THE SCIENTIFIC CULTURES OF CHINA AND ROME
Westinghouse electrical systems for jet aircraft are so reliable

they are now standard equipment on all these commercial jets

Westinghouse electrical systems supply the electric power for most of the commercial jet aircraft in the free world.

This is because Westinghouse systems are so reliable.

They have to be. Passenger safety and comfort depend on them.

Westinghouse systems supply the electric power required for flight control of the aircraft and for other vital things like fuel pumps, navigational gear, warning and indicating systems, deicing equipment and radar.

Westinghouse reliability has cut electrical system maintenance costs 50% in the last five years.

Westinghouse believes that reliability—especially in aircraft electrical systems—is something you can never get enough of.

You can be sure if it’s Westinghouse
THINK POWER
Think diesel power to drive a truck as big as a house. Think power for the fun of it, to carry just two people and their camping gear. Think gas turbine power. Think marine power. Think rockets and missiles, and farm equipment and earthmovers. Think about a career with International Harvester. Our 4,000 engineers and technicians are thinking power for every purpose from rocket thrust combustion chambers to gas turbine tractors and trucks. We're the world's largest producer of heavy-duty trucks, a major producer of farm and construction equipment—and we're doing very nicely in steel. Gas turbines and aerospace equipment also are important parts of our POWER complex. At IH, POWER is a 2-billion-dollar-a-year plus business, with research and engineering one of our biggest budget items. We need engineers! We especially need mechanical, industrial, agricultural, metallurgical, general and civil engineers. If you're an engineering graduate who is intrigued by POWER and its unlimited applications, you should find yourself right at home with us.

Interested? Contact your Placement Officer now for a date to see an IH representative when he visits your campus. Or if interviews are not scheduled, write directly to the Supervisor of College Relations, International Harvester Company, 401 North Michigan Avenue, Chicago, Illinois 60611.

International Harvester puts the future in your hands

AN EQUAL OPPORTUNITY EMPLOYER
The feature article for this month is a comparative analysis of two civilizations. Written by Hugh Crome, a freshman, this article compares the growth and influence of technology in China and Rome. The cultures of these two countries are shown to have been greatly influenced by the scientific developments within the country. An interesting article, it is well worth the time needed to read it. The article begins on page 9.

The United States and the Soviet Union now face each other in outer space. They will undoubtedly be joined there by many other nations. The question we must begin to answer now is whether the concept of “might makes right” govern the use of outer space or, will there develop a code of ethics and laws between the space powers. Jay Sinex discusses this question in the thought provoking article “Law in Space,” which starts on page 12.

Beginning on page 16 is an article with the odd title “The Euglena.” In this article Gary Ransford gives an interesting and complete discussion of the Heisenberg Uncertainty Principle. The article will undoubtedly be interesting to Physics majors. Many others will also find it informative since Gary includes a philosophical justification in his paper.

COVER NOTE

This month’s cover is by Jeff Brugas. It is a graphical representation of our feature article, “Scientific Cultures of China and Rome.”
Dean's Message

The Scientific Cultures of China and Rome Hugh Crome

The Necessity of Law in Space Jay Sinex

Euglena Gary Ransford

Quantum Electronics: II Dr. H. A. Sabbaugh

* * * * *

Editorial

Miss Technic

Sports

R & D

Date Rater
ROSE POLYTECHNIC INSTITUTE
Terre Haute, Indiana

HIGH SCHOOL GRADUATES OF 1966

You are cordially invited to visit Rose Polytechnic Institute where you can earn a degree in:

CHEMICAL ENGINEERING
ELECTRICAL ENGINEERING
MECHANICAL ENGINEERING
CIVIL ENGINEERING
MATHEMATICS
PHYSICS
CHEMISTRY
A peculiar kind of freedom pertains to life on a college campus. It is the freedom to experiment with "character." As a student you can try out or "try on for size" various guidelines for your conduct and your performance—particularly in your relations with the people around you. The day-to-day grind of a job and of family responsibilities has not yet closed in on most of you.

Nonconformity in dress and in manner can provide a relief from other constraints without implying any doubtful standards of conduct. At no later period will it be possible to experiment, to make mistakes, at such low cost. You've got bargain basement rates at this time in your life testing the old adage: "Good judgment comes from experience, and experience— that comes from bad judgment."

Even a highly disciplined young man with the advantages of a strong moral fabric in the home where he grew up still feels the urgent need to put the precepts offered by parents and teachers to a searching test. This is all to the good. But such testing should eventually lead to firm convictions—convictions about "people" and convictions about "things."

The perceptive student of the physical universe certainly cannot escape its inexorable lawfulness. As the known structure of physical science is illuminated step-by-step in the curricular sequence of courses, a growing body of "convictions" is established in the mind of the young engineer or scientist. This is the foundation of his indispensable body of specialized knowledge as a professional man.

Similarly, he will be developing the second essential ingredient of his professional stance—a spirit of service to others. This proceeds from convictions based on religious precepts, humanistic studies and participation in extracurricular activities, as well as his personal experience in helping others.

A third ingredient, loyalty to his own professional group, develops at a more mature level, as the student perceives that the body of knowledge grows only through generous sharing. The true professional is convinced that he should "gladly teach" his peers—disseminating the results of his creative work, his research, his insights, to all his associates. Their acceptance and approbation of his work, of his "convictions," can be the author's most durable satisfaction.

Most of us are reticent about expressing our deeply held beliefs. But all of us admire the mature man who, while tolerant and considerate of other views, organizes and runs his own life according to clear and tested convictions—beliefs that provide a solid anchor in times of stress.

Certainly the college years are a particularly good time to follow St. Paul's admonition: "Prove all things. Hold fast that which is good." Conflicting pressures bear down upon all of us on the Rose campus. A worthwhile goal for our academic community is to achieve an open society where no one needs to feel compelled to sacrifice his own deeply-held convictions.
Wine, Women And Happiness

Ask one hundred people what to them is the most important thing and you might get just as many different answers. Or, if those people happen to be guys from a small midwest engineering college, only two answers may be given: wine and women. Whatever the answer, the things named are practically always those things which bring the persons happiness. Here is found the real answer. The most important thing to us is happiness.

This is certainly not a great discovery. Anyone who has given it any thought has probably made the same conclusion. And, yet, the world if full of unhappy people. People who don't know what they really want. Look around you today. How many of us here are genuinely happy?

Life to the unhappy person is not unlike marriage to the Platonic husband. Neither is getting all he could. The happy person gets more out of life. More people like him and want to help him. And he is usually more successful in accomplishing his own goals.

When I refer to a happy person, I'm not making reference to those who go from day to day ignoring all troubles and problems. I am speaking of the person who establishes his goals and then works toward them, facing troubles and solving problems as he goes. This is how we can become happy. We must decide what we really want and then go after it. Even though it may take a long time to accomplish our goals, we will be happier in knowing we are headed in the right direction.

One of our biggest problems is knowing what we really want. This problem usually stems from our not knowing who we really are. Much of our time is spent now experimenting in an attempt to discover our identity. So, in setting our goals, we must be aware of a tendency to set goals which are not our own but are those of the group we are immediately associated with. And the groups goals are often not the same as the ones we would establish as an individual well aware of who he really was.

In conclusion, to be happy, we must first discover our true identity. This may be accomplished by close and continued self analysis. Second, based on what we think will bring us happiness, we should establish both our short and long range goals. Third, we should set out to accomplish those goals. In doing these things we will build our happiness on a firm basis.

JWK
If one of these Koppers career opportunities doesn’t sound interesting to you:

Koppers designs and builds steel plants, has led in the development of coke plants, basic oxygen furnaces and continuous casting machines.

Koppers produces protective coatings for roofs and waterlines, waterproof plazas and airport runways.

Koppers makes chemicals for cosmetics, pharmaceuticals, synthetic fiber dyes, photographic solutions, and many other industries.

Koppers makes foam plastic for packaging to cushion and protect tiny electronic parts and refrigerators, television sets and bowling balls.

Koppers provides foam plastic, insulated panels for walls and roofs of refrigerated facilities that cool everything from grape juice to pecans.

Koppers makes metal products—from sound traps for buildings to piston rings to heavy steel mill equipment.

try one of these:

Koppers laminates wood for structural arches and beams, providing a handsome and low-cost material for schools, warehouses, churches, commercial buildings.

Koppers pressure-treats wood for building—to protect it against rot and termites, and fire.

Koppers controls industrial environments—cleans the air, reduces heating and air-conditioning sounds, suppresses aircraft noise, builds clean rooms.

Koppers fabricates reinforced plastic parts—with great resistance to chemical attack and high strength-weight ratio—for pipe, chemical containers, structural components, hardware.

Advance now. Join Koppers. We need chemists and chemical engineers, mechanical engineers, metallurgical engineers, electrical engineers, civil engineers.

Write to the Personnel Manager, Koppers Company, Inc., Room 200, Koppers Building, Pittsburgh, Pennsylvania 15219. We’re an equal opportunity employer.
We're sending some of our representatives back to school

They won't be matriculating but they'll be studying ways to have some lengthy talks with you.

Their assignment is to search out graduates who have the talent and imagination to handle sophisticated assignments and the determination to do a job better than most.

The vitality of McDonnell is apparent by the headline-making strides it has taken in spacecraft, aircraft, electronics and automation.

The NASA Gemini has set new records in space, laying the groundwork for exploration of the moon and it is being readied for new assignments with the Air Force.

If these projects strike sparks with your imagination you're in good company... the top scientific and engineering talents in the nation.

For more information see your College Placement Office.
All applied scientific notions came as a direct result of man's needs. "Prehistoric man was the first creature to apply reason to the satisfaction of his everyday needs. Hence the history of science begins with the history of technology."

Man had his first ideas about geology, zoology, botany, medicine, astronomy, and mathematics in prehistoric times. When man first conceived of sowing seed for himself, the science of agriculture was born. Mathematics started when man saw the necessity of having to count and record the number of animals in his herds and the number of stone implements he possessed.

Theoretical science and science that didn't have a necessary use developed out of magic, superstition, and religion. Magicians and priests started exploiting natural causes to enable themselves to keep on fooling the common people. The store of knowledge acquired during prehistoric times was passed on by priests and wizards, and until the invention of writing, word of mouth was the only means for passing on knowledge.

During prehistoric times China and Rome must have had much the same type of development in applied science. The only difference would come as a result of the differences of geography and psychological make-up of the two different people. These two differences became the important reasons for the variation in the sciences of the two peoples, but early in the development of the Romans and Chinese their sciences must have been very similar.

PASSIVISTS CONTROL CHINA

As time went on, however, the differences caused by geography and the respective cultures began to make a very significant gap in the two sciences. The Chinese had long been isolated from the West, and their culture developed independently of all contemporary cultures. The Chinese very early in their history became influenced by two groups of thinkers. These groups had extensive influence on the development of Chinese culture and especially on the Chinese science. These two groups were the activists and the passivists. The activists believed that all worthwhile objectives could only be obtained by active effort. The passivists felt strongly that all active effort was a waste of time, and all worthwhile objectives were to be found in the mind. The activists found firm footing in most parts of the world, but they were never able to gain much prestige in China.

The cause of the passivists was greatly helped by two very important groups. The followers of Confucius and the Taoists influenced the majority of the Chinese people into the passivist camp. Confucius was the most important, and his ideas and beliefs are still considered and widely followed in the Far East today. Confucius believed wholly in the use of the mind for the greatest gain. He considered the essential virtues to be found in the rules of proper conduct.

The Taoists also had a very substantial influence on the Chinese people. Even though the Taoists did make some advances in the field of technology, they were still trying to strive for the simple life. The Taoists can be considered China's first philosophers and naturalists.

These two groups had an affect on life that was felt up until the middle of this century. The Chinese preferred, because of the thinking of these two groups, the "quiet, mannerly rule of tradition than the excitement of scientific growth." The Chinese were content for a long time to use the ancient economic methods of their ancestors. They didn't like labor saving devices or other things necessary for economic advances because the passivists had them believing that it was better for everyone to work and have some economic security rather than have technology and some people getting rich while others were poor. This tendency can be seen throughout the history of China and her scientific advances. (Continued on page 10)
ASTRONOMY THROUGH SUPERSTITION

The Chinese developed a very inventive culture. They made many important discoveries and inventions that are still important today. One of their biggest sciences was astronomy. Astronomy developed in China very much the same as it developed in other cultures. It was first used to predict the future, and then it gradually became an exact science. The first observations were to predict government fortunes. The astronomers were very important men as long as their predictions were fulfilled, but if their predictions failed their days of glory were over.

Through this study of the skies for the purpose of fortune-telling the Chinese developed a very good understanding of astronomy. They were able to accurately predict eclipses and the exact length of the cycles of the sun and moon. The Chinese developed a very accurate calendar based on the stars, and they had the courses of all the then known planets plotted. The Chinese astronomy became an exact science, but it did not develop any farther than any of the astronomies in other ancient civilizations.

COSMOLOGICAL THEORY

The Chinese were advanced enough in their scientific thinking and inductive reasoning to have several cosmological theories. The oldest of these had the stars in a fixed hemisphere revolving around a square earth. Another theory said that the Universe was like a round egg with the earth, the yolk; and the stars, the shell. They thought about what was beyond the stars and came to the conclusion that no one would ever know. These theories were like most of the other cosmological theories of early civilizations. The tools which the Chinese had were not good enough to enable them to see the truth about the Universe.

OTHER CHINESE TECHNOLOGICAL DISCOVERIES

The Chinese made some very notable discoveries in the field of technology. Some of their discoveries had an important effect on the world of that time. The Chinese came up with the first practical compass, and they discovered gunpowder. The invention of the compass came as a result of Chinese religion. The compass was first used to locate the ideal places for graves and temples. The Chinese developed the compass much further than this. The first European to travel to China took the idea of the compass back to Europe, and there it made its development that was to greatly help the science of navigation.

Gunpowder took much the same route as the compass. The Chinese first developed gunpowder as entertainment in rockets and fireworks. Later they did make primitive war rockets, but gunpowder never advanced beyond this point. The idea of gunpowder was spread from China by the Greeks and the Arabs. The Europeans once again developed a discovery of China into something that has had a terrific effect on the world.

CHINESE TECHNOLOGY LACKED DEVELOPMENT

China never did develop a highly scientific society for several reasons. China was isolated from the rest of the civilized world by great distances of nearly impassable terrain. She was not able to see how the other cultures were developing. She developed her own style of thinking. The passivists killed all the beginnings of deductive thinking which is so necessary for the development of science. China was basically an agricultural nation and had no need to develop a technology which is the first step to applied science. The combination of these made ancient China a very unique country. She was a country of inventors who never developed their inventions.

"It would be wrong to aver that the Chinese lacked a scientific and rational view. They considered no phenomenon to be transcendent or inexplicable; to them man and society were objects of knowledge. If they did produce mathematical arguments based on 'a priori' definitions, it merely shows that scientific ideas and methods are offspring of social climate and not merely of technical achievement." 73

ROME UNDER THE ETRUSCANS

The Roman civilization did not develop on its own. It was influenced by many outside sources. Rome first started to become a power while she was still under the rule and influence of the Etruscan kingdom. The Etruscans had no theoretical science at all. They were completely influenced by the power of religion. The Etruscans never made any distinction whatsoever between religious and everyday life, and they held fast to the idea that "the phenomenal world was the result of mystic forces from heaven or hell." 74 The Etruscans felt that everything happened by the will of God. This type of thinking was a tremendous hindrance to the development of science in the Etruscan culture.

Even though the Etruscans were very weak in science, they were very strong in many technological fields. The Etruscans gave Rome the background in the field which Rome is still admired and copied today—construction. The Etruscans were extremely strong in the basic ideas of construction and passed these ideas on to the Romans. Their influence developed Rome into one of the most technological civilizations of all time. The Romans took basic ideas of the Etruscans and combined these ideas with the designs of the Greeks. The combination of these two produced a technological culture that is only today being duplicated by our modern culture.

CONCRETE AIDS IN ROMAN CONSTRUCTION

The Romans became very skilled in masonry, architecture, bridge designing and building, and the building of aqueducts. The Romans excelled in these technological arts because of several factors. The main (Continued on Page 35)
THE ARMY CORPS OF ENGINEERS

offers you a challenging civilian career with:

1. The world's foremost and largest engineering organization in the construction field, pioneering new and advanced engineering practices and concepts.

2. An organization whose work embraces virtually the entire range of modern engineering in the construction field. Projects include research into basic science, engineering investigations and regional planning; design, construction, operations, maintenance, and management of hydro-electric power dams, flood control facilities, harbors and navigable streams; design, construction and maintenance of family housing, runways, hangars, roadways, hospitals, and nuclear power installations; and construction of intercontinental ballistic missile and space launching sites. In addition are the allied fields of cartography, geodesy, mathematics, and engineer intelligence.

3. An organization that recognizes each engineer as an individual, providing well-rounded career development programs with on-the-job training; courses at government expense in colleges, universities, and seminars as necessary to assure steady progression to top professional and managerial levels; encouragement and assistance in attaining professional registration and recognition; and an opportunity to win national and international awards.

4. An organization with offices and projects in nearly every one of the 50 States and in many foreign countries that encourages employees to further their development by accepting new and challenging assignments.

5. An organization which provides excellent rates of pay with liberal fringe benefits, including generous retirement annuity, complete health and life insurance coverage, paid vacation leave, military training leave with pay, generous sick leave; and special pay awards for outstanding performance and suggestions that improve operating efficiency.

If you're thinking this is all too good to be true, you're wrong! All of the above is available to you in a civilian engineer career with the U. S. Army Corps of Engineers. If you are interested, you can get further information from the Chief of Engineers, Department of the Army, Washington, D. C. 20315.

AN EQUAL OPPORTUNITY EMPLOYER

WRITE FOR AN ILLUSTRATED BROCHURE "YOUR CAREER."
THE NEED FOR LAW IN SPACE

For many centuries, man has looked to the skies above wondering what they might contain. As man's knowledge and technology advanced, he was able to probe deeper and deeper into space and answer some of his questions. The invention of the telescope brought distant objects closer and also brought the answer to what space might contain. The development of complicated formulas gave a solution to why things in space behave as they do. Yet, man's quest for knowledge led him even further. Men invented expensive, complex machines to carry instruments and even man himself into space, in order that man might learn more about space.

During the same period of time, in a totally unrelated manner, man was carrying out the evolution of another process. Having learned of his environment and his fellow humans, man began to develop a system of laws so that he could live in relative peace and harmony with his fellow man. Just as civilizations and knowledge change, man had to adjust his laws and codes to keep in step with the other changes. This leads us to one of the major questions of today: How will the laws of today be affected by the exploration of space and future space travel? Also, will it be necessary to draft a set of laws for space and space travel? The remainder of this article will attempt to answer these questions.

One of the major problems in drafting any set of rules or laws is the protection of the little man, in this case the smaller nation. The more affluent nations, mainly the United States and Russia, have no difficulty financing space exploration and space travel. However, the less affluent nations might be awhile joining the "space race." "Most nations agree on looking at space as the new frontier for exploration, and they expect to join the exploring someday themselves. To keep the early arrivals from writing their own frontier code, they are willing to set some basic rules." This points out that the small nation wishes to have the same rights as the large nation with respect to sovereignty, that is the right to claim planets or other outer space bodies as property belonging to their government. The difficulty here lies in the fact that the space exploring nations view sovereignty as the right of first come, first serve. However, the nations that are not in the class of first come feel that the rights of sovereignty should be regulated. Consequently, one can easily see the necessity for laws or legislation in this case.

One of the major problems in drafting any set of rules or laws is the protection of the little man, in this case the smaller nation. The more affluent nations, mainly the United States and Russia, have no difficulty financing space exploration and space travel. However, the less affluent nations might be awhile joining the "space race." "Most nations agree on looking at space as the new frontier for exploration, and they expect to join the exploring someday themselves. To keep the early arrivals from writing their own frontier code, they are willing to set some basic rules." This points out that the small nation wishes to have the same rights as the large nation with respect to sovereignty, that is the right to claim planets or other outer space bodies as property belonging to their government. The difficulty here lies in the fact that the space exploring nations view sovereignty as the right of first come, first serve. However, the nations that are not in the class of first come feel that the rights of sovereignty should be regulated. Consequently, one can easily see the necessity for laws or legislation in this case.

However, contrary to the above mentioned views on sovereignty is the view expressed by Andrew G. Haley in his book, SPACE LAW AND GOVERNMENT, is that "one of the basic doctrines to be established now upon which the law of space must be built is that any natural object in space is not subject to any earthly jurisdiction or sovereignty. No single nation may justifiably assert a paramount claim to any other heavenly body or portion of outer space." Thus, there is a need for laws to determine the extent of sovereignty or to determine sovereignty unlawful.

Next, imagine, at some date in the not so distant future, two space vehicles of two different nations on a space flight to the moon. Perhaps, while approaching the moon for landing, the two vehicles collide causing damage to the vehicles and injury to the passengers. "The potential harm is demonstrated by the inability even of manned aircraft, after many years of experience and experimentation, completely to curtail the incidence of air mishaps. It is unrealistic, therefore, to assume the missile and space industry is equipped to bring about perfection during its infancy." So this possibility is not beyond reality. The difficulty here in the determination of who is held liable. This example points the way toward the necessity of more legislation or laws. Since there is no precedent for a case of this nature, the law must determine if the nation, government, or the individual is liable. The question of liability would also encompass damage to property or injury to individuals due to a misfired space vehicle or damage caused by an emergency landing.

An even greater danger to human life than that mentioned above is
the possibility of a space vehicle bringing back to earth some unknown bacteria. Such bacteria could contaminate the entire world and endanger the life of every living thing. "The danger to man himself derives in part from the fact that he has evolved his specific defenses against terrestrial bacteria and might be therefore less capable of coping with exobiotic organisms. The obvious course is the establishment of international legal norms to control our interplanetary communications." Since the study of disease and bacteria is related to medicine, there is also a necessity for laws pertaining to the medicine of outer space.

VEHICLE REGULATION

Another problem caused by space exploration is the lack of any kind of regulation with respect to the space vehicle itself. "Today, the USA and USSR have sent dozens of vehicles onto the unpaved, unrestricted highways of outer space, and again a system of lawless anarchy is developing. Abuses in radio usage; unreported vehicles performing undisclosed functions at undisclosed distances from earth; unrecorded launchings; secret payloads; and many other space practices are completely unrestrained to date. Somewhere the nations of the earth must begin a common system of regulation, and licensing." Consequently, the necessity for laws pertaining to the regulation of space vehicles is present.

The formation of such laws would present still another problem. It would be very difficult to imagine an outer space police force boarding a space vehicle to search for illegal cargo. Consequently, space travel presents the problem of drafting laws, and these laws would present the very difficult problem of enforcement.

PRESENT ACTION

Since space travel is not of the future, but is in existence today, the necessity of laws for space is a problem of today and not of the future. Consequently, there are organizations in existence today with the aim of drafting laws to cope with the problems mentioned above, and many other which are too numerous to mention here. However, are these organizations acting fast enough to keep ahead of the race for space?

"After a long period of little progress in settling some of the technical and legal aspects of space, the jog jam has been broken." As with any activity pertaining to an international problem, legislation and laws are slow in coming. One of the most influential organizations on the regulation of space activity is the United Nations Committee on the Peaceful Use of Outer Space, which was established December 13, 1958. This organization has approved many resolutions, one of which was " . . . a resolution that was agreed on before hand by the U.S. and Russia. The resolution states that no nation can claim sovereignty over the moon and planets; that states are liable for damage their space vehicles cause; that an astronaut who makes an emergency landing will be promptly repatriated along with whatever remains of his space ship." However, "an international organization, in its most elemental form, is only one step removed from an international conference. It merely represents the decision of several governments to deal with a mutual problem together rather than separately. None of these organizations can enact legislation, levy taxes, raise armies, or enforce laws.

While an international organization can make decisions about the structure and functioning of its secretariat and can assess member governments for annual dues, any member government that has serious objections to these arrangements can always, as a last resort, withdraw." There are many other smaller organizations which face the same problem. The agreements drawn up by the international organizations are not binding on the individual governments. Consequently, in actuality, no laws, as such, can be drawn up by international organizations.

In conclusion, in order to keep ahead of the problems that can result from space travel (as mentioned first) the problems of legislation and enforcement must be solved first. With the rapid development of space technology, some international pit-falls must be bridged first and soon.
Caterpillar seeks uncommon quality...in people and products

Rubber research to find the answers

Caterpillar spends over $40 million a year on research. This effort extends into every area affecting machine reliability, life and performance. For example: rubber.

Caterpillar, in cooperation with major tire companies, constantly studies tire materials and design. Design approach is proved by evaluating research findings. The results of such continuous study are seen on wheeltYPE hauling units all over the world.

It's not enough for a Cat engineer to know that button-type tires give greatest flotation in general use. That bar-type tires are best for mud, and give better traction in off-road work. That rock-type tires offer greater resistance to abrasive wear and rock damage, in on-road and quarry work.

Caterpillar men must know why. They use testing facilities such as the Caterpillar Cold Room, where materials are tested at temperatures as low as —65°F. And nearly 10,000 acres of proving grounds, where equipment works out on every kind of terrain, under the rugged conditions it must later meet in actual application.

Many of the 1,600 people doing research at Caterpillar are engaged in such explorations into rubber. And lubricants, fuels and metals, to mention a few other areas.

If you're a man who likes to ask "Why?" we need you. If you can help us find the answers, we'll always need you—for Caterpillar horizons are limitless. There's always a new boundary of knowledge to push back, in many areas.

Contact your placement office. We'll be interviewing on your campus soon. Or write: College Recruiting, Personnel Development Dept.C, Caterpillar Tractor Co., Peoria, Ill.

CATERPILLAR
Caterpillar and Cat are Registered Trademarks of Caterpillar Tractor Co.
THE PROBLEM: HOW DO YOU TELL
THE SPACECRAFT TO MAKE A LEFT TURN ON ITS WAY TO MARS?

Sun signals might work fine (except maybe at night) but you can count on control when you program with the aid of a Motorola transponder and flight command subsystem.

Besides, if you were skimming along millions of miles in outer space, you'd more than likely feel better with some sophisticated electronics backing you up.

Motorola's sophisticated know-how stems from years of experience in all major areas of modern electronics—from outer space, inner space, and down to earth—to a company's computer as well as your own dashboard.

In fact—how about your shirt pocket? You might just find a Motorola radio there.

*Primary function is to receive command signals from Earth, and return critical in-flight communications information.
PHILOSOPHICAL JUSTIFICATION

The uncertainty relations enunciated by Heisenberg in 1927 form the basis for Quantum Theory. By introducing these into both the wave theory of matter and the matrix theory of matter, the basic difference between these two modern theories and the older Newtonian approach is realized, i.e., the quantization of certain characteristic quantities in a system, e.g., angular momentum and energy.

But before I discuss the mathematical formulation of the uncertainty relations, I believe that philosophical justification for these would be in order, since physics actually goes under the odious title of Natural Philosophy. It is the goal of Newtonian science to make all truths objective, i.e., to make all laws such that they are invariant, not only in all reference systems, but to all observers. To do this all laws must be made such that they contain no reference to any observer, and to make all experimental verification such that it includes no influence from the experimentalist. In systems which the founders of the old school of Natural Philosophy had to consider the problem of which I have spoken was present, but its influence was so small as to be quite easily excluded by simply overlooking it.

However, the situation on a scale in which the quantities are comparable to the influence of the experimentalist requires a more detailed analysis. No longer can the effects of the measuring devices on the system be ignored. To register a reading on any measuring device, the system must interact with it. The experimentalist must in turn interact with the measuring device.

The founders of Quantum Mechanics were not the first to come up with the realization that one could not separate the object and view it without any interaction with the viewer. Descartes founded his philosophy on a similar idea. The famous beginning point for Descartian philosophy is the statement, "cognito ergo sum;" I think, therefore I am. From this statement he elaborates to prove the existence of God on the usual lead of scholastic philosophy. But the crux of his argument came when he tried to prove the existence of the world by stating that God had given him a strong inclination to think that the world existed, and God would not purposefully deceive him. His concept of the connection of God-World-I has inherent in it the fact that one must cognize the existence of something before it exists for him. Therefore, this person must interact with the something before he registers its existence.

Laurels cannot, however, be placed upon the head of Descartes for such a prodigious discovery. In the same breath with which he uttered these concepts, he introduced the concepts of "res cogitans" and "res extensa." These became the basis for what is known as the Cartesian division of reality. Instead of the approach suggested to one by the unification in the first Descartian statements, science at that time divided the world, excluding any influence of the observer in it and tried to study phenomena on the basis of "res extensa." Likewise, the personal influence invoked in the concept of "res cogitans" was primarily channeled off into religion.

Although this division of the world did not present a difficulty to the physicists in the seventeenth, eighteenth and nineteenth centuries, it was still present. When the investigations finally pushed into the "grass roots" of natural philosophy, this difficulty was uncovered.

PARTICLES AND WAVE PACKETS

The ability for de Broglie to represent a particle as a wave packet threw serious doubts onto some of the old, well-established concepts of the treatment of masses by Newton. An example is the specification of the exact position of a particle if the particle can be represented by a wave packet. It can be found by simple analysis that the group velocity of the wave packet which represents the particle is just equal to the classical velocity which it has. This fact and the supposition that to effectively describe a particle the wave must have some connection with it point to the assumption that the wave packet and the particle are to an extent coincident, i.e., the particle is confined to the physical extent of the wave packet.

Now if the assumption is made that a wave packet, or particle, is moving down the x-axis with a group velocity \(v \), the wave packet will have a spread \(\Delta x \) in it, in which the particle will be confined. Now suppose the wave packet is made up of a superposition of sinusoids of varying wavelengths \(\Delta \lambda \). This wave packet will spread out as time passes and it can be seen that there will therefore be a different group veloc-
city associated with it. Calling group velocity uncertainty \(\Delta v \), from deBroglie's relation,
\[
\lambda = \frac{h}{p}
\]
the group velocity is given by,
\[
\lambda = \frac{h}{mv} \quad m\lambda = \frac{h}{v} \quad \text{or} \quad \lambda = \frac{h}{mv}
\]
Since there are wavelengths in the packet of wavelength \(\lambda + \Delta \lambda \), \(\Delta \lambda \) can be calculated as
\[
\Delta v = \frac{h}{m \lambda} \Delta \lambda \quad (a)
\]
Going back now to the \(\Delta x \) term, it can be seen that there should be
\[
\Delta x = \frac{n}{\lambda}
\]
crests or troughs in the wave packet's extent. Now outside the packet all the waves must cancel by interference. This can occur only if there exists some wavelengths which can crowd \(n+1 \) wavelengths into the given region. This gives the relation,
\[
\frac{\Delta x}{\lambda - \Delta \lambda} \geq n + 1
\]
From the preceding equations
\[
\Delta \lambda \geq \frac{2}{\Delta x} (\beta)
\]
can be derived.
Substitution of into (a) gives
\[
\Delta p \Delta x \geq \hbar
\]
This is a quite crude derivation of the uncertainty principle but it can be done with generalized coordinates equally as well. This method is obtained from the mathematical scheme of quantum theory.

If \(\bar{q} \) is defined as the average coordinate value for the position of a particle, the expression for is written as
\[
\bar{q} = \int q^i S(q^i) \, dq^i
\]
\(\Delta q \) can now be defined as
\[
(\Delta q)^2 = 2 \int \left(q^i - \bar{q} \right)^2 \left| S(q^i) \right|^2 \, dq^i
\]
where in each case \(s(q^i) \) is a probability amplitude.

Likewise, for the momentum of a particle
\[
\bar{p} = \int p^j T(p^j) \, dp^j
\]
where \(T(p^j) \) is the probability amplitude for the momentum. Also, the definition of \(\Delta p \) follows:
\[
(\Delta p)^2 = 2 \int \left(p^j - \bar{p} \right)^2 \left| T(p^j) \right|^2 \, dp^j
\]
The relationship between the two probabilities amplitudes can be written as
\[
T(p^j) = \int S(q^i) R(q^i, p^j) \, dq^i
\]
\(S(q^i) = \int T(p^j) R^+(q^i, p^j) \, dp^j \)
where \(R(q^i, p^j) \) is the matrix of the transformation from a Hilbert space where \(q \) is a diagonal matrix to a space where \(p \) is the diagonal matrix. From the matrix formulation of quantum mechanics there is the relation,
\[
\int p^j (q^i, q^j) R(q^i, p^j) \, dq^i = \int R(q^i, p^j) p^j (p^j, p^j) \, dp^j
\]
which is equivalent to:
\[
\frac{h}{2\pi i} \delta \frac{\partial}{\partial q^i} R(q^i, p^j) = \frac{p^j R(q^i, p^j)}{p^j R(q^i, p^j)}
\]
The solution to this equation gives
\[
R = ce^{\frac{2\pi i}{\hbar p^j q^i}}
\]
If we normalize this, \(c \) turns out to be equal to
\[
\frac{1}{\sqrt{\hbar}}
\]
To facilitate easier handling, a change in notation can be made as follows: \(x=q^j - q^i, \ y=p^j - p^i \)
\[
S(x) = S(q^i) e^{\frac{2\pi i}{\hbar x q^i}}
\]
\(t(y) = T(p^j) e^{\frac{2\pi i}{\hbar y p^i}} \)

The equations above for the position and momentum and their changes now become
\[
(\Delta q)^2 = 2 \int x^2 \left| S(x) \right|^2 \, dx
\]
\[
(\Delta p)^2 = 2 \int y^2 \left| t(y) \right|^2 \, dy
\]
Likewise the interconnection equations above become
\[
\int t(y) = \frac{1}{\sqrt{\hbar}} \int S(x) e^{\frac{2\pi i}{\hbar x y} dx}
\]
\[
S(x) = \frac{1}{\sqrt{\hbar}} \int t(y) e^{\frac{2\pi i}{\hbar x y} dy}
\]
The expression for \(\Delta p \) may be transformed into an expression containing \(\Delta q \) by
\[
\frac{1}{2} (\Delta p)^2 = \frac{1}{\sqrt{\hbar}} \int y^2 t^+(y) dy
\]
\[
S(x) e^{\frac{2\pi i}{\hbar x y} dx}
\]
\[
= \frac{1}{\sqrt{\hbar}} t^+(y) dy
\]
(Continued on page 26)
Past

The Company's first engine, the Wasp, took to the air on May 5, 1926. Within a year the Wasp set its first world record and went on to smash existing records and set standards for both land and seaplanes for years to come, carrying airframes and pilots higher, farther, and faster than they had ever gone before.

Present

In recent years, planes powered by Pratt & Whitney Aircraft have gone on to set new standards of performance in much the same way as the Wasp had done in the 1920's. The 727 and DC-9 are indicative of the new family of short-to-medium range jetliners which are powered by the highly successful JT8D turbofan. Examples of current military utilisations are the JS8-powered Mach 3 YF-12A which recently established four world aviation records and the advanced TF30-powered F-111 variable geometry fighter aircraft.
Take a look at the above chart; then a good long look at Pratt & Whitney Aircraft—where technical careers offer exciting growth, continuing challenge, and lasting stability—where engineers and scientists are recognized as the major reason for the Company's continued success.

Engineers and scientists at Pratt & Whitney Aircraft are today exploring the ever-broadening avenues of energy conversion for every environment...all opening up new avenues of exploration in every field of aerospace, marine and industrial power application. The technical staff working on these programs, backed by Management's determination to provide the best and most advanced facilities and scientific apparatus, has already given the Company a firm foothold in the current land, sea, air and space programs so vital to our country's future. The list of achievements amassed by our technical staff is a veritable list of firsts in the development of compact power plants; dating back to the first Wasp engine which lifted the United States to a position of world leadership in aviation. These engineering and scientific achievements have enabled the Company to obtain its current position of leadership in fields such as gas turbines, liquid hydrogen technology and fuel cells.

Should you join us, you'll be assigned early responsibility. You'll find the spread of Pratt & Whitney Aircraft's programs requires virtually every technical talent. You'll find opportunities for professional growth further enhanced by our Corporation-financed Graduate Education Program. Your degree can be a BS, MS or PhD in: MECHANICAL • AERONAUTICAL • ELECTRICAL • CHEMICAL ENGINEERING • PHYSICS • CHEMISTRY • METALLURGY • CERAMICS • MATHEMATICS • ENGINEERING SCIENCE OR APPLIED MECHANICS.

For further information concerning a career with Pratt & Whitney Aircraft, consult your college placement officer—or write Mr. William L. Stoner, Engineering Department, Pratt & Whitney Aircraft, East Hartford, Connecticut 06108.
A real lifesaver for E.E.

Help me put a real man in the driver's seat.

Quit carving and just show me.

This is Skinny-Dipping?
For a steady diet?

Isn't the language the same everywhere?

How much will it take to start your engine?

Selling is a matter of the right combination.
Quantum Electronics
Part I
by Dr. H. A. Sabbagh

Part II in this three part series deals with quantization of the electromagnetic and acoustical field.

1. Introduction
The early work in quantum mechanics dealt with particle phenomena. Everything would have been fine except that people (and later on we also will be people in this sense) had to calculate interaction phenomena between particles and fields. This meant that in order to treat the complete system of particles and fields consistently one had to quantize the fields.

In this part of the series we will show how the electromagnetic and acoustic fields may be cast into a quantum mechanical framework. We will use the results in our next paper in order to demonstrate how light and sound may interact to perform parametric amplification and/or frequency conversion. At this point a review of part I may be in order.

2. Quantizing the Electromagnetic Field
We start out classically by imagining the E-M field to be contained within a cavity of arbitrary shape with perfectly conducting boundary walls. The interior of the cavity contains material of dielectric constant \(\varepsilon \) and magnetic permeability \(\mu \). The field vectors \(\vec{E}(r,t), \vec{H}(r,t) \) satisfy Maxwell's equations and the appropriate boundary conditions: (2-1)

\[
\begin{align*}
(a) & \quad \nabla \times \vec{E}(r,t) = -\mu \frac{\partial \vec{H}(r,t)}{\partial t} \\
(b) & \quad \nabla \times \vec{H}(r,t) = \varepsilon \frac{\partial \vec{E}(r,t)}{\partial t} \\
(c) & \quad \text{on } S, \text{ the boundary of the cavity.}
\end{align*}
\]

From (2-1) we obtain the wave equations (2-2)

\[
\begin{align*}
(a) & \quad \nabla \times \nabla \times \vec{E}(r,t) = \frac{k^2}{\mu} \vec{E}(r,t) \\
(b) & \quad \nabla \times \nabla \times \vec{H}(r,t) = \frac{k^2}{\varepsilon} \vec{H}(r,t) \\
(c) & \quad \frac{d^2 p(t)}{dt^2} = -\frac{k^2}{\mu \varepsilon} p(t) = -w^2 p(t) \\
(d) & \quad \frac{d^2 q(t)}{dt^2} = -\frac{k^2}{\mu \varepsilon} q(t) = -w^2 q(t)
\end{align*}
\]

Equations (2-3) (a) and (b) constitute an eigenvalue problem for the vectors \(\vec{E}(r) \) and \(\vec{H}(r) \). \(k^2 \) is the eigenvalue parameter.

Because \(\vec{E} \) and \(\vec{H} \) are subjected to the boundary conditions (2-1) (c), it follows that there are a discrete set of eigenvalues, \(k_n^2, n=1,2,3,\ldots \) and associated eigenvector-functions \(\vec{E}_n(r) \), \(\vec{H}_n(r) \). It can be shown, also, that any function of \(r, t \) can be expanded in a series of these eigenfunctions, or modes. The expansion coefficients are the \(p \) and \(q \) functions which also form a discrete set.

We can, and therefore will, assume that the \(\vec{E}_n \) and \(\vec{H}_n \) are orthonormalized in the sense that (2-4) (a), (b)

\[
\begin{align*}
&\int_V \vec{E}_1(\vec{r}) \cdot \vec{E}_1(\vec{r}) dV = \int_V \vec{H}_1(\vec{r}) \cdot \vec{H}_1(\vec{r}) dV = 1, \\
&\int_V \vec{E}_1(\vec{r}) \cdot \vec{E}_m(\vec{r}) dV = 0, \\
&\int_V \vec{H}_1(\vec{r}) \cdot \vec{H}_m(\vec{r}) dV = 0 \\
&\text{if } l \neq m,
\end{align*}
\]

where \(V \) is the volume of the cavity.

The expansion of \(\vec{E}(r,t) \) and \(\vec{H}(r,t) \) is (2-5) (a) and (b)

\[
\begin{align*}
&\vec{E}(r,t) = \sum_{l=1}^{\infty} \frac{1}{\sqrt{\mu \varepsilon}} p_l(t) \vec{E}_l(\vec{r}) \\
&\vec{H}(r,t) = \sum_{l=1}^{\infty} \frac{1}{\sqrt{\mu \varepsilon}} q_l(t) \vec{H}_l(\vec{r})
\end{align*}
\]

\(w_n = \sqrt{\frac{k}{\mu \varepsilon}} \) is the frequency of vibration of the \(n \)-th mode. Equation (2-5) is a generalized form of Fourier series in which the independent variables are \(r, t \).

The Hamiltonian, \(H \), for the E-M field is simply the net stored energy.

\[
H_{E-M} = \frac{\mu}{2} \int_V \vec{E}(\vec{r},t) \cdot \vec{H}(\vec{r},t) dV + \varepsilon \int_V \vec{E}(\vec{r},t) \cdot \vec{H}(\vec{r},t) dV
\]

which, when (2-5) and (2-4) are used, becomes (2-7)

\[
H_{E-M} = \sum_{l=1}^{\infty} \left[\frac{1}{2} \int \frac{1}{\mu} p_l^2(t) + \frac{1}{\varepsilon} q_l^2(t) \right]
\]
How do you test a product that's six miles long? Or reduce the size of something almost too small to see?

Tough jobs...typical of the engineering work being done day after day at Western Electric, the manufacturing and supply unit of the Bell System. And you can have a hand in solving problems like these.

The six-mile product was a complete telephone cable. How to test it before it was buried underground — before modifications, if necessary, became time-consuming and expensive? The solution was to design an “artificial cable” — a model a few inches in length whose electrical characteristics matched those of the full-size cable. In this way, engineers learned which type of cable would do the job best, how many repeater stations would be needed, and where repeater equipment should be installed. Artificial cable lets us anticipate and solve many other problems...before they ever arise.

The small product was a thin film circuit — an electrical path only thousandths of the thickness of a human hair. How do you design equipment to make certain parts thinner, to increase resistance, without altering other parts? WE engineers used capillary action to bring liquid only to the desired areas — and electrolysis brought about the precise reduction. It’s quick in the telling, but it took sharp minds to arrive at this solution.

Western Electric needs more sharp minds. Whatever your field is, there are plenty of opportunities for interesting work, and for rapid advancement. If you set the highest standards for yourself and seek a solid future — we want to talk to you! Be sure to arrange a personal interview when the Bell System recruiting team visits your campus. And for detailed information on the opportunities that await you, get your copy of the Western Electric Booklet “Opportunities in Engineering and Science” from your Placement Officer. Or write: College Relations Staff Manager, Western Electric Co., Room 2510A, 222 Broadway, New York, N. Y. 10038. An equal opportunity employer.
QUANTUM
(Continued from Page 22)
Observe that for each \(1\) the term
\[
\frac{1}{2} p_1^2(t) + \frac{w_1^2}{2} a_1^2(t)
\]
corresponds to the energy of a harmonic oscillator (or an L-C tank circuit) whose frequency is \(w\). We have shown, therefore, the formal equivalence of the cavity E-M field to a system of harmonic oscillators, each oscillating at a different frequency.

For each \(1\) we introduce two new variables \(\hat{a}_1(t)\), \(\hat{a}^+_1(t)\) (everything is still classical, no operators yet): (2-8) (a) and (b)
\[
q_1(t) = \left(\frac{\hbar}{2w_1}\right)^{1/2} \left[a_1^+(t) + a_1(t) \right]
\]
\[
p_1(t) = i \left(\frac{\hbar}{2w_1}\right)^{1/2} \left[a_1^+(t) - a_1(t) \right]
\]
A little bit of algebra puts (2-7) into the form (2-9)
\[
\hat{H}_{E-M} = \sum_{l=1}^{\infty} \frac{\hbar w_l}{2} (a_l^+ a_l + a_l a_l^+) \]
Now we are ready to quantize the E-M field. In order to do this we associate quantum mechanical operators \(\hat{a}_1^+, \hat{a}_1\) with the classical variables \(a_1^+, a_1\), respectively.
\(\hat{a}_1^+, \hat{a}_1\) are adjoints of each other and are taken to satisfy the commutation relations (2-10) (a) (b)
\[
[A_1^+, A_m^+] = 0 \quad \text{for any } 1, m
\]
\[
[A_1^+, A_m^+] = \left\{ \begin{array}{ll} 0 & \text{if } 1 \neq m \\ 1 & \text{if } 1 = m \end{array} \right. \quad \text{(operator)}
\]
\[
[A_1^+, A_m^+] = 0 \quad \text{if } 1 \neq m \quad \text{(identity operator)}
\]
The Hamilton operator corresponding to (2-9) becomes (2-11)
\[
\hat{H}_{E-M} = \sum_{l=1}^{\infty} \frac{\hbar w_l}{2} (a_1^+ a_1 + a_1 a_1^+)
\]
Because
\[
A_1^+ A_1 - A_1 A_1^+ = 1
\]
(2-11) can be brought into the form (2-12)
\[
\hat{H}_{E-M} = \sum_{l=1}^{\infty} \frac{\hbar w_l}{2} (2 A_1^+ A_1 + 1)
\]
\[
= \sum_{l=1}^{\infty} \hbar w_l (a_1^+ a_1 + a_1 a_1^+ + 1)
\]
where, in the second equality, we have suppressed the operator term \(\hbar w_1 I/2\) because it represents only reference level for energy measurements.

The equations of motion for the operator \(A_1^+, A_1\) in the Heisenberg representation are (2-13)
\[
\frac{d A_1}{dt} = \frac{1}{\hbar} (A_1 H - HA_1)
\]
\[
= \frac{1}{\hbar} (A_1 \sum_{n=1}^{\infty} w_n a_n^+ a_n + a_1) - \sum_{n=1}^{\infty} w_n a_n^+ a_n^+ a_1
\]
\[
= i w_1 A_1
\]
\[
\frac{d A_1^+}{dt} = \frac{1}{\hbar} (A_1^+ H - HA_1^+)
\]
where (2-10) was used.
The solutions of (2-13) are (2-14) (a) and (b)
\[
(\alpha) \quad A_1 = A_1^0 e^{-i w_1 t}
\]
\[
(\beta) \quad A_1^+ = A_1^0 e^{i w_1 t}
\]
where \(A_1^0, A_1^0\) are “arbitrary constant” operators, independent of time and satisfying (2-10). The term \(e^{\pm i w_1 t}\) is, of course, a complex parameter depending of time and not an operator.
From (2-14) we have
\[
A_1^+ A_1 = A_1^0 A_1^0
\]
which shows that even though \(A_1^0, A_1^0\) individually depend on time as in (2-14), their product does not. If we substitute this result into (2-12) we get (2-15)
\[
\hat{H}_{E-M} = \sum_{l=1}^{\infty} \hbar w_l (a_1^+ a_1 + a_1 a_1^+) + 1
\]
\[
\Rightarrow <A_1^0 A_1^0 | X >\]
which has an interesting interpretation if \(x\) is an (abstract) eigenvector of the operator \(A_1^0 A_1^0\).
We proceed now to investigate the eigenvalue problem (2-16)
\[
A_1 A_1 X = \lambda_k X
\]
where \(x_k\) is the \(k\)-th eigenvector and \(\lambda_k\) is the corresponding eigenvalue.
First we prove that \(\lambda_k > 0\), \(k = 0, 1, 2, \ldots\) From (2-16) we get (2-17)
\[
(A_1 A_1 X) X = \lambda_k X
\]
and, by using the definition of the adjoint operator, (2-18)
\[
(A_1 A_1 X) X = \lambda_k X
\]
Because the norms of the vectors \(A_1 X\), \(x_k\) are non-negative for each \(k\), we conclude that \(\lambda_k > 0\).
Next we will show that if \(x_k\) is an eigenvector of \(A_1 A_1\), then so also is \(A_1 X\).
The result follows because
\[
A_1 A_1 X = \lambda_k X
\]
where we have assumed that \(A_1 A_1 X = \lambda_k X\) and used (2-10) (b). Hence, \(A_1 X\) is an eigenvector of the operator \(A_1 A_1\) and its eigenvalue is \(\lambda_k + 1\). By an identical argument we can show that
\[
A_1 X = \lambda_k X
\]
with eigenvalue \(\lambda - 1\). \(A_1^+\) is called the raising operator because it raised an eigenvalue by unity, while

(Continued on Page 30)
ACCELERATED DEFENSE PROJECTS OPEN NEW OPPORTUNITIES FOR YOUNG ENGINEERS AT ALLISON

Young graduate engineers will find broad new opportunities created by Allison's expanding capabilities in the defense area. Allison long has been recognized as a leader in design, development and production of advanced aircraft power systems, as well as power transmissions for military tracklaying vehicles. As the energy conversion division of General Motors, Allison also is making significant contributions in advanced aerospace and nuclear technology.

Now, with the assignment of responsibility to operate the Army's Cleveland Tank-Automotive Plant, Allison is taking on a new dimension to its capability in the design, development and production of complex military weapons systems.

Thus, Allison represents a versatile opportunity for engineers in the application of advanced technologies to aerospace propulsion systems, and armored military vehicle systems—including one of their principal components, power transmissions.

In addition, an expanding volume of work in commercial fields gives a solid base to these urgently needed military programs.

Chances are, the opportunity of your choice awaits you at Allison. Talk to our representative when he visits your campus. Or, write for our brochure describing opportunities in the creative environment at Allison. Send your request to: Mr. R. C. Martz, Director of Personnel, Allison Division, General Motors Corporation, Indianapolis, Indiana.
The formula which can be used is
$$\frac{dS}{dx} = \frac{1}{\sqrt{2\pi i}} \int e^{\frac{x}{y}} dy$$
$$= \frac{1}{\sqrt{2\pi i}} \int \left(S(x) + \frac{dS}{dx} \right) dy$$

The third section will be devoted to a discussion of the entrance into each of the two main quantum theories of Heisenberg's Uncertainty Principle. As was stated before, this principle forms the basis of Quantum Theory.

In matrix theory the Heisenberg Principle takes the form of the commutation laws. Before discussing further the actual statement of these laws I will define the term commutation. If r and s are two matrices they are said to commute if the order in which they are multiplied together does not affect the answer of the multiplication. In mathematical symbols, commutation occurs when,
$$[r, s] = rs - sr = 0$$
In general, commutation does not occur in matrices. There are a few cases in which it does, but these are exceptions rather than the rule.

In the early development of quantum matrix theory, Dirac enunciated the generalized commutation rules for conjugate quantities like position and momentum. He found that the rth solution matrix q_r commutes with the non-conjugate solution matrices q and p but it does not commute with the conjugate momentum matrix p_r. Then the commutation rules read

(a) $q_r q_s - q_s q_r = 0$
(b) $p_r p_s - p_s p_r = 0$
(c) $q_r p_s - q_s p_r = 0$

where 1 represents the unit matrix. These rules hold for all conjugate quantities, such as energy and time, not just the momentum and position terms. This can be seen to be a statement of the Uncertainty Principle.

In the Wave Theory of Schrodinger, where the particles themselves are represented as wave packets, the uncertainty relations come about when one tries to define the classical quantities of position and momentum for the packet. To do this the packet somehow must be connected with the particle whose characteristics are to be represented. This is done, as in the earlier section, by assuming that the particle is situated at some point inside the confines of the wave packet. Then this gives an uncertainty in the position of the particle Δx which was shown in the previous section to be equal to
$$\Delta x = \frac{\lambda^2}{\Delta \lambda}$$

From a different source the momentum was shown to have an uncertainty of
$$\Delta \lambda \Delta p_x \geq \hbar$$

which is the statement of the uncertainty principle for wave mechanics.

RESULTS AND CONFLICTS

It would be a gross understate-
ment to infer that the effect of the enunciation of the uncertainty principle by Heisenberg on philosophical development was tremendous. It was catastrophic! As was stated before, natural science took as its basis the ability to perform the Cartesian division. Science attacked the problem of explaining the world under the impression that the "res extensa" concept was valid in every case. They tried to separate themselves from the world and view the occurrences objectively, interacting in no way with the system.

Heisenberg has pointed out one of the basic difficulties involved in the Cartesian division of the world. He points to the fact that because of the definition of "res extensa" the animals would have to be categorized there, i.e., their actions and the processes of their lives can be explained.
by application of the laws of physics and chemistry. This implies that they are nothing more than ultra-complex "machines" of a sort. Since parallelism between experiences of the mind and body, the mind must also follow these laws of physics and chemistry. This brings up the question of "free will."10

As was pointed out before, however, the Cartesian division did seem to be adequate for the explanation of natural phenomena in Newton's time. The reason for this can easily be seen. If, in the statement of the uncertainty principle, we allow the value of \(h \), Planck's quantum of action to shrink to zero, we find that the quantum mechanical predictions are exactly the same as those of Newtonian science at that point. The same effect can be realized if the quantities involved in the uncertainty relation are many orders of magnitude larger than Planck's constant. This was the entire domain in which classical physics was operating so it was quite easy to overlook such a small uncertainty.

Riding along with this concept of uncertainty is the concept of indeterminacy. Newtonian science is an exact science, or vigorously deterministic, because any quantity can be calculated or, in theory, measured accurately to as many decimal places as desired. The uncertainty principle, however, refutes this argument by disallowing the simultaneous measurement to arbitrary accuracy of conjugated quantities. This brought on the concept of probability, and with it a storm of protests from very eminent scientists. Albert Einstein led this protest, expressing his objection by stating "God does not play dice."11 However, this probability is a direct consequence of the uncertainty principle. So, if one accepts the principle then one must also accept the probability derived directly from it.

One possible explanation for the Einstein objection would be that Einstein is confused as to what the uncertainty principle applies. It may be true that "God does not play dice". However, this concept refers to the actual state of a system under scouting. On the other hand, the uncertainty principle refers to our knowledge of the state of the system. It can be taken for granted that these are two distinct entities which become coincident (if the term may be loosely applied here) only when an actual measurement is performed and an observation is made. Therefore, "God" may do anything and the uncertainty principle will apply to our knowledge of the system.

Many interesting philosophical problems are uncovered in the discussion of such a principle. Some of the most flashing are the concept of reality, direct measurements and indirect measurements, incompleteness of definitions in our classical language for use in explanations of reality, etc. However, the discussion of these would be involved and would pertain very little to the direct consequences of the uncertainty principle, although with little trouble they can be shown to have their roots in this relation.
Men on the move

at Bethlehem Steel

Have you heard about all the opportunities for engineering and other technical graduates at Bethlehem Steel? You’ll find a great deal more information in our booklet, “Careers with Bethlehem Steel and the Loop Course.” You can obtain a copy at your Placement Office, or drop a postcard to Manager of Personnel, Bethlehem Steel Corporation, Bethlehem, Pa. 18016.

An equal opportunity employer in the Plans for Progress Program
SPORTS

Un-illustrated

BASKETBALL TEAM'S NEW YORK TRIP

by JOHN MUTCHNER

On Monday, December 13, the Rose Poly basketball team left campus at 5:30 P.M. en route to New York for three basketball games.

On Monday evening we drove to just north of Columbus, O. where we stayed all night. On Tuesday we drove up to Buffalo, N.Y. and went over to see Niagara Falls. From there we continued on to Batavia, N.Y. on the New York Expressway where we stayed all night and worked out at the local YMCA. On Wednesday we drove on to Troy, New York where we played Rensselaer Poly that evening. We lost 81 to 75 and did not play badly considering we had not practiced, other than a little the night before, for seven days and had driven approximately 1000 miles to get there. The next day we drove down to New York City and stayed at the U.S. Marine Academy in Kingspoint. We were scheduled originally to play the Merchant Marine Academy but they had to cancel due to a conference tournament commitment. They did, however, honor their original guarantee. We certainly enjoyed having the opportunity to see a military academy in operation. We played New York Tech that evening on the Merchant Marine Academy floor. We defeated New York Tech by 20 points and played what was by far the best game we had played all year. They were an exceptionally big team with a 6-8" center and 6-6" and 6-5" forwards. Their record at the time we played them was four wins and one loss.

On Friday, after having moved to a Manhattan hotel, we went back over to Brooklyn and played Brooklyn Poly. Even though we outscored Brooklyn Poly by four field goals we managed to lose to them by four points.

We spent the rest of the weekend generally seeing the city. Almost all of the boys took the downtown Manhattan tour, visited the United Nations building and the Statue of Liberty, went to the top of the Empire State Building, took a ride on the Staten Island Ferry, and generally had an all-around good time just wandering around Times Square. More than half the team saw the musical "Hello Dolly" Saturday evening.

On Sunday morning we left New York and drove down to Philadelphia where we stopped off at Independence Hall and saw the Liberty Bell and other historical sights around that area. From there we came on home via the Pennsylvania Turnpike and arrived back in Terre Haute on Tuesday evening.

It was a wonderful trip and while we won only one ball game the other two games were close and were lost to fine schools. The boys had a wonderful time and saw a lot of things which many of them had not had an opportunity to see before. It is my sincere desire on trips of this type that we take advantage of every possible educational opportunity.
A is called the lowering operator because it lowers an eigenvalue by unity.

Next let \(x_0 \) be the eigenvector corresponding to the eigenvalue \(\lambda_0 = 0 \) (this is the smallest possible eigenvalue of \(A \)). We are going to show that \(A \cdot x_0 = 0 \). The proof uses (2-18), because if \(\lambda_0 = 0 \) is substituted into the right-hand side then

\[
\langle A \cdot x_0 | A \cdot x_0 \rangle = 0
\]

But the only vector whose norm is zero is 0. Thus

\[
A \cdot x_0 = 0
\]

The \(k \)-th eigenvector is given by

\[
| x_k \rangle = | X_k \rangle\]

where all the k's are zero or a positive integer. Because of this last fact we say that \(X_k = X_1 \cdots X_k \) represents a state of the E-M field in which there are \(k_1 \) photons in mode 1, \(k_2 \) in mode 2, etc. It is easy to verify that eigenvalue of \(H_{\text{E-M}} \) corresponding to

\[
X_k \rangle = \sum_{k=1}^{\infty} \hbar \omega_k | k \rangle
\]

Because the eigenstates can always be taken to the orthonormal, we have, upon substitution of (2-19) into (2-15), (2-20)

\[
\langle H_{\text{E-M}} | x_k \rangle = \sum_{k=1}^{\infty} \hbar \omega_k^{(2)k} | k \rangle
\]

The dot over a quantity stands for the time derivative of that quantity.

Proceeding as before, we define new variables (still classical),

\[
b_k^+, b_k^- \]

by: (3-4) (a) and (b)

\[
\begin{align*}
| X_k \rangle &= (\hbar \omega_k / 2p)(1)^{-1} b_k^+ b_k^- | \rangle
\end{align*}
\]

where \(\omega_k = (T \rho T) k \) is the frequency of vibration of the \(k \)-th acoustic mode.

Equation (3-4) when substituted into (3-3) yields (3-5)

\[
\begin{align*}
q(x,t) &= \frac{1}{\sqrt{2\pi}} \sum_{k=-\infty}^{\infty} Q_k(t) e^{i k x}
\end{align*}
\]

When (3-2) is substituted into (3-1), we obtain (3-3)

\[
H_{\text{acoustic}} = \sum_{k=-\infty}^{\infty} \left(\frac{\hbar \omega_k}{2} b_k^+ b_k^- \right)
\]

The dot over a quantity stands for the time derivative of that quantity.

Proceeding as before, we define new variables (still classical),

\[
b_k^+, b_k^- \]

by: (3-4) (a) and (b)

\[
\begin{align*}
Q_k &= (\hbar \omega_k / 2p)(1)^{-1} b_k^+ b_k^- | \rangle
\end{align*}
\]

We quantize the acoustic field at this point by assigning quantum mechanical operators \(B_k \) and \(B_k^+ \) to their respective classical variables. As before, these operators satisfy (3-6)

\[
[H_{\text{acoustic}}, B_k^+ B_k] = 1, \quad k = 0, 1, 2, \ldots
\]

Hence, the Hamiltonian operator for the acoustic fields is (after dropping the energy reference level operator as before) (3-7)

\[
H_{\text{acoustic}} = \sum_{k=-\infty}^{\infty} \hbar \omega_k B_k^+ B_k
\]

The formal resemblance of (3-7) and (2-12) is obvious. Everything said about the E-M field from (2-12) holds for the acoustic field. The quantized acoustic waves are called phonons. When the E-M field interacts with the acoustic field we think, picturesquely, in terms of photon-phonon collisions or interactions. This will be the subject of our next paper.
Twenty-five hundred dollars in cash awards to engineering and metallurgy students.

The Forging Industry Educational and Research Foundation announces a $2,500 award competition for the best paper on the subject "The Principal Technical Development Needed by the Forging Industry in the Next Decade." First prize, $1,000, plus eight other awards totaling $1,500.

Competition is open to senior and graduate engineering and metallurgy students. Length of the paper, 3,000 to 3,500 words. Deadline for completed paper: June 1, 1966.

Winner and his faculty advisor will also receive an all-expense-paid trip to Colorado Springs, Colorado, where the award presentation will be made at the 1966 meeting of the Foundation.

For full details fill in and mail the coupon or write:

The President
Forging Industry
Educational and Research
Foundation
55 Public Square • Cleveland, Ohio

Name ____________________________
Address ____________________________
School ____________________________
Faculty Advisor ____________________________

For your immediate information, a new 16-millimeter sound and color film, *TO BE FORGED*, describes the forging process, design considerations and production methods ... the applications and advantages of forged parts. Length 18 minutes. Made available by Forging Industry Association, this film is on loan free from Modern Talking Picture Service, Inc. Check your telephone directory for the office nearest you.
SHOOTING IN THE DARK
edited by FRANK NIGH

Beware all followers of Buck Rogers, Flash Gordon, and Dick Tracy, scientific ingenuity is advancing on Diet Smith. None of the serials to date have suggested a television camera system that functions with no apparent illumination. Thus Perkin-Elmer may be one step ahead of the comics.

Scanning by rapidly moving narrow lines of red laser light, subjects even in complete darkness appear on the TV monitor as sharp and clear as in daylight. Unlike conventional TV cameras, this system uses no image orthicon tube; instead, it uses a laser light transmitter and a reflected-energy receiver. For protection, the intensity of the laser beam is well below the level which might endanger the vision of human subjects.

In the present system, the light beam from a continuous wave laser is deflected by a pair of rotating mirrors so as to completely scan the subject in a series of continuous lines once every sixtieth of a second. The energy reflected from the target is sensed by a photomultiplier and used to intensity modulate the cathode ray tube in a television monitor whose electron beam is scanning in synchronism with the transmitted laser beam.

The model shown in the picture is a helium-neon unit with approximately 15 milliwatts output in a one milliradian beam at 6,328 angstroms. The beam from this laser is reflected off a folding mirror to the line scanner. This scanner consists of a 16-sided 1.5" diameter polygon prism mounted integral with the scanner motor rotor. This motor drives the line scanner at approximately 60,000 rpm or 16,000 scans per second. Following the line scanner the beam strikes the 24-sided frame scanner running at 150 rpm or 60 frames per second. The beam reflected off the frame scanner continues on toward the target. In combination, the line and frame scanners cause the target to be scanned at rates similar to commercial television (15,750 lines/sec; 60 frames/sec). The one milliradian beam results in resolution similar to that of commercial television.

A portion of the laser energy reflected from the target is detected by photomultiplier with the photocathode. A spectral filter located in front of the photocathode rejects 99% of the background light. Following the photomultiplier, a preamplifier raises the signal to a level sufficient to drive the video amplifier of a commercial television set. The deflector circuits on the television monitor are

(Continued on Page 34)
To Continue To Learn And Grow...

... is a basic management philosophy at Delco Radio Division, General Motors Corporation. Since its inception in 1936, Delco Radio has continually expanded and improved its managerial skills, research facilities, and scientific and engineering team.

At Delco Radio, the college graduate is encouraged to maintain and broaden his knowledge and skills through continued education. Toward this purpose, Delco maintains a Tuition Refund Program. Designed to fit the individual, the plan makes it possible for an eligible employee to be reimbursed for tuition costs of spare time courses studied at the university or college level. Both Indiana University and Purdue University offer educational programs in Kokomo. In-plant graduate training programs are maintained through the off-campus facilities of Purdue University and available to employees through the popular Tuition Refund Program.

College graduates will find exciting and challenging programs in the development of germanium and silicon devices, ferrites, solid state diffusion, creative packaging of semiconductor products, development of laboratory equipment, reliability techniques, and applications and manufacturing engineering.

If your interests and qualifications lie in any of these areas, you're invited to write for our brochure detailing the opportunities to share in forging the future of electronics with this outstanding Delco-GM team. Watch for Delco interview dates on your campus, or write to Mr. C. D. Longshore, Dept. 135A, Delco Radio Division, General Motors Corporation, Kokomo, Indiana.

An equal opportunity employer

Delco Radio Division of General Motors
Kokomo, Indiana
synchronized with the scanning laser beam by means of photocells placed in the scanning beams.

Performance and range capability of all forms of this system could be tremendously enhanced by utilizing the new argon green-beam lasers, which provide output powers of several watts and other wavelengths also could be employed.

One potential use is that of an all-weather landing aid for aircraft. The device could be used as a direct vision video "radar" effective from an altitude of several hundred feet. Runways or helicopter landing spots can be readily marked off with reflective paints or tapes. These would give energy returns to the laser receiver with several hundred times the intensity of the surrounding terrain. Such an aid could be especially valuable for remote military outposts jungle or other dense areas. For instance, helicopter landings could be quickly indicated by ground crews using portable markers.

Laser TV has potential as a means of covert surveillance for law enforcement agencies. The laser beam's fast scan speed and low intensity combine to make it virtually invisible. With a properly tailored system it would be possible to observe persons at distances in excess of a mile.

In the field of science, a number of applications such as studies of the nocturnal habits of animals may be feasible. Versions of this type of system also could have possibilities as a lunar or planetary landing aid for spacecraft.

The possibility that an imaginative reader may find more marvels in scientific achievements than in the adventures of his favorite good-guy shows that applications are quickly following up unprecedented ideas. Maybe one day the sky will no longer be the limit and gravity will no longer be the restraining force on man, but together they will be man's guideline and source of energy.
one of these factors was the excellence in building materials. The Romans made some very important discoveries in construction. They made and used the first good quality concrete. This concrete enabled the Romans to do extensive building of big structures. Without concrete the famous arches and vaults of the Romans would have been almost impossible to build. On a whole, Roman building had its success based on the fine quality of the concrete used and the strong, technical concepts of building that had been passed on by the Etruscans.

GREEK CONTRIBUTION

In fields other than technology, Rome was influenced by the culture of Greece. Rome took all its ideas of theoretical science from the Greeks and never did develop their own basis for theoretical science. The Romans were so much influenced by the Greeks that details about Roman science would be a carbon copy of the scientific achievements of Greece. Rome, however, when she took these Greek ideas lost something in the translation. The Romans lost all the beauty of the Greek thinkers and didn't appreciate the full value of what this science had to say to them. The Romans had "conquered the Greek world, but they had already lost the most precious part of its heritage."1

The Greek philosophy never quite overcame the Etruscan mixture of science and religion. The superstitions of the Etruscans were constantly present during the entire time of the Roman civilization. The combination of the Greek thought and the Etruscan superstition seemed to stop all advances in science that Rome might have been able to make. The Romans at no time distinguished themselves in mathematics and mechanical sciences. They borrowed all their ideas from the Greeks and all their skills from the Etruscans. The Romans did not despise pure science, but they were content with the knowledge of the Greeks and the Etruscans. There was no such thing as Roman science. Rome just took over the different sciences and used them to make themselves rich and conquer lands.

COMPARISON

The Chinese and Roman sciences were as different as night and day. The Chinese did not have an exceptionally scientific culture, but they did not remain content to let other civilizations develop science for them as the Romans allowed the Greeks to do. The main reasons for this basic difference in the two civilizations are their geographical locations and the psychological make-up of their people. The Chinese were isolated from the lands to the west and developed a culture different from any other in the world. China was tremendously influenced by this factor and the teachings of the pessivistic thinkers. The Romans came into power with science and culture already developed for them. Rome "made no advance in science and no improvements in industry, but she enriched the world with a commerce moving over secure seas, and a network of enduring roads that became the arteries of a lusty life."2

From these two civilizations the conclusion can be drawn that man is influenced by his environment and what type of outside influences are present. The Chinese were basically agricultural and were isolated. Their development was different from that of all other cultures in the world. The Romans were influenced tremendously from the outside by the Greeks and the Etruscans, and they were a highly commercialized nation. Rome became a highly technical society while China became agriculturally oriented.

DATE
RATER

Stolen by Chuck Risch, Jr. M.E.

From the Minnesota ‘Technolog’, who got it from the Georgia Tech ‘Rambler’ by way of the Iowa ‘Transit’, comes this unique Date Rater. This has been circulating in the college magazine humor pool for some time. Noting its practical applications we felt it should be brought to the attention of the students at Rose. This chart will solve the age-old problem of finding a good date. Just ask her for the required measurements (if she’s not willing to give them to you, bring her in to the Technic office and we’ll be glad to measure her for you) and plug into the equations.

Note that this chart also rates dates for their working ability, a real asset after you decide to get married and enter graduate school.

(1) Compute these values: NR, NP, NB, using the table of average values below to make sure you are in the ball park.

NP =
Ring Size X Head Diameter (in.)
X No. Teeth
Shoe Size X Wrist (in.) X
Grip (lbs.) X No. Chins
No. Chins X 33,000
Weight—80-180 lbs.

Head Diameter—6-8 in.
Height—58-72 in.
Ring Size—5-8

Waist—20-42 in.
No. of Teeth—20-35
Hips—26-42 in.
No. of Chins—1 (single)
Bust—26-42 in. 2 (double)
Wrist—4-8 in.
Hand Grip—5-14 lbs.
Shoe Size—4-9

(2) Compute date’s torque number by multiplying height (inches) by weight (pounds). Enter chart at upper left, at “Torque Number.”

(3) Move horizontally across graph until you reach the calculated NR ratio. Mark this spot on the graph; you will use it later.

(4) Move down from this spot, going to the NP ratio you have calculated. NP is the PARTY GIRL rating, so move horizontally to the RIGHT and read her PARTY GIRL rating.

(5) You’re not done yet. From the same NR ratio (where you marked the graph) move down until you reach the calculated NB ratio. Move horizontally to the LEFT and read your date’s WORKING GIRL rating.

BEL-AIR BOWL and LOUNGE
C-6069
Open Bowling
Monday thru Friday
at
8:30
All Day Saturday & Sunday
Billiard Tables
Your
“kreatamorfess”
grows at Du Pont

Everything else does.

What’s "kreatamorfess"?

It’s a name we cooked up for a technical man’s ability to come up with new ideas, to grow fast in fast-growing projects.

As a graduating technical man*, you should look into the kind of career Du Pont offers.

We’re entering many fields, other than chemistry, that are new to us: instrumentation, metals, heat transfer and building products, to name a few. Your chance to get in on the ground floor has never been better.

You grow with the project to which you’re assigned.

You’re encouraged to apply your individual approach to problems... to ideas for new products, new applications, new markets.

You’re encouraged to assert your “kreatamorfess.”

Learn more about Du Pont. Send this coupon for a subscription to the Du Pont magazine.

E. I. du Pont de Nemours & Co. (Inc.)
2531 Nemours Building
Wilmington, Delaware 19898
Please send me the Du Pont magazine.

Name ______________________________________
Class __________________ Major __________ Degree expected ______
College ______________________________________
My address ______________________________________
City__________ State ______ Zip Code ______

*This year, our recruiters will be at your school looking mainly for: Ch.E., M.E., I.E., E.E., C.E., chemistry, physics, and mathematics graduates. Du Pont is an equal opportunity employer.

Better Things for Better Living... through Chemistry
A PREVIEW OF YOUR CAREER AT GENERAL ELECTRIC

Achieving Thrust for Mach 3

When the North American Aviation XB-70 established a milestone by achieving Mach 3 flight, it was powered by six General Electric J93 jet engines. That flight was the high point of two decades of G-E leadership in jet power that began when America’s first jet plane was flown in 1942. In addition to the 30,000-pound thrust J93’s, the XB-70 carries a unique, 240-kva electrical system that supplies all on-board power needs—designed by G-E engineers. The challenge of advanced flight propulsion promises even more opportunity at G.E. GETF39 engines will help the new USAF C-5A fly more payload than any other aircraft in the world; the Mach 3 GE4/J5 is designed to deliver 50,000-pound thrust for a U.S. Supersonic Transport (SST). General Electric’s involvement in jet power since the beginning of propellerless flight has made us one of the world’s leading suppliers of these prime movers. This is typical of the fast-paced technical challenge you’ll find in any of G.E.’s 120 decentralized product operations. To define your career interest at General Electric, talk with your placement officer, or write us now. Section 699-16, Schenectady, N.Y. 12305. An Equal Opportunity Employer.

Progress Is Our Most Important Product

GENERAL ELECTRIC