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On the Mathematics of Utility Theory

Harshil Sahai

Abstract. Utility theory is a field of economics which hopes to model the innate
preferences humans have toward different objects. Though it is most obviously eco-
nomic in spirit and application, the ever-growing discipline finds its theoretical roots
in mathematics. This paper will explore the mathematical underpinnings of basic
utility theory by following, divulging, and extending the work of Ok [Real Anal-
ysis with Economics Applications, 2007]. We will develop necessary analytic and
algebraic concepts, and use this mathematical framework to support hypotheses in
theoretical economics. Specifically, we establish classical existence theorems (Rader,
Debreu, and von-Neumann Morgenstern) in both utility and expected utility con-
texts. The paper will require only a firm grasp of real analysis in Rn, elementary
group theory and linear algebra, and will proceed assuming no prior knowledge of
economic theory.

Acknowledgements: The author would like to thank Prof. Linda Chen for helpful com-
ments and suggestions on this paper.



Page 168 RHIT Undergrad. Math. J., Vol. 16, No. 1

1 Introduction
Suppose the set X consists of objects from your everyday grocery store. Apples, bread,
steak, and potatoes are all elements of X. In economics, we call X a commodity space.
As economists, we seek to ask questions about X, just as we would any other set. Can
we compare any two elements of the set? How well-defined is this comparison? Is there a
“supremum” or “infimum” in this set? And even if there is and we can compare any two
elements, can we go further? Can we quantify the magnitude to which we prefer them? This
question lies at the heart of utility theory.

For example, suppose we value steak more than we do apples, and apples more than we
do bread. If there is any justice in the world, we would likely value steak more than we
would bread. But by how much? That is, can we find a function u that assigns to each
x ∈ X a real number, so as to preserve our innate preferences for each object? Because this
number would represent our “utility” of the object, we call such a function u : X → R a
utility function.

In Section 2 we explore what conditions on X allow the existence of a preference-
preserving utility function u. In Section 3, we show under what further conditions is our
utility function continuous. In Section 4, we extend by examining how we can establish a
utility function on a set of lotteries, each of which yields prizes inX with certain probabilities.
In Section 5, we conclude.

2 Existence of a Utility Function
We first define the comparison relation that presumably exists over our commodity space X,
as well as formalize what we mean by a utility function u that “preserves” our preferences
in X. Then, we define and expand on a class of spaces, called separable spaces, for which
existence of such a utility function is feasible. Lastly, we show existence of such a utility
function over this class of sets.

2.1 The Preference Relation

We hope to define a relation on our commodity space that is both intuitive to common sense,
but also mathematically feasible. Further, we want our relation to be as loose as possible,
yet still powerful in its interpretation.

Definition. Let X be a metric space. A preference relation %%% is a relation on X that is
transitive and reflexive. If x %%% y, we say that x is preferred to y. We denote x � y if
x % y but y 6% x. In this case, we say that x is strictly preferred to y. We denote x ∼ y
if both x % y and y % x, and say that x is indifferent to y [7, p.16].

For example, ≥ on R is a preference relation, where > is our strict preference relation
and = is our indifference relation. This follows easily by transitivity and reflexivity of ≥.
Note that it can readily be shown that ∼ is an equivalence relation on X.
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In a more abstract setting, recall our toy example, where our commodity space X is the
set of grocery items. Our definition of % is natural if we read “steak % apple” as “we prefer
a steak as much as we prefer an apple.” Further, it is also easily interpreted that by “steak
� apple” we mean “we prefer steak strictly more than we prefer an apple.” One would agree
that our assumptions of transitivity and reflexivity are not entirely ridiculous in the context
of grocery good preferences.

Now, we must keep in mind that this mere definition says nothing about how well behaved
% is within X. This leads to our next definition.

Definition. Let X be a metric space. A preference relation % on X is complete if for all
x, y ∈ X,

x % y or y % x

[7, p.101].

Note that this distinction is entirely non-trivial. One thinks of the age-old idiom “you
cannot compare apples and oranges.” By imposing completeness on our preference relation
over our commodity space, we are making a bold claim that all objects in it can be compared
nicely.

Further, we would like to have a measure of “smoothness” in our commodity space X.
That is, if some good y is preferred to good x, then if another good z is in the neighborhood
of x, it should also be the case that y is preferred to z. Else, our preference relation % would
not be doing such a good job. In mathematics, ideas of “open-ness” and “continuity” come
to mind.

Definition. Let X be a metric space, equipped with preference relation %. Let x ∈ X. Define
the following sets:

U�(x) = {y ∈ X : y � x},
L�(x) = {y ∈ Y : x � y}.

We say that % is upper semi-continuous if for all x ∈ X, L�(x) is open. Similarly, we
say that % is lower semi-continuous if for all x ∈ X, U�(x) is open. Finally, we say %
is continuous if it is both upper and lower semi-continuous [7, p.145].

Intuitively, upper semi-continuity of % would imply that if y � x and we perturb x by a
bit to get z, it still remains that y � z. This resonates very well with ideas of open-ness in
analysis, where any perturbations are contained in the set.

Lastly, we define what we mean by our utility function u that preserves or represents the
inherent preference structure of % on X.

Definition. Let X be a metric space equipped with preference relation %. We say that % is
representable if there exists some u : X → R such that for all x, y ∈ X,

x % y if and only if u(x) ≥ u(y).

The mapping u is called the utility function that represents % [7, p.102].
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Suppose we have that y % x. We want u to preserve this preference:

R

•u(x)

•u(y)
u

X
•x

•y

This is fairly intuitive. If we want a real valued function to represent preferences on our
commodity space, why not have more preferential objects have higher function values? The
key idea here is that once we have established our utility function u as above, we know all
we need to about % on X. We can now do all the (mathematical) analysis we want on u,
and learn more interesting things about how preferences behave on X.

2.2 Separable Spaces

Now that we have established some properties and potential characteristics of our preference
relation, we hope to elaborate on types of commodity spaces for which representation is
possible. Our first class of commodity spaces will be separable spaces.

Definition. Let X be a metric space and Y ⊆ X. We say that Y is dense in X, if Y = X.
We say that X is separable if there exists a countable, dense subset of X [7, p.140].

That is, we want X to be large and nice, but not too complicated. For example, R is
separable. The set of rationals Q is a countable, dense subset of R. Although R contains
many many more numbers than Q, we essentially can grab all of R by taking a neighborhood
of a countable set Q. Similarly, we want to be able to “grab” X by a countable subset.

Separable spaces offer some interesting properties with regards to open sets. Clearly, if
our notion of continuity of % relies on an entirely topological concept of open sets in X, we
want open sets in separable spaces to behave especially well if we have any chance of relating
continuity of % with separability of X.

Proposition 2.1. Let X be a metric space. If X is separable, then there exists a countable
collection O of open subsets of X such that for any open set U ⊆ X,

U =
⋃
{O ∈ O : O ⊆ U}

[7, p.143].

Proof. Suppose X is separable. Let Y be such a countable, dense subset of X. Define the
collection O as

O = {Bε(y) ⊆ X : y ∈ Y and ε ∈ Q+}.
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That is, the set of open balls centered at points in Y , contained in X, with postive, rational
radius. Note that O is countable, by the injection f : O → Y ×Q+, defined by

f(Bε(y)) = (y, ε),

where Y × Q+ is countable as a cross product of countable sets. Note further that O is a
collection of open sets in X, by virtue of being a collection of open balls in X.

It remains to show the equality stated in Proposition 2.1, by showing containment in
both directions. Now, consider any open set U ⊆ X, and let x ∈ U . Thus, there exists
Bε(x) ⊆ U . We can readily shrink ε to ε ∈ Q+, so that Bε̄(x) ⊆ U . However, Y = X implies
that for all x ∈ X, there exists a y ∈ Y such that d(x, y) < ε̄/2. That is, x ∈ Bε̄/2(y) ⊆ O,
because ε̄/2 is rational. Also, Bε̄/2(y) ⊆ Bε̄(x) ⊆ U . So, x ∈ O, for some O ∈ O open and
O ⊆ U . As x was selected arbitrarily, it is clear that U ⊆

⋃
{O ∈ O : O ⊆ U}.

Containment in the opposite direction is obvious since for all x ∈
⋃
{O ∈ O : O ⊆ U},

x ∈ O ⊆ U for some O ∈ O, by construction.

That is, we may write each open set in a separable space as a countable union of open
subsets, where these subsets are drawn from a larger collection inside the space.

2.3 The Rader Utility Representation Theorem

Our goal is to show under what conditions on X and % does there exist a proper utility
representation. John Rader found in 1963, that if we assume X is separable and % is upper
semi-continuous and complete, we achieve such a representation [8].

Theorem 2.2 (Rader). Let X be a separable metric space, and % a complete preference
relation on X. If % is upper semi-continuous, then it can be represented by a utility function
u : X → [0, 1] [7, p.146].

Proof. Because X is separable, by Proposition 2.1, there exists a countable collection O of
open sets of X such that for any open set U ⊆ X,

U =
⋃
{O ∈ O : O ⊆ U}.

Because such a collection is countable, we enumerate O = {O1, O2, . . . }. Let x ∈ X.
Consider

M(x) = {i ∈ N : Oi ⊆ L�(x)}.
That is, the index set of all sets of O whose elements x is strictly preferred to.

Define u : X → [0, 1] as
u(x) =

∑
i∈M(x)

1/2i

Let x, y ∈ X. We note that

x % y if and only if L�(x) ⊇ L�(y). (2.1)
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That is, x is preferred to y if and only if x is strictly preferred to everything that y is strictly
preferred to.

Now, if L�(x) ⊇ L�(y) then it follows that for any Oi ∈ L�(y), such an Oi must also be
contained in L�(x). So, M(x) ⊇M(y). That is,

L�(x) ⊇ L�(y) only if M(x) ⊇M(y). (2.2)

We now show the “if” direction of (2.2), by using a contrapositive argument. Suppose there
exist x, y ∈ X such that L�(x) 6⊇ L�(y). In other words, there exists z ∈ L�(y) \ L�(x).
Note that by hypothesis % is upper semi-continuous, so that L�(y) is an open set in X. By
our construction of O we can write

L�(y) = On1 ∪On2 ∪ . . .

for Oni
∈ O. So, because z ∈ L�(y) \ L�(x) ⊂ L�(y), z must belong to some Onk

. Further
Onk
6⊆ L�(x). Thus, there exists Onk

⊆ L�(y) such that Onk
6⊆ L�(x), which implies directly

that M(x) 6⊇M(y). We may now conclude a stronger case of (2.2):

L�(x) ⊇ L�(y) if and only if M(x) ⊇M(y). (2.3)

We finish our proof by showing containment in M corresponds to inequalities in u. Sup-
pose M(x) ⊇M(y). Then, it is fairly clear that

u(x) =
∑

i∈M(x)

1/2i ≥
∑

i∈M(y)

1/2i = u(y),

as the latter summation is over a smaller set. Now, suppose u(x) ≥ u(y). Then, from the
contrapositive of above,

u(y) 6> u(x)⇒M(y) 6⊃M(x)

⇒ L�(y) 6⊃ L�(x), by (2.3)
⇒ y 6� x, by definition of L�
⇒ x % y, by completeness of %

⇒M(x) ⊇M(y), by (2.1), (2.3).

We have shown that
M(x) ⊇M(y) if and only if u(x) ≥ u(y). (2.4)

To conclude, we combine (2.1), (2.3), and (2.4) to achieve our desired result about the
representability of %:

x % y if and only if u(x) ≥ u(y).
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3 Continuity of a Utility Function
Now that we have established our first representation theorem, we go further to explore
under what conditions is such a utility function u nice. In the spirit of analysis, by “nice”
we really mean continuous. Intuitively, if we want u to be continuous, it makes sense for %
to be continuous. However, is it sufficient? To show this we first state a preliminary result.

Lemma 3.1 (The Open Gap Lemma). For any nonempty subset S ⊂ R, there exists a
strictly increasing function f : S → R such that every ⊆-maximal connected set in R \ f(S)
is either a singleton or an open interval [7, p.240].

Proof. This proof is left as an exercise for the reader. Please see [1] and [4] for reference.

3.1 Function Continuity

If we hope to use Rader’s result (Theorem 2.2) from before to say something about the
continuity of u, we must first divide continuity of a function into upper and lower, just as
we did for preference relations.

Definition. Let X be a metric space. Let φ : X → R. We say that φ is upper semi-
continuous at x ∈ X if given ε > 0, there exists δ > 0 such that d(x, y) < δ implies

φ(y) ≤ φ(x) + ε.

Similarly, we say that φ is lower semi-continuous at x ∈ X if given ε > 0, there exists
δ > 0 such that d(x, y) < δ implies

φ(y) ≥ φ(x)− ε

[7, p.229].

That is, the notion of upper semi-continuity of φ implies that φ takes a neighborhood
of x to no more than φ(x) + ε. In other words, we may locally bound φ from above. A
similar intuition follows for lower semi-continuity. Further, we conclude this digression with
the following result of combining upper and lower semi-continuity.

Corollary 3.2. Let X be a metric space. Let φ : X → R. The map φ is continuous if and
only if φ is both upper and lower semi-continuous.

Proof. The result follows directly from the definitions of upper and lower semi-continuity of
φ [10].

As we know from analysis, if φ is a continuous function, it inversely maps open sets to
open sets. This arises intuitively because continuity ensures that for any neighborhood in
the image, there exists a neighborhood in the preimage that maps inside of it. That is,
once again, continuity of a function is very closely tied to the properties of open sets in
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the function preimage and image. However, to find an analogous result for upper (lower)
semi-continuity, we focus on infinite intervals starting from a fixed right (left) end point, as
the image of a neighborhood is now only bounded by one side, not two.

So, we achieve the following result about upper semi-continuity. Note that an analogous
result holds for lower semi-continuity which can be shown identically.

Proposition 3.3. Let X be a metric space. Let φ : X → R. Then, φ is upper semi-
continuous if and only if for all α ∈ R, φ−1([α,∞)) is closed [7, p.233].

Proof. For the forward direction, suppose φ is upper semi-continuous. The desired result is
equivalent to showing that X \ φ−1([α,∞)) = φ−1(R \ [α,∞)) = φ−1((−∞, α)) is open, for
all α ∈ R.

Fix α ∈ R. Let x ∈ φ−1((−∞, α)). Let ε ∈ (0, α − φ(x)). Now, by the upper semi-
continuity of φ, there exists δ > 0 such that d(x, y) < δ implies

α > φ(x) + ε ≥ φ(y).

That is, φ(Bδ(x)) ⊆ (−∞, α), where Bδ(x) is the ball of radius δ centered at x. Taking φ−1

of both sides, we achieve
Bδ(x) ⊆ φ−1((−∞, α)),

and so φ−1((−∞, α)) is open.
In the reverse direction, suppose for all α ∈ R, φ−1([α,∞)) is closed. Let φ(x) ∈ R.

Given ε > 0, consider the interval (−∞, φ(x) + ε) ⊂ R. So, because φ−1([φ(x) + ε,∞)) is
closed, we know that by above, φ−1((−∞, φ(x) + ε)) is open.

Because, φ(x) ∈ (−∞, φ(x) + ε), we know that x ∈ φ−1((−∞, φ(x) + ε)). Thus, there
exists a δ > 0 such that

Bδ(x) ⊆ φ−1((−∞, φ(x) + ε)).

So, for all y ∈ Bδ(x), φ(y) ∈ (−∞, φ(x) + ε). That is, d(x, y) < δ implies

φ(y) < φ(x) + ε,

and thus φ is upper semi-continuous.

That is, if φ is upper semi-continuous, it inversely maps intervals of the form (−∞, α)
to open sets. Whereas, if φ were simply continuous, it would inversely map intervals of the
form (α, β), and thus all open sets, to open sets.

3.2 The Debreu Utility Representation Theorem

We now show the classical result presented by French mathematician and economist Gerard
Debreu in 1964 [2]. Debreu extended Rader’s formulation by establishing that we can achieve
a continuous utility representation by simply adding the additional feature of continuity to
%.
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Theorem 3.4 (Debreu). Let X be a separable metric space and % a complete preference
relation on X. If % is continuous, then it can be represented by a continuous utility function
[7, p.241].

Proof. If X is separable and % is complete then by Theorem 2.2, there exists a map u : X →
[0, 1] that represents %.

Suppose % is continuous. We use Lemma 3.1 on u(X) ⊆ R. Thus, there exists a strictly
increasing map f : u(X) → R such that every ⊆-maximal connected set in R \ f(u(X)) is
either a singleton or an open interval.

Let us define v = f ◦ u : X → R. Note because f is strictly increasing,

x % y iff. u(x) ≥ u(y) iff. v(x) = f(u(x)) ≥ f(u(y)) = v(y),

so that v represents %, just as well. We show that v is continuous by showing that it is
upper semi-continuous, and the proof of lower semi-continuity follows identically.

By Proposition 3.3, it is sufficient to show that for all α ∈ R, v−1([α,∞)) is closed. Fix
α ∈ R, and consider the following cases:

• If α ∈ v(X), then α = v(x), for some x ∈ X. Note that L�(x) = v−1((−∞, α)). That is,
if α represents the object x, then all those values less than α must represent those objects
in X that x is preferred to. We know that L�(x) is open by the supposed continuity of %
(and thus, its upper semi-continuity). So, v−1((−∞, α)) is open and its complement, the
set in question, is closed.

• Suppose α ∈ R \ v(X). Then, if α ≤ inf v(X), then v−1([α,∞)) = X. Similarly, if
α ≥ sup v(X), then v−1([α,∞)) = ∅. In both cases, the set in question is closed in the
ambient metric space X.

Suppose inf v(X) < α < sup v(X). Let I be the ⊆-maximal connected set in R \ v(X)
that contains α. By our construction of v, we know that I = {α} or I = (α1, α2), for some
α1, α2 ∈ v(X). This last condition on the boundary of the interval belonging to v(X) is
true, else we could fatten I by ε and still be inside R \ v(X), violating the ⊆-maximality
of I.

If I = (α1, α2), then

v−1([α,∞)) = {y ∈ X : v(y) ≥ α2},

because α2 is the first element in R greater than α that belongs to v(X). Consider the
complement of the right hand side of the above set:

{y ∈ x : v(y) < α2} = {y ∈ X : v(y) < v(v−1(α2))}
= {y ∈ X : v−1(α2) � y}
= L�(v−1(α2)),

which is open because v−1(α2) ∈ X and by the upper semi-continuity of % as noted above.
So, the complement of v−1([α,∞)) is open, and so the set in question is closed.
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If I = {α}, let Aα = {β ∈ v(X) : α ≥ β}. That is, the set of elements of v(X)
that bound α from below. Consider the set

⋂
v−1({[β,∞) : β ∈ Aα}). Suppose x ∈

v−1([α,∞)). Then, v(x) ∈ [α,∞) ⊆ [β,∞), for all β ∈ Aα. So, x ∈ v−1([β,∞)), for all
β ∈ Aα. So, x ∈

⋂
v−1({[β,∞) : β ∈ Aα}), and finally v−1([α,∞)) ⊆

⋂
v−1({[β,∞) : β ∈

Aα}).
Now suppose x ∈

⋂
v−1({[β,∞) : β ∈ Aα}). Then x ∈ v−1([β,∞)), for all β ∈ Aα.

So, v(x) ∈ [β,∞), for all β ∈ Aα. Suppose v(x) ∈ [β, α), for all β ∈ Aα such that β 6= α.
Let β0 = sup Aα. If β0 < α then the interval (β0, α] ∈ R \ v(X), and I = {α} is no longer
the ⊆-maximal connected set containing α. If β0 = α, that implies that β → α, from the
left, so that [β, α)→ ∅ and such a v(x) does not exist. So it must be that v(x) ∈ [α,∞),
and x ∈ v−1([α,∞)). That is,

⋂
v−1({[β,∞) : β ∈ Aα}) ⊆ v−1([α,∞)).

We see that:
v−1([α,∞)) =

⋂
v−1({[β,∞) : β ∈ Aα}).

As before, we comment that v−1([β,∞)) is closed for all β ∈ Aα ⊆ v(X), by virtue of
its complement v−1((−∞, β)) = {y ∈ X : v(y) < β} = L�(v−1(β)) being open by upper
semi-continuity of %. Thus, our set in question is closed by virtue of being an arbitrary
intersection of closed sets.

So, in all cases, v−1([α,∞)) is closed, and we are done.

Although separability is a sufficiently general assumption for our commodity space, it is
not entirely obvious why that is. We show a special case of Debreu’s result, one that makes
more sense if our commodity space is somehow numeric in nature (this is where our example
of items in a grocery store would be harder to use).

Corollary 3.5. Let X be a non-empty subset of Rn and % a complete preference relation on
X. If % is continuous, then it can be represented by a continuous utility function [7, p.242].

Proof. Suppose % is continuous. So, for all x ∈ X, we know that L�(x) and L≺(x) are open
in X. Further, because % is complete, for all x ∈ X, there exists a y ∈ X such that either
x � y or y � x. Else, for all x, y ∈ X, x ∼ y, in which case u(x) = 0 would do nicely. In the
latter case, x ∈ L�(y) and in the former, x ∈ L≺(y). So, for all x ∈ X, x belongs to some
open set in X. So, there is an open ball around x contained in such an open set (in X), so
that X is open.

Now, consider D = Qn ∩X. We show that D is a countable, dense set contained in X.
Because X is open in Rn, for any ε-ball around x ∈ X, there exists some q ∈ Qn inside of it,
contained in X (and thus X∩Qn). So, D is dense in X. Further, D is countable by virtue of
being an intersection with Qn, a countable set (by a finite cross product of countable sets).
Lastly, D is contained inside X, by virtue of being an intersection with X. So, X contains
a countable, dense subset D, and is thus separable.

Finally, X is a metric space simply by restricting the Rn-metric to X, and so X is a
separable metric space. Thus the hypotheses of Theorem 3.4 are established, and the result
holds.
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4 Extension: Expected Utility Theory
Suppose now that after shopping at your grocer, you head to an antique art auction. At
this odd auction you have the ability to purchase raffle tickets to enter into a lottery of your
choosing. Each lottery allows you to win a different painting with different probabilities,
suppose.

Call the set of all prizes your commodity space X, and set of lotteries on these prizes
LX . Clearly, if one has preference with regards to the prizes, they must exhibit some sort of
preferences with regards to these lotteries, say %. In this section we establish a framework
to answer the next question: under what conditions on % and X, can we represent % with
a real-valued function?

4.1 Expected Utility

We start by defining what exactly we mean by “lottery,” and the space of all lotteries we will
be working with.

Definition. Let X be a non-empty finite set. A map p : X → [0, 1] is a lottery (or
probability distribution) on X if ∑

x∈X

p(x) = 1.

We denote LX as the set of all lotteries on X:

LX =

{
p : X → [0, 1] such that

∑
x∈X

p(x) = 1

}
.

We denote a degenerate lottery by δy as one whose support is only the element y ∈ X:

δy(x) =

{
1 if x = y
0 otherwise

[7, p.395-96].

An excellent introduction to probability can be found in [9]. Note that our construction
of δy is very intuitive. It is simply the lottery which gives the prize y with certainty.

We recall that our goal is to find a utility representation for %, our preference relation on
LX . We want such a utility function to have an intuitive meaning. More specifically, we note
that individuals have preferences for each lottery only insofar as they prefer the underlying
prizes. So, our function must take into account both the probability of the prize as well as
the value of the prize.

Definition. Let X be a non-empty finite set. Let p ∈ LX , and u : X → R. We define the
map Ep(u) : LX → R (the expected value of u with respect to p) as

Ep(u) =
∑
x∈X

p(x)u(x)
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[7, p.396].

Suppose we have that p2 % p1. We want Epi(u) to preserve % on LX :

R

•Ep1(u)

•Ep2(u)
Epi(u)

LX
•p1

•p2

Keep in mind that the goal of any representation is to capture all essential information of
the underlying preference relation. Thus, an expected value function over a set of probability
distributions on X accomplishes exactly that.

4.2 Linear Spaces and Affine Functions

We hope to find under which conditions does our construction of % on LX give rise to an
intuitive utility representation, namely Ep(u). Because any such ambition must rely on the
structure of Ep(u), we set up a mathematical foundation of functions of a similar form.

Definition. Let X be a non-empty set. The list (X,+, ·), or simply X, is a linear space
if (X,+) is an abelian group; X is closed under scalar multiplication; the operation · is
associative and distributive; and, 1 · x = x, for all x ∈ X [7, p.361].

Note that in an algebraic sense, “linear spaces” are no more than vector spaces [3]. Next,
we define what we mean by a linear map, and note how the structure of linear maps resonates
well with our construction of Ep(u).

Definition. Let S be a non-empty subset of linear space X. The map φ : S → R is linear
if for any (1) A ⊆ S and (2) λ : A→ R such that

∑
x∈A λ(x)x ∈ S,

φ

(∑
x∈A

λ(x)x

)
=
∑
x∈A

λ(x)φ(x).

If we add another condition (3)
∑

x∈A λ(x) = 1 to the equality above, then φ is affine [7,
p.386-87].

We see that linearity of a function φ, defined on a subset of linear space, is essentially
a map that is preserved under the given summation. Note further that affinity of φ implies
linearity over any probability distribution function (or lottery) λ on A ⊂ S.

Next, we show a result that establishes affinity of φ under an interesting condition of
linearity in φ− φ(0), and vice versa.
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Lemma 4.1. Let T be a subset of a linear space with 0 ∈ T . Then any function φ : T → R
is affine if and only if φ− φ(0) is a linear function [7, p.388].

Proof. For the forward direction, suppose φ is affine. Then, let any A ⊆ T and λ : A → R,
such that

∑
x∈A λ(x)x ∈ T . Then, consider

φ

(∑
x∈A

λ(x)x

)
− φ(0) = φ

(∑
x∈A

λ(x)x+ (1−
∑
x∈A

λ(x))0

)
− φ(0)

=
∑
x∈A

λ(x)φ(x) + (1−
∑
x∈A

λ(x))φ(0)− φ(0), by affinity of φ

=
∑
x∈A

λ(x)(φ(x)− φ(0)),

so that φ− φ(0) is linear.
For the reverse direction, suppose φ−φ(0) is linear. Then, let any A ⊆ T and λ : A→ R,

such that
∑

x∈A λ(x)x ∈ T and
∑

x∈A λ(x) = 1. Then, consider

φ

(∑
x∈A

λ(x)x

)
=

(
φ

(∑
x∈A

λ(x)x

)
− φ(0)

)
+ φ(0)

=

(∑
x∈A

λ(x)(φ(x)− φ(0))

)
+ φ(0), by linearity of φ− φ(0)

=

(∑
x∈A

λ(x)φ(x)

)
−

(∑
x∈A

λ(x)

)
φ(0) + φ(0)

=
∑
x∈A

λ(x)φ(x), by
∑
x∈A

λ(x) = 1,

so that φ is affine.

This interesting relationship will be more useful in later sections. The next two results
show some more interesting properties of linear and affine functions. Note that we use xi to
denote the ith entry of x ∈ Rn.

Lemma 4.2. Let n ∈ N and S a non-empty subset of Rn. The map φ : S → R is linear if
and only if there exist α1, . . . , αn ∈ R such that for all x ∈ S,

φ(x) =
n∑
i=1

αixi

[7, p.386].

Proof. This proof is left as an exercise for the reader and follows without too much work by
considering the basis of span(S). Please see [7] for reference.
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That is, if a function φ is linear, inside Rn, we can write the image of any vector as the
linear combination of vector components. Next, we show a similar result for affine functions.

Proposition 4.3. Let n ∈ N and S a non-empty subset of Rn. Then any function φ : S → R
is affine if and only if there exist α1, . . . , αn, β ∈ R such that φ(x) =

∑n
i=1 αixi + β for all

x ∈ S [7, p.389].

Proof. For the forward direction, let φ : S → R be affine. Let x∗ ∈ S. Define T = S \ {x∗},
and ψ : T → R as

ψ(y) = φ(y + x∗).

Now, let any A ⊆ T and λ : A→ R, such that
∑

x∈A λ(x)x ∈ T and
∑

x∈A λ(x) = 1. Then,
consider

ψ

(∑
x∈A

λ(x)x

)
= φ

(∑
x∈A

λ(x)x+ x∗

)
=
∑
x∈A

λ(x)φ(x) + φ(x∗), by affinity of φ

=
∑
x∈A

λ(x)φ(x) +
∑
x∈A

λ(x)φ(x∗), by
∑
x∈A

λ(x) = 1

=
∑
x∈A

λ(x)(φ(x)− φ(x∗))

=
∑
x∈A

λ(x)ψ(x),

so that ψ is affine. So, by Lemma 4.1, we know that ψ − ψ(0) is linear on T . Further, by
Lemma 4.2, there exist α1, . . . , αn ∈ R such that for all y ∈ T ,

ψ(x)− ψ(0) =
n∑
i=1

αiyi.

So, for all x ∈ S, we can write φ(x)− ψ(0) = ψ(x− x∗)− ψ(0) =
∑n

i=1 αi(xi − x∗i ). Lastly,
we let β = ψ(0)−

∑n
i=1 αix

∗
i , so that φ(x) =

∑n
i=1 αixi + β, as desired.

In the reverse direction, let φ : S → R and suppose there exist α1, . . . , αn, β ∈ R such
that φ(x) =

∑n
i=1 αixi + β for all x ∈ S. Then, let any A ⊆ S and λ : S → R, such that
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∑
x∈A λ(x)x ∈ S and

∑
x∈A λ(x) = 1. Then, consider

φ

(∑
x∈A

λ(x)x

)
=

n∑
i=1

αi

(∑
x∈A

λ(x)x

)
i

+ β

=
n∑
i=1

αi

(∑
x∈A

λ(x)

)
xi + β

=
∑
x∈A

λ(x)
n∑
i=1

αixi + β

=
∑
x∈A

λ(x)

(
n∑
i=1

αixi + β

)
, by

∑
x∈A

λ(x) = 1

=
∑
x∈A

λ(x)φ(x),

so that φ is affine. as desired.

We see the key difference in this characterization between linear and affine functions is
β. Although we can write affine images exactly as linear combinations, we can (almost) do
the same for affine functions, at the cost of a translation by β.

4.3 Convex Sets and Affine Preference Relations

We proceed to define a class of sets for which representation of % on LX is feasible, convex
sets. After, we establish an analogous definition of affinity for preference relations just as we
did above for functions.

Definition. A subset T of Rn is convex if for all x, y ∈ T and λ ∈ [0, 1],

λx+ (1− λ)y ∈ T.

We call points of the form λ(x) + (1− λ)y a convex combination of elements x and y [7,
p.77].

One can think of a convex set as a set where the line segment between any two elements
is contained within the set:

X Y

• •
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It is clear that X is convex, as it contains the line segment between any two points in X.
In contrast, Y is not convex by the given line segment, for example, that is clearly not in Y .

Next, we recall that affinity of a function φ is one such that given a proper λ : A→ R,

φ

(∑
x∈A

λ(x)x

)
=
∑
x∈A

λ(x)φ(x),

where
∑

x∈A λ(x) = 1, so that the expression on the right side is essentially a convex combi-
nation of the φ(x) terms. So, an affine φ behaves nicely on convex combinations. Similarly,
we define a related concept for preference relations.

Definition. Let S be a convex subset of linear space X. A preference relation % on S is
affine if for all p, q, r ∈ S and λ ∈ (0, 1],

p % q if and only if λp+ (1− λ)r % λq + (1− λ)r

[7, p.387].

That is, if p % q, then any convex combination of p and r is preferred to the same
combination of q and r. Suppose you prefer steak to apples. If you have (1) a combination
of steak and potatoes and (2) as much apples as steak in (1) and as much potatoes as (1),
you would likely prefer (1) over (2).

We now establish an interesting property of affine preferences defined over convex sets.

Lemma 4.4 (Shapley-Baucells). Let X be a nonempty set. Let RX = {f : X → R}.
Suppose S is a convex subset of RX , and % an affine preference relation on S. Then, for
any p, q ∈ S, we have p % q if and only if there exist λ > 0 and r, s ∈ S such that r % s and
p− q = λ(r − s) [7, p.401].

Proof. In the forward direction, let p, q ∈ S and suppose p % q. Pick any λ > 0, k ∈ S, and
by convexity of S we may define r, s ∈ S as

r =
1

λ
p+

λ− 1

λ
k,

s =
1

λ
q +

λ− 1

λ
k.

It is clear that r− s = 1
λ
p− 1

λ
q so that λ(r− s) = p− q. Lastly, it is clear that p % q implies

r % s by affinity of %.
For the reverse direction, let p, q ∈ S. Take any λ > 0, and r, s ∈ S, such that r % s and

p− q = λ(r − s). Then, consider

p− q = λ(r − s)⇒ p+ λs = q + λr ⇒ 1

1 + λ
p+

λ

1 + λ
s =

1

1 + λ
q +

λ

1 + λ
r

But, because % is affine and r % s, we know that
1

1 + λ
q +

λ

1 + λ
r %

1

1 + λ
q +

λ

1 + λ
s,

so that p % q, also by affinity of %, as desired.
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This useful result states, essentially, that the difference between any two elements in a
convex set can be pegged to a multiple of the difference of any two other elements in the set,
under the condition that the pairs of elements prefer each other, affinely.

Lastly, we define an interesting property of % defined on convex sets.

Definition. Let X be a non-empty finite set, S a nonempty convex subset of LX , and % a
preference relation on S. We say that % is bounded in S if for all p ∈ S, there exists a
p∗, p∗ ∈ S such that

p∗ % p % p∗

We denote p∗ as the %%%-maximum in S and p∗ as the %%%-minimum in S [7, p.398].

The key distinction between usual set-boundedness and preference-boundedness is that
the maximum and minimum are contained within the set. For example, ≥ is bounded on
S ⊂ R if S is bounded and closed (compact). Put simply, % on X is bounded if X contains
its %-maximum and %-minimum.

4.4 The von Neumann-Morgenstern Expected Utility Theorem

In 1947, mathematician John von Neumann and economist Oskar Morgenstern established
a representation theorem for % on LX [6]. We first show a proposition and then prove the
desired theorem as a special case.

Proposition 4.5. Let X be a nonempty finite set, S a nonempty convex subset of LX , and
% a complete, bounded preference relation on S. Then, % is affine and continuous if and
only if there exists a function u : X → R such that for any p, q ∈ S,

p % q if and only if Ep(u) ≥ Eq(u)

[7, p.398-401].

Proof. The result is highly non-trivial. We proceed by proving the forward and reverse
direction in two parts for clarity:

Part 1. If % is affine and continuous, then there exists a function u : X → R such that for
any p, q ∈ S,

p % q if and only if Ep(u) ≥ Eq(u).

Suppose % is affine and continuous on S. By assumption, % is bounded on S, so there exist
p∗, p∗ ∈ S as the %-maximum and %-minimum, respectively. We assume p∗ � p∗, for the
non-trivial case. Else, if p∗ ∼ p∗, then for all p, q ∈ S, p ∼ q, in which case u(x) = 0 would
do nicely. Now by Lemma 4.4, we see that for all α, β ∈ [0, 1],

βp∗ + (1− β)p∗ � αp∗ + (1− α)p∗,
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if and only if, there exists a λ > 0, and r, s ∈ S with r % s such that

(βp∗ + (1− β)p∗)− (αp∗ + (1− α)p∗) = λ(r − s)
iff. (β − α)p∗ + (α− β)p∗ = λ(r − s)
iff. (β − α)(p∗ − p∗) = λ(r − s)

iff. β − α =
λ(r − s)
p∗ − p∗

> 0, by p∗ � p∗, r % s, and λ > 0

iff. β > α.

So, we summarize:

βp∗ + (1− β)p∗ � αp∗ + (1− α)p∗ if and only if β > α. (4.1)

Intuitively if β > α, then more weight is put towards p∗ rather than p∗, and is thus prefer-
ential.

Note that S ⊆ LX ⊆ RX . Consider RX . Because X is finite, let |X| = k, and enumerate
X = x1, x2, . . . , xk. Note that Rk is the set of all unique k-dimensional vectors. But a
k-dimensional vector is no more than a map from a k-tuple to a unique value, i.e. a function
f : X → R. That is, Rk ∼= RX , and so RX is no more than a Euclidean space.

So, S is a non-empty subset of a Euclidean space (namely Rk), and because % is complete
and continuous, we may invoke Corollary 3.5. So there exists a continuous utility function
U : S → R, that represents %. Define V : [0, 1]→ U(S) as

V (λ) = U(λp∗ + (1− λ)p∗).

Note that V is increasing in λ, by (4.1). Note that because U is continuous, it clear that V
is also continuous. We see that for all p ∈ S,

V (1) = U(p∗) ≥ U(p) ≥ U(p∗) = V (0).

So, because V is continuous on an interval [0, 1], by the Intermediate Value Theorem there
exists a λp ∈ (0, 1) such that

V (λp) = U(p) = U(λpp
∗ + (1− λp)p∗).

We further define the map f : U(S)→ R for all U(p) ∈ U(S) as

f(U(p)) = λp.

Note, similarly, that f is increasing as a higher utility value equates more weight towards
p∗. Thus, the utility function L = f ◦ U : S → R also represents %.
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We show that L is affine. Let (p(i), λi) ∈ S × R, such that for all m ∈ N,
∑m

i=1 λi = 1
and

∑m
i=1 λip

(i) ∈ S. Then, consider

L

(
m∑
i=1

λip
(i)

)
= L

(
m∑
i=1

λip
(i)

)

= L

(
m∑
i=1

λi(λp(i)p
∗ + (1− λp(i))p∗)

)

= L

(
p∗

m∑
i=1

λiλp(i) + p∗

m∑
i=1

λi(1− λp(i))

)
.

Note that
∑m

i=1 λiλp(i) +
∑m

i=1 λi(1 − λp(i)) =
∑m

i=1 λi(λp(i) + (1 − λp(i))) =
∑m

i=1 λi = 1, so
that we can continue as

L

(
m∑
i=1

λip
(i)

)
= L

(
p∗

m∑
i=1

λiλp(i) + p∗

(
1−

m∑
i=1

λiλp(i)

))

= L(k), such that λk =
m∑
i=1

λiλp(i)

= f(U(k)) = λk =
m∑
i=1

λiλp(i) =
m∑
i=1

λiL(p(i)),

so that L is affine.
We proceed by utilizing Proposition 4.3, because L is affine, there exists a k-tuple

α1, . . . , αk ∈ R (or equivalently a u : X → R, as discussed) and a β ∈ R such that for
all x ∈ X,

L(p) =
∑
x∈X

u(x)p(x) + β.

So, because L represents % as mentioned before, for all p, q ∈ S,

p % q iff. L(p) ≥ L(q)

iff.
∑
x∈X

u(x)p(x) + β ≥
∑
x∈X

u(x)q(x) + β

iff.
∑
x∈X

u(x)p(x) ≥
∑
x∈X

u(x)q(x)

iff. Ep(u) ≥ Eq(u),

and we are done.

Part 2. If there exists a function u : X → R such that for any p, q ∈ S,

p % q if and only if Ep(u) ≥ Eq(u),

then % is affine and continuous
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Suppose there exists a function u : X → R such that for any p, q ∈ S,

p % q if and only if Ep(u) ≥ Eq(u).

It is left to show that % is affine and continuous. For sake of clarity, we split the proof into
two parts:

• We show % is affine. Let λ ∈ (0, 1]. Let p, q, r ∈ S. Note that by supposition,

p % q iff. Ep(u) ≥ Eq(u)

iff.
∑
x∈X

u(x)p(x) ≥
∑
x∈X

u(x)q(x)

iff.
∑
x∈X

u(x)(λp(x)) ≥
∑
x∈X

u(x)(λq(x))

iff.
∑
x∈X

u(x)(λp(x) + (1− λ)r(x)) ≥
∑
x∈X

u(x)(λq(x) + (1− λ)r(x))

iff. Eλp+(1−λ)r(u) ≥ Eλq+(1−λ)r(u)

iff. λp+ (1− λ)r % λq + (1− λ)r,

so that % is affine.

• We show % is continuous, by showing that it is upper semi-continuous, and an identical
argument shows lower semi-continuity. Because % is bounded, give p∗ and p∗ their usual
definitions. Define f : [0, 1]→ R as

f(λ) = Eλp∗+(1−λ)p∗(u).

Given ε > 0, |λ− λ0| < δ = ε/|Ep∗−p∗(u)| implies

|f(λ)− f(λ0)| =

∣∣∣∣∣∑
x∈X

u(x)(λp∗(x) + (1− λ)p∗(x))−
∑
x∈X

u(x)(λ0p
∗(x) + (1− λ0)p∗(x))

∣∣∣∣∣
=

∣∣∣∣∣∑
x∈X

u(x)((λ− λ0)p∗(x) + (λ0 − λ)p∗(x))

∣∣∣∣∣
=

∣∣∣∣∣∑
x∈X

u(x)(λ− λ0)(p∗(x)− p∗(x))

∣∣∣∣∣
= |λ− λ0| ·

∣∣∣∣∣∑
x∈X

u(x)(p∗(x)− p∗(x))

∣∣∣∣∣
= |λ− λ0| · |Ep∗−p∗(u)|
< δ · |Ep∗−p∗(u)| = ε,

so that f is continuous.
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Note that for all p ∈ S, by supposition,

p∗ � p � p∗ iff. Ep∗(u) > Ep(u) > Ep∗(u)

iff. f(1) > Ep(u) > f(0).

So, because f is continuous on the interval [0, 1], by the Intermediate Value Theorem there
exists a λp ∈ (0, 1) such that for all p ∈ S,

f(λp) = Ep(u) = Eλpp∗+(1−λp)p∗(u).

However, this is only true if and only if

p ∼ λpp
∗ + (1− λp)p∗.

Note that % is affine and so we may use the result from (4.1). This implies that for all
p, q ∈ S,

p � q iff. p ∼ λpp
∗ + (1− λp)p∗ � q ∼ λqp

∗ + (1− λq)p∗
iff. λp > λq. (4.2)

Now, recall L�(p) = {q ∈ S : p � q}. Define ψ : S → R as

ψ(p) = λp.

It is clear that as p → q, λp → λq, so that ψ is continuous. By (4.2), we see that
ψ(L�(p)) = ψ({q ∈ S : p � q}) = {λq ∈ R : λp > λq} = (−∞, λp). Because ψ is
continuous, because ψ(L�(p)) is an open interval, and thus an open set, L�(p) is open in
S. Therefore, % is upper semi-continuous.

So, we have shown both affinity and continuity of %, and Part 2 is complete. Part 1 and
Part 2 complete both directions of the stated Proposition, and so the proof is complete.

This classical result in utility theory establishes the existence of a utility representation
of % on a subset S of LX provided (1) % is complete, bounded, affine, and continuous and
(2) S is convex.

Recall that the conditions on the structure of % are not entirely unbelievable, and actually
resonate well with common sense and how individuals prefer objects. It is very likely that
you may have a most and least preferable lottery (boundedness), and that your preferences
are preserved under a convex combination (affinity). Further, your preferences on lotteries
are likely also the same under small perturbations of the lotteries (continuity). Perhaps the
strictest assumption is that we have the ability to compare any two lotteries (completeness).
It is often a dilemma whether to play Blackjack or Texas Hold’em at the neighborhood
casino.

Perhaps also the convexity assumption on S, our commodity space subset, is a bit strict.
Thus, to finish, we extend the Proposition into representability of % on all of LX .
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Theorem 4.6 (von Neumann-Morgenstern). Let X be a non-empty finite set, % a complete
preference relation on LX . Then, % is affine and continuous if and only if there exists a
function u : X → R such that for any p, q ∈ LX ,

p % q if and only if Ep(u) ≥ Eq(u)

[7, p.399].

Proof. We prove the theorem by showing the hypotheses are consistent with those of Propo-
sition 4.5, and so the identical result will hold. It is clear that LX , the space of all lotteries
(probability distributions) on X, is a convex subset of itself (any convex combination of
two probability distributions is still a probability distribution!). It is left to show that % is
bounded on LX .

Because X is finite and %-complete, for all x ∈ X, there exists δx∗ % δx. That is, there
exists a prize in X that is the most preferred (and so the lottery with probability one of
receiving such a prize is also the most preferred). Note that Part 2 of the proof of Proposition
4.5, showing affinity of %, did not rely on its boundedness in LX . So, we may use the result
that % is affine. Consider any p ∈ LX . Thus,

δx∗ =
∑
x∈X

p(x)δx∗ %
∑
x∈X

p(x)δx = p,

where we use affinity of % finitely many times for each x ∈ X. So δx∗ is the %-maximum on
LX . A similar argument shows that there exists a δx∗ , which is the %-minimum, and so %
is bounded on LX , and we are done.

Therefore, because boundedness comes naturally, we may represent a preference relation
% on the entire LX provided only that % is complete, affine, and continuous.

5 Conclusion

How can we model preferences humans have towards different objects? This is a very im-
portant question in the field of economics and specifically, microeconomics, the study of
behavior and decision making of firms and consumers [5].

Such a question has immediate mathematical implications. In particular, we start with
two key concepts: sets, or the commodity space on which our preferences operate, and
relations, or the structure on which we can “compare” any two objects in this commodity
space.

By modeling or “representing” these preferences, we mathematically translate this ques-
tion into whether or not there exists a real-valued utility function defined on our set that
preserves our relation. So, at first glance, any set and any relation cannot induce such a
function! We must think carefully about what properties of our set and our relation make
existence of such a function feasible.
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In this paper, we highlight a few of these special properties including separability of our
set and completeness and upper semi-continuity of our relation that make representation
possible (Rader [8, Section 2]). We then ask how we can make our target function continuous
(in the analytic sense), which, we show, requires separability of our set and both completeness
and continuity of our relation (Debreu [2, Section 3]). Lastly, we extend to show how we
can represent preferences on the set of lotteries that give prizes in our commodity space, by
assuming convexity of this set and completeness, affinity, and continuity of our relation (von
Neumann-Morgenstern [6, Section 4]).

Utility theory is a field that dates back to 1776, where Adam Smith first wrote boldly
trying to relate human psychology to mathematics, and continues its research today [11].
Ultimately, any new, interesting, and significant contribution to the field must find its roots
in the analytic and algebraic properties of the sets and relations in question, making utility
theory not a far cry away from a purely mathematical discipline.
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