cycle Length 9.124265 8.161955 33.787259
Average Tail Length 9.124265 8.109176 13.359563
Max Cycle Length 11.393081 10.445054 41.073544
Max Tail Length 26.911509 20.660497 46.404844

N = 227 (292,896 graphs)
Statistic Expected Observed Variance
Terminal Nodes 114 114 0
Image Nodes 114 114 0
Fixed Points 1 1.996238 1.012967
2-cycles 0.5 0.501106 0.503713
3-cycles 0.3̄ 0.340052 0.340567
5-cycles 0.2 0.176861 0.171720
Components 3.349854 4.303398 2.220580
Average Cycle Length 5.350868 4.449070 5.928930
Cyclic Nodes 17.924628 18.176977 80.148224
Tail Nodes 210.075372 209.823023 80.148224
Weighted Average Cycle Length 9.462314 8.647097 38.137383
Average Tail Length 9.462314 8.453528 14.086671
Max Cycle Length 11.815189 10.967579 45.399227
Max Tail Length 27.848781 21.570455 48.971410

Although we cannot compute these statistics over all ECFGs for N large, we
can try to pick a random selection of ECFGs for larger values of N and see how
the limited statistics match up to the expected values. The author modified the
program to find elliptic curves of a given order to find randomly chosen curve-
generator pairs. Displayed below are limited statistics for somewhat larger primes.

DISCRETE LOGARITHMS ON ELLIPTIC CURVES 19

N = 419 (100,000 graphs)
Statistic Expected Observed Variance
Terminal Nodes 210 210 0
Image Nodes 210 210 0
Fixed Points 1 1.994600 0.995091
2-cycles 0.5 0.493040 0.494272
3-cycles 0.3̄ 0.331530 0.328578
5-cycles 0.2 0.193690 0.190394
Components 3.655309 4.601670 2.433203
Average Cycle Length 6.753273 5.718504 10.352899
Cyclic Nodes 24.685297 24.939260 157.386731
Tail Nodes 395.314703 395.060740 157.386731
Weighted Average Cycle Length 12.842648 12.055864 75.266458
Average Tail Length 12.842648 11.880105 28.272666
Max Cycle Length 16.036068 15.247660 89.399045
Max Tail Length 37.221044 30.789860 98.998861

N = 997 (15,000 graphs)
Statistic Expected Observed Variance
Terminal Nodes 499 499 0
Image Nodes 499 499 0
Fixed Points 1 2.001400 1.012065
2-cycles 0.5 0.500400 0.491600
3-cycles 0.3̄ 0.338333 0.347864
5-cycles 0.2 0.191933 0.194162
Components 4.088058 5.056400 2.904686
Average Cycle Length 9.440575 8.060594 21.242696
Cyclic Nodes 38.593620 38.610733 400.831871
Tail Nodes 959.406380 959.389267 400.831871
Weighted Average Cycle Length 19.796810 18.692177 188.266545
Average Tail Length 19.796810 18.772267 68.699347
Max Cycle Length 24.719434 23.758533 222.702094
Max Tail Length 56.502049 49.439933 243.368259

20 AARON BLUMENFELD

N = 1103 (10,000 graphs)
Statistic Expected Observed Variance
Terminal Nodes 552 552 0
Image Nodes 552 552 0
Fixed Points 1 1.998900 1.006699
2-cycles 0.5 0.494000 0.489564
3-cycles 0.3̄ 0.336100 0.332137
5-cycles 0.2 0.202100 0.201256
Components 4.138529 5.106400 2.912079
Average Cycle Length 9.820696 8.433923 23.836005
Cyclic Nodes 40.643236 40.682000 437.580876
Tail Nodes 1063.356764 1063.318000 437.580876
Weighted Average Cycle Length 20.821618 19.902411 215.481783
Average Tail Length 20.821618 19.803899 75.592366
Max Cycle Length 25.999068 25.149100 253.147869
Max Tail Length 59.343417 52.370000 269.637500

Even though N is fairly small here, most of the statistics are already converging
to the expected values for random binary functional graphs. There are a few sta-
tistics, however, that deviate from our expectations. For example, we would expect
one fixed point on average, but we get about two. This is easy to explain, however,
since there is always a fixed point at ∞. Another statistic that seems to be off is
the number of components. It appears that the number of components is about one
more than what we would expect. It is likely that there is a connection with the
fact that 0 7→ ∞ 7→ ∞. We know when

(
b
p

)
= −1, {0,∞} is its own component.

This happens with probability about 1/2. But even if b is a square mod p, each
of 0’s two preimages has a probability of about 1/2 (actually, N/2p) of having a
preimage. In other words, if r 7→ 0, then r has a preimage only if r3 + ra + b is a
square mod p. To go backwards i iterations, the probability of the preimage being

nonempty is about
(
N
2p

)i
≈ 1

2i . Therefore, it is quite likely that the component
containing ∞ is fairly small. This suggests that there should be about one more
component than we would expect from a random binary functional graph.

The other three statistics that seem off are average cycle length, maximum cycle
length and maximum tail length. Average cycle length tends to be off by about
0.9. However, since the average cycle length can be computed by cyclic nodes /
components, this deviation is equivalent to the number of components deviating
(notice that the number of cyclic nodes matches up quite accurately compared to
the expected value).

One possible explanation of why the maximum cycle length is off is because
of the fixed point at ∞. If we consider the binary functional graph by removing
∞’s component, we get a binary graph with fewer vertices, and the maximum
cycle length might match up better to the expected value for this subgraph. An
explanation of why the maximum tail length is off seems more elusive, however.
It is consistently under the expected value by about 6 or 7. This suggests that
discrete exponentiation on elliptic curves is slightly less secure than one might
hope for two reasons. First, it suggests that there’s less of a chance for a longer
tail, which could prove detrimental for certain pseudorandom number generators

DISCRETE LOGARITHMS ON ELLIPTIC CURVES 21

[1]. Secondly, it seems to suggest that there is some extra structure in the maps
we’ve been considering, which could lead to an attack on the discrete logarithm
problem.

5. Conclusions and Future Work

The hardness of the discrete logarithm problem on elliptic curves has offered
an advance in cryptography, and there is computational evidence that suggests
that it is even more secure than classical techniques. It is assumed to be secure
because of the belief that discrete exponentiation behaves like a random map. If,
however, there is some structure imposed by discrete exponentiation for elliptic
curves, we want to know the details so that we can either abandon relying on the
discrete logarithm problem or else ensure that certain conditions are met so that
the discrete logarithm problem remains hard.

Most of the statistics collected for ECFGs do match up with what would be
expected of a random map. There are, however, a couple of areas where there does
seem to be some extra structure imposed by discrete exponentiation. One area is
the maximum tail length. This seems to be consistently lower than the expected
theoretical value of a random binary map by about 6 or 7. The deviation seems too
extreme to be caused just by the small component containing ∞. Indeed, Lindle
[7] seemed to be stuck with the same anomaly when investigating binary functional
graphs in the discrete logarithm problem modulo p. Perhaps this information could
be used to devise an attack on the discrete logarithm problem.

More significantly, however, most of the other deviations in the statistics seem
to be caused by the small component containing the cycle at infinity. In addition to
applications of the hardness of the discrete logarithm problem on elliptic curves to
Diffie-Hellman and ElGamal, there are also random number generators that exploit
the discrete log’s hardness. For example, in [1], a map is specified by k 7→ t(x(kB)),
where t(x) processes the x-coordinate in some way. One thing that we want to
ensure when using this random number generator is that we don’t quickly enter
a short cycle. Although for a curve with a large number of points, it is relatively
unlikely that an initial seed k belongs to a small component, it can happen. If
it does, then the random number generator will no longer be secure. One small
component in particular is the one containing ∞. We can iterate our map to see
if we get a fixed point (which would give rise to an eventually constant sequence).
This weakness doesn’t seem to be as exploitable in Diffie-Hellman, however, because
knowing that there is an incoming edge to x0, where P = (x0, y0) (we can also figure
this out by computing a Legendre symbol) doesn’t seem to give us extra information
about how to solve the discrete logarithm kB = P .

There are a number of ways in which this project can be continued. One quite
specific continuation is investigating why the maximum cycle and tail length deviate
from our expectation, particularly maximum tail length.

Another way to continue this project would be simply to collect more data
and perform more thorough statistical analyses. Yet another idea would be to
investigate curves of order N < p, which I have chosen to neglect since these
curves do not induce binary functional graphs. Similarly, curves of even order
could be investigated, perhaps even supersingular curves. Other related functions
such as P 7→ x(P)B could also be considered (these do not induce binary functional
graphs).

22 AARON BLUMENFELD

I have also chosen to ignore elliptic curves over non-prime fields Fq. One reason
for ignoring other curves is that it is simpler to implement the arithmetic in the
prime case. I have also ignored curves over F2 and F3. There is not a huge number
of curves over these fields, so this is not a huge limitation; however, elliptic curves
over F2k in particular might be worth investigating since these binary fields are
often used in cryptography (and arithmetic over F2k would be easier to implement
than arithmetic in Fpk for arbitrary p).

6. Acknowledgements

The author would like to extend thanks to Joshua Holden for his advice and
helpful suggestions throughout this project.

Appendix A. The Map P 7→ x(P)B

In this appendix, we prove a couple of properties of the map mentioned earlier
in this paper: P 7→ x(P)B,∞ 7→ ∞, where P is a point on an elliptic curve E(Fp),
B is a generator, and x(P) denotes the x-coordinate of the point P .

Proposition A.1. Let E(Fp) : y2 = x3 + ax + b be an elliptic curve with N
points. Then P 7→ x(P)B doesn’t induce a binary functional graph (regardless of
the generator B).

Proof. If we have an odd number of points on the curve, then the graph can’t be
binary by the remarks that follow Theorem 2.7.

If we have an even number of points, then since E(Fp) is abelian, there is a
subgroup of order 2, and the generator of this subgroup has to have y−coordinate
equal to 0. Let this generator be denoted by Q = (x, 0). Now let P = x(Q)B =
xB. If there were a second preimage, then we would have P = x(R)B, and thus
x(R) = x(Q). But there can only be one point on the curve with x-coordinate x(Q)
since Q = −Q.

Therefore, the map P 7→ x(P)B never induces a binary functional graph. �

Remark. Many of the vertices in these graphs do have two preimages, however
(and ∞ can have three preimages in some cases). Therefore, these do not produce
m-ary functional graphs for any m.

Proposition A.2. {∞} is its own component if and only if
(
b
p

)
= −1.

Proof. Once we have specified our generator B, we can identify any point on the
curve uniquely by an integer modulo N . Thus, ∞ has a preimage if and only if we
can solve 0 = x(P) for some P ∈ E, which is solvable if and only if

(
b
p

)
= 1. �

References

[1] Brown, Daniel R. L. and Gjøsteen, Kristian, A Security Analysis of the NIST SP 800-90

Elliptic Curve Random Number Generator. In CRYPTO 2007, LNCS 4622, pages 466-481.
2007.

[2] Cloutier, Daniel. R., Mapping the Discrete Logarithm. Senior thesis, Rose-Hulman Institute

of Technology, 2005.
[3] Cloutier, Daniel R. and Holden, Joshua, Mapping the Discrete Logarithm. 2006.

http://xxx.lanl.gov/abs/math.NT/0605024

DISCRETE LOGARITHMS ON ELLIPTIC CURVES 23

[4] P. Flajolet and A. Odlyzko, Random Mapping Statistics. In Advanced in Cryptology—

EUROCRYPT ’89 (Houthalen, 1989), volume 434 of Lecture Notes in Comput. Sci., pages

329-354. Springer, Berlin, 1990.
[5] Hoffman, Andrew, Statistical Investigation of Structure in the Discrete Logarithm, Rose-

Hulman Institute of Technology REU Report, 2009.

[6] Koblitz, Neal, A Course in Number Theory and Cryptography, Springer-Verlag, New York,
NY, 2nd. Ed., 1994.

[7] Lindle, Nathan W., A Statistical Look at Maps of the Discrete Logarithm. Senior thesis,

Rose-Hulman Institute of Technology, 2008.
[8] Rosen, Kenneth H., Discrete Mathematics and Its Applications, McGraw-Hill, Boston, MA,

5th Ed., 2003.

[9] Washington, Lawrence C., Elliptic Curves: Number Theory and Cryptography, Chapman
& Hall, Boca Raton, FL, 2nd. Ed., 2008.

	Discrete Logarithms on Elliptic Curves
	Recommended Citation

	10-04cover.pdf
	10-04direct.pdf

