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On the Center of Non Relativistic Lie
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Abstract. The center of the Schrödinger Lie algebra is the Lie subalgebra gener-
ated by its center of mass. An explicit mathematical proof of this statement doesn’t
seem to be available in literature. In this paper, we use elementary matrix multi-
plication to prove it. We also investigate the case of the Galilei Lie algebra, the
Harmonic Oscillator Lie algebra and the Heinsenberg-Weyl Lie algebra. We show
by calculation that these non-relativistic Lie algebras have no center unless centrally
extended.
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1 Introduction

The theory of Lie algebras is one of the most important subjects in both pure mathematics
and mathematical physics. Among the existing Lie algebras, non-relativistic Lie algebras
have attracted a lot of attention for many years because of their various applications (see
[9]) in mathematical physics. In particular, a tremendous amount of papers have been
written on the Schrödinger Lie algebra, the Galilei Lie algebra and the Harmonic Oscillator
Lie algebra (see, for example, [1, 2, 5]).

It is legitimate and not unusual for a beginning physicist to wonder if the center of mass
coincides with the center of gravity. In the same order of idea, a beginning Lie algebra learner
wonders if the center of mass of a centrally extended non-relativistic Lie algebra coincides
with its center as a Lie subalgebra, since the concept of center of mass becomes very complex
as we move from classical mechanics to non-relativistic quantum physics [8]. In this paper,
we use the techniques performed by G. Biyogmam in [2] to calculate the center of the non-
relativistic Lie algebras mentioned above. We provide all the details for the Schrödinger
algebra case and state the results for the others as the calculation is similar. As a result, we
show that when the Schrödinger, Galilei, Harmonic Oscillator, and Heinsenberg-Weyl Lie
algebras are massless, these Lie algebras have no center; however, when they are centrally
extended with a mass M , our calculations show that the center of the Lie algebra is the
subalgebra generated by M .

This paper is structured as follows: In Section 2, we provide some preliminaries. Section
3 is divided into three subsections. In Section 3.1, we provide a convenient basis of the
Schrödinger Lie algebra along with the calculation of its center. In Section 3.2 we briefly
outline the proof for the case of the Galilei Lie Algebra. The cases of the Harmonic Oscillator
Lie Algebra and the Heisenberg-Weyl Lie Algebra are respectively studied in Section 3.3 and
Section 3.4.

2 Preliminaries

Let us recall a few definitions:

Definition 2.1. [6] A Lie Algebra over the field K is a vector space g over K with a K-bilinear
map [−,−] : g× g→ g which is skew-symmetric, meaning

[x, y] = −[y, x] for all x, y ∈ g,

and satisfies the Jacobi identity, which is

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Definition 2.2. [6] A subspace s of a Lie algebra g is a Lie subalgebra of g if s has the
structure of a Lie algebra when endowed with the restriction of the bilinear operation of g
on s× s.
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Definition 2.3. [7] Let g be a Lie algebra. The center z(g) of g is the subalgebra of g
defined by

z(g) = {x ∈ g : [x, g] = 0 for all g ∈ g}.

In the following remark, we provide a constructive proof of a well-known result in the
field of linear algebra.

Remark 2.4. Let V be a finite dimensional vector space, V ∗ the vector space of all linear
transformations defined from V to R and Mn×n(V ) the vector space of all n × n matrices
with coefficients in V, then there is a vector space isomorphism

V × V ∗ ∼= Mn×n(V ).

Indeed, assume that {x1, x2, ..., xn} is a basis of V, and consider the linear maps ∂
∂xj

: V → R
defined by

∂

∂xi
(xj) =

{
1, if i = j

0, if i 6= j.

Then clearly { ∂
∂x1
, ∂
∂x2
, ..., ∂

∂xn
} is a basis of V ∗ and the n2 vectors {xi ∂

∂xj
}ni,j=1 constitute

a basis of V × V ∗. Now let {eij}ni,j=1 be a basis of Mn×n(V ), where eij is a n × n matrix
where 1 is in the ith row, jth column and 0 everywhere else. Then it is clear that the map
α : V × V ∗ →Mn×n(V ) defined by α(xi

∂
∂xj

) = eij, is bijective and linear.

As a consequence of the above remark, we have the following:

Corollary 2.5. The vector space V ∗ operates on V × V ∗ via multiplication of matrices and
for all k ∈ {1, 2, . . . , n} the maps

∂

∂xk

(
xi

∂

∂xj

)
=

{
∂

∂xj
, if i = k

0, if i 6= k

are linear.

Proof. It is easy to check that if ek is a column matrix where 1 is in the kth position and
zero elsewhere, then multiplying these matrices yields to

ek
(
eij
)

=

{
ej, if i = k

0, if i 6= k.

We conclude using the isomorphism α above.

Remark 2.6. When endowed with the bracket operation
[−,−] : Mn×n(V ) × Mn×n(V ) → Mn×n(V ) defined by [a, b] = ab − ba, the vector space
Mn×n(V ) becomes a Lie algebra. It is called general linear Lie algebra and denoted gl(n).
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3 The Schrödinger Lie Algebra

In this section, we provide a basis of the Schrödinger Lie Algebra and a few of its Lie
subalgebras in term of the vectors {xi ∂

∂xj
}n+2
i,j=1 and calculate their centers.

Denote by schn, the Schrödinger Lie algebra. Using the isomorphism of remark 2.4 and
the matrix representation of a typical element of schn, we provide below a basis of the
Schrödinger Lie algebra. Assume that Rn is given the coordinates (x1, x2, ..., xn), then the
set {

xij, αn, βn, γn, xi
∂

∂xn+1

, xi
∂

∂xn+2

; 1 ≤ i < j ≤ n
}

is a basis of the Schrödinger algebra sch(n), where

xij := −xi
∂

∂xj
+ xj

∂

∂xi
, 1 ≤ i < j ≤ n (Rotations),

αn := −xn+1
∂

∂xn+1

+ xn+2
∂

∂xn+2

(Dilation),

βn := xn+1
∂

∂xn+2

(Time translation),

γn := −xn+2
∂

∂xn+1

(Conformal transformation),

xi
∂

∂xn+1

1 ≤ i ≤ n (Galilean boosts),

xi
∂

∂xn+2

1 ≤ i ≤ n (Space translations),

and the non zero brackets are:

[xij, xik] = xjk, [αn, βn] = −2βn, [αn, γn] = 2γn, [βn, γn] = αn,

[xij, xi
∂

∂xn+1

] = xj
∂

∂xn+1

, [xij, xi
∂

∂xn+2

] = xj
∂

∂xn+2

, [αn, xi
∂

∂xn+1

] = xi
∂

∂xn+1

,

[αn, xi
∂

∂xn+2

] = −xi
∂

∂xn+2

, [βn, xi
∂

∂xn+1

] = −xi
∂

∂xn+2

, [γn, xi
∂

∂xn+2

] = xi
∂

∂xn+1

.

These brackets are calculated using matrix multiplication and the bracket of gl(n). For
example,

[x12, x13] = x12x13 − x13x12

= (−x1
∂

∂x2
+ x2

∂

∂x1
)(−x1

∂

∂x3
+ x3

∂

∂x1
)− (−x1

∂

∂x3
+ x3

∂

∂x1
)(−x1

∂

∂x2
+ x2

∂

∂x1
)

= −x2
∂

∂x3
+ x3

∂

∂x2
= x23.

Remark 3.1. The Schrödinger Lie algebra is said to be centrally extended when it is pro-
vided an additional basis element M called mass, and satisfying [M,X] = 0 for all X ∈ schn.
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In this case the interaction between the Galilean boosts and the space translations is not
always trivial. More precisely [5], [xi

∂
∂xn+1

, xj
∂

∂xn+2
] = δijM for all i, j = 1, 2, . . . , n, where

δij =1 if i = j and 0 if i 6= j.

3.1 The center of the Schrödinger Lie Algebra

The following provides the center of the Schrödinger Lie algebra.

Proposition 3.2. The center of the centrally extended Schrödinger Lie algebra schn with
mass M coincides with the subalgebra generated by its mass; that is

z(schn) = 〈M〉 for all n ≥ 1.

Proof. We proceed by induction on n starting from n = 2 for clarity, since sch1 is the only
case where there are no rotation generators. The calculation of z(sch1) is analogous and
easier than z(sch2). The following is a basis for sch2 :

Bsch2 =
{
M,x12, α2, β2, γ2, xi

∂

∂x3
, xi

∂

∂x4
, i = 1, 2

}
.

So for X ∈ z(sch2), we have

X = ax12 + bx1
∂

∂x3
+ cx2

∂

∂x3
+ dx1

∂

∂x4
+ ex2

∂

∂x4
+ fα2 + gβ2 + hγ2 + iM

for some a, b, c, d, e, f, g, h, i ∈ R. We then have

0 = [X, x12] = a[x12, x12] + b[x1
∂

∂x3
, x12] + c[x2

∂

∂x3
, x12] + d[x1

∂

∂x4
, x12] + e[x2

∂

∂x4
, x12]

+ f [α2, x12] + g[β2, x12] + h[γ2, x12] + i[M,x12]

which gives 0 = b(−x2 ∂
∂x3

) + c(x1
∂

∂x3
) +d(−x2 ∂

∂x4
) + e(x1

∂
∂x4

), and thus b, c, d, e = 0 by linear
independence. So we are reduced to

X = ax12 + fα2 + gβ2 + hγ2 + iM.

Similarly,

0 = [X,α2] = a[x12, α2] + f [α2, α2] + g[β2, α2] + h[γ2, α2] + i[M,α2].

So,
[X,α2] = 2gβ2 − 2hγ2 = 0

giving g, h = 0 and thus X = ax12 + fα2 + iM.
Also,

0 = [X, β2] = a[x12, β2] + f [α2, β2] + i[M,β2] = −2fβ2
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giving f = 0 by linear independence, and thus X = ax12 + iM.
Finally,

0 = [X, x1
∂

∂x3
] = a[x12, x1

∂

∂x3
] + i[M,x1

∂

∂x3
] = ax2

∂

∂x3

giving a = 0 by linear independence, hence X = iM and thus z(sch2) ⊆ 〈M〉. Since by
definition [M,X] = 0 for all X ∈ sch2, it follows that M ∈ z(sch2). Hence z(sch2) = 〈M〉.

Now assume that z(schn−1) = 〈M〉. Note that the basis of schn is

Bschn = Bschn−1

⋃
{xin, 1 ≤ i ≤ n− 1}

⋃
{xn

∂

∂xn+1

, xn
∂

∂xn+2

}.

Let X ∈ schn. Then X = Y +
∑n−1

i=1 aixin + bxn
∂

∂xn+1
+ cxn

∂
∂xn+2

for some a, b, c ∈ R with

Y ∈ schn−1 ⊆ schn. If X ∈ z(schn), then for all u ∈ schn−1 ⊆ schn we have

0 = [X, u] = [Y, u] +
n−1∑
i=1

ai[xin, u] + b[xn
∂

∂xn+1

, u] + c[xn
∂

∂xn+2

, u].

Since [Y, u] and
∑n−1

i=1 ai[xin, u] + b[xn
∂

∂xn+1
, u] + c[xn

∂
∂xn+2

, u] share no common basis ele-

ments, it follows by linear independence that [Y, u] = 0 and
∑n−1

i=n ai[xin, u] + b[xn
∂

∂xn+1
, u] +

c[xn
∂

∂xn+2
, u] = 0. Hence Y ∈ z(schn−1), and thus Y = mM for some m ∈ R by inductive

hypothesis. So, we are reduced to X =
∑n−1

i=1 aixin + bxn
∂

∂xn+1
+ cxn

∂
∂xn+2

+ mM. Again

because X ∈ z(schn), it follows that

0 = [X, x1n] =
n−1∑
i=1

ai[xin, x1n] + b[xn
∂

∂xn+1

, x1n] + c[xn
∂

∂xn+2

, x1n] +m[M,x1n]

= −a2(x12)− a3(x13) + · · · − an−1(x1,n−1)− b(x1
∂

∂xn+1

)− c(x1
∂

∂xn+2

).

This implies by linear independence that a2, a3, · · · , an−1, b, c = 0 and thus X = a1x1n+mM.
Repeating the previous calculations with x2n gives 0 = [X, x2n] = a1[x1n, x2n] +m[M,x2n] =
a1x12, which implies that a1 = 0 by linear independence. Hence X = mM and thus z(schn) ⊆
〈M〉. Now since by definition, [M,X] = 0 for all X ∈ schn, it follows that M ∈ z(schn). Hence
z(schn) = 〈M〉.

3.2 The Center of the Galilei Lie Algebra

The basis of the centrally extended Galilei Lie Algebra is given by{
M,xij, βn, xi

∂

∂xn+1

, xi
∂

∂xn+2

; 1 ≤ i, j ≤ n
}
,

so it is a subalgebra of the centrally extended Schrödinger Lie algebra [2].
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Proposition 3.3. The center of the centrally extended Galilei Lie algebra galn with mass
M coincides with the subalgebra generated by its mass; that is

z(galn) = 〈M〉 for all n ≥ 1.

Proof. We briefly outline the proof as it is similar to the Schrödinger Lie algebra case.
Again we proceed by induction on n starting from n = 2 for clarity, since gal1 is the only
case where there are no rotation generators. The calculation of z(gal1) is analogous and
easier than z(gal2). The basis of gal(2) is Bgal2 = {M,x12, β2, x1

∂
∂x3
, x2

∂
∂x3
, x1

∂
∂x4
, x2

∂
∂x4
}. Let

X ∈ z(gal2). Then

X = ax12 + bx1
∂

∂x3
+ cx2

∂

∂x3
+ dx1

∂

∂x4
+ ex2

∂

∂x4
+ fβ2 + gM

for some a, b, c, d, e, f, g ∈ R. Using the fact that [X, x12] = 0 and the linearity of the bracket
operation, we have b(−x2 ∂

∂x3
) + c(x1

∂
∂x3

) + d(−x2 ∂
∂x4

) + e(x1
∂

∂x4
) = 0 which implies that

b, c, d, e = 0 by linear independence. So X = ax12 + fβ2 + gM. Repeat with [X, x1
∂

∂x3
] = 0

to have ax2
∂

∂x3
− f(x1

∂
∂x4

) = 0, and thus a, f = 0 by linear independence. Hence X = gM
and thus z(gal2) ⊆ 〈M〉. Since by definition [M,X] = 0 for all X ∈ gal2, it follows that
M ∈ z(gal2). Hence z(gal2) = 〈M〉.

Now assume that z(galn−1) = 〈M〉 and let X ∈ z(galn). Since the basis of galn is

Bgaln = Bgaln−1
∪ {xin, 1 ≤ i ≤ n− 1} ∪ {xn

∂

∂xn+1

, xn
∂

∂xn+2

}

we have

X = Y +
n−1∑
i=1

aixin + bxn
∂

∂xn+1

+ cxn
∂

∂xn+2

for some a, b, c ∈ R with Y ∈ galn−1 ⊆ galn. So for u ∈ galn−1 ⊆ galn,

[X, u] = [Y, u] +
n−1∑
i=i

ai[xin, u] + b[xn
∂

∂xn+1

, u] + c[xn
∂

∂xn+2

, u] = 0

which gives [Y, u] = 0 since [Y, u] and
∑n−1

i=n ai[xin, u] + b[xn
∂

∂xn+1
, u] + c[xn

∂
∂xn+2

, u] are linear

combinations of different basis elements. Therefore Y ∈ z(galn−1) and thus Y = mM for

some m ∈ R by inductive hypothesis. So X = mM +
∑n−1

i=n aixin + bxn
∂

∂xn+1
+ cxn

∂
∂xn+2

Again because X ∈ z(galn), we have [X, x1n] = 0. This implies after applying the bracket
operations and linearity that

−a2(x12)− a3(x13) + · · · − an−1(x1,n−1)− b(x1
∂

∂xn+1

)− c(x1
∂

∂xn+2

) = 0

and thus a2, α3, · · · , an−1, b, c = 0 by linear independence. So We are reduced to X =
mM + a1x1n. Repeating the process on [X, x2n] = 0 gives a1x12 = 0 implying by linear
independence that a1 = 0. Hence X = mM and thus z(galn) ⊆ 〈M〉. Now since by definition,
[M,X] = 0 for all X ∈ galn, it follows that M ∈ z(galn). Hence z(galn) = 〈M〉.
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3.3 The Center of the Harmonic Oscillator Lie Algebra

The Harmonic Oscillator Lie algebra hon is also a subalgebra of the Schrödinger Lie algebra.
Its basis [3] is given by {

M,αn, xi
∂

∂xn+1

, xi
∂

∂xn+2

; 1 ≤ i ≤ n
}
.

Proposition 3.4. The center of the centrally extended harmonic Oscillator Lie algebra hon
with mass M coincides with the subalgebra generated by its mass; that is

z(hon) = 〈M〉 for all n ≥ 1.

Proof. The proof is also done by induction on n and uses the same calculation techniques as
in the previous cases.

3.4 The Center of the Heinsenberg-Weyl Lie Algebra

The Heinsenberg-Weyl Lie algebra hwn is also a subalgebra of the Schrödinger Lie algebra.
Its basis [5] is given by {

M,xi
∂

∂xn+1

, xi
∂

∂xn+2

; 1 ≤ i ≤ n
}
.

Proposition 3.5. The center of Heinsenberg-Weyl Lie algebra hwn with mass M coincides
with the subalgebra generated by its mass; that is

z(hwn) = 〈M〉 for all n ≥ 1.

Proof. The proof is similar to the previous cases.
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