
Rose-Hulman Institute of Technology
Rose-Hulman Scholar

Mathematical Sciences Technical Reports (MSTR) Mathematics

7-31-2009

Discrete Logarithm over Composite Moduli
Marcus L. Mace
Abilene Christian University

Follow this and additional works at: http://scholar.rose-hulman.edu/math_mstr
Part of the Algebra Commons, and the Discrete Mathematics and Combinatorics Commons

This Article is brought to you for free and open access by the Mathematics at Rose-Hulman Scholar. It has been accepted for inclusion in Mathematical
Sciences Technical Reports (MSTR) by an authorized administrator of Rose-Hulman Scholar. For more information, please contact bernier@rose-
hulman.edu.

Recommended Citation
Mace, Marcus L., "Discrete Logarithm over Composite Moduli" (2009). Mathematical Sciences Technical Reports (MSTR). Paper 17.
http://scholar.rose-hulman.edu/math_mstr/17

http://scholar.rose-hulman.edu?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/math_mstr?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/math?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/math_mstr?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/math_mstr/17?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bernier@rose-hulman.edu
mailto:bernier@rose-hulman.edu

Discrete Logarithm over Composite Moduli

Marcus L. Mace

Adviser: Joshua B. Holden

Mathematical Sciences Technical Report Series
MSTR 09-07

July 31, 2009

Department of Mathematics
Rose-Hulman Institute of Technology

http://www.rose-hulman.edu/math

Fax (812)-877-8333 Phone (812)-877-8193

Discrete Logarithm over Composite Moduli

Marcus L. Mace
Abilene Christian University

Faculty Advisor: Joshua Holden
Rose-Hulman Institute of Technology

Mathematics Research Experience for Undergraduates (REU)

Summer 2009

DISCRETE LOGARITHM OVER COMPOSITE MODULI

MARCUS L. MACE

Abstract. In an age of digital information, security is of utmost
importance. Many encryption schemes, such as the Diffie-Hellman
Key Agreement and RSA Cryptosystem, use a function which maps
x to y by

y ≡ gx (mod n)

for a given n and a generator (or primitive root) g. The inverse
of this function - trying to find x from y - is called the discrete
logarithm problem. In most cases, n is a prime number. In some
cases, however, n may be a composite number. In particular, we
will look at when n = pb for a prime p. We will show different
techniques of obtaining graphs of this mapping and then we look
to see whether the above mapping for the described n looks like a
random map, and, if it does not, observe what we can that would
help in solving the discrete logarithm problem.

1. Introduction

If we consider a function that maps x to y by

(1) y ≡ gx (mod n)

where n ∈ ℕ and g is a primitive root of n, then it is easy to find
y given x, g, and n by exponentiating and doing modular arithmetic
concurrently. However, if you only know y, g, and n, then finding x
turns out to be a very hard problem from a computational perspective.
This is known as the discrete logarithm problem. The discrete logarithm
problem applies most famously to modern day cryptography. Three
common examples of encryption using the discrete log problem are
the Pohlig-Hellman Cipher, the RSA Cryptosystem, and the Diffie-
Hellman Key Agreement. For futher information about these three,
refer to pages 253-258 and 260-262 in [8].

Date: July 27, 2009.
2000 Mathematics Subject Classification. 11Y99.
Key words and phrases. Discrete Logarithm Problem, Composite Moduli, Func-

tional Graphs.
1

2 M.L. MACE

1.1. Pohlig-Hellman Cipher. The Pohlig-Hellman Cipher is the sim-
plest case of the discrete log problem. If Alice wants to send Bob a
message M , then they both agree on a large prime, p. They choose a
positive integer e less than p−1 and find the multiplicative inverse of e
modulo p− 1, that is, an integer d which satisfies ed ≡ 1 (mod p− 1).
Then Alice sends Bob the cipher text C ≡ M e (mod p). To decipher,
Bob calculates Cd (mod p), which gives him the message M . This
works because of Fermat’s Little Theorem which states that for any
prime p and integer a such that gcd(a, p) = 1, then ap−1 ≡ 1 (mod p).
Thus, Cd ≡ (M e)d ≡M1+k(p−1) ≡M ⋅Mk(p−1) ≡M (mod p), recover-
ing the original message M .

1.2. RSA Cryptosystem. Ronald Rivest, Adi Shamir and Leonard
Adleman proposed a public-key encryption scheme in 1978 aptly named
RSA. Alice and Bob agree on two large primes p and q and calculate
n = pq to be their modulus. Alice sends Bob a message by looking
up Bob’s public keys, e and n. If M is the message she wishes to
encrypt, she calculates C ≡ M e (mod n), which becomes the cipher
text. After Bob receives this message, he then uses his secret key d,
the multiplicative inverse of e modulo �(n), to decrypt the message by
finding M ≡ Cd (mod n). The most obvious way to break this scheme
would be to find d, Bob’s secret key. Unfortunately, this is equivalent
to the problem of factoring n since the prime factorization of n can
be used to find e and d, and vice versa. This problem of factoring,
which is thought to be a hard problem in itself, adds to the security of
the cryptosystem. RSA can be considered the composite analog of the
Pohlig-Hellman Cipher.

1.3. Diffie-Hellman Key Agreement. If Alice and Bob want to
communicate with each other secretly, then, in a private key system,
they need to agree on a key in which to encrypt their messages. They
first choose a public g and p. Suppose Alice chooses her secret key to
be � and Bob chooses his to be �. Then Alice and Bob exchange the
following:

a ≡ g� (mod p)←→ b ≡ g� (mod p)

After receiving these messages, Alice and Bob exponentiate with re-
spect to their secret keys again, thus resulting in both parties having

g�� (mod p)

because of the commutativity of multiplication in the integers. This
value will be the secret key Alice and Bob use to encrypt messages back
and forth between each other. Even if an eavesdropper, Eve, were to
intercept a, b, g, and p, it is thought to be difficult to find g�� because

DISCRETE LOGARITHM OVER COMPOSITE MODULI 3

of what is known as the Diffie-Hellman Problem. It can be shown that
if the DHP can be solved, then so can the DLP, but not vice versa.

Although the discrete logarithm problem is a hard problem, we will
try to exploit it by studying the structure of the discrete exponentiation
function given in Equation (1) through a discrete exponentiation func-
tional graph. A functional graph is a directed graph with an associated
function, f(x). In our particular case, the function is Equation (1),
making it a discrete exponentiation functional graph. The nodes of the
graph represent the elements of the function’s domain and codomain.
For each x, there is a directed edge (an arrow) from the node repre-
senting x to the node representing f(x). The out-degree of a node a
is the number of elements b such that f(a) = b. Since we study only
functional graphs, the out-degree of each node is exactly 1. The in-
degree of a node b is defined as the number of elements a such that
b = f(a). A node with an in-degree greater than 0 is an image node,
and those with in-degree equal to 0 are terminal nodes. If every node
of a functional graph has in-degree 0 or m, then we say that the graph
is an m-ary graph. A few more definitions concerning the structure of
a functional graph are needed for the remainder of this paper.

If we let f : S → S be the transition function, then the edges in
the functional graph can be expressed as the ordered pair ⟨x, f(x)⟩ for
x, f(x) ∈ S. By applying the pigeonhole principle and noting that the
cardinality of S is finite, say n, we can say that by starting at any ar-
bitrary point u0 and following the sequence u1 = f(u0), u2 = f(u1), ...,
there must be a ui = uj after at most n iterations. Suppose ui occurs
before uj in the sequence of nodes. In this case, the tail length is the
number of iterations from u0 to ui, and the tail nodes are those nodes
from u0 to ui−1. The cycle length is the number of iterations from ui to
uj, and the cyclic nodes are the nodes from ui to uj−1. In more natural

Figure 1. Example Ternary Graph. The image nodes
are those with arrowheads attached, and tail nodes are
those with only arrowtails protruding.

4 M.L. MACE

graphical terms, the cycle length is the number of edges (or equiva-
lently nodes) involved in the directed path from ui to itself, whereas
the tail length is the number of edges from u0 to ui. A component is the
maximal set of connected nodes. Since each node has an out-degree of
exactly one, each cycle with the trees grafted onto its nodes will form
a connected component.

The question becomes, if you were to choose, from all functional
graphs, a sample of discrete exponentiation functional graphs and a
random sample of arbitrary functional graphs, what similarities would
there be? If DEFGs share many characteristics with random functional
graphs of the same indegrees, and there are no discernible differences,
then it would be safe to assume that DEFGs behave as if a random
function were being imposed. This implies that a hacker like Eve would
be unable to use any sort of attack that guesses at the structure of the
functional graph, because there would be no defining characteristics on
which to rely.

For our study, we will consider the composite case where n = pb for
some odd prime p and integer b > 1. The reason for this is because this
value of n contains a primitive root, necessary for the general encryp-
tion methods we have encountered.1 A few encryption methods using
the discrete logarithm problem with a composite modulus include Mu-
rakami and Kasahara’s ID-based scheme [5], Girault’s ID-based scheme
[4], and Pointcheval’s identity authentication system [7].

We will start by looking at previous work using functional graphs to
try exploiting the discrete logarithm problem, then observe what we
can about the composite case before comparing DEFGs with composite
moduli to random functional graphs.

2. Previous Work

2.1. Dan Cloutier 2005. In 2005, Dan Cloutier began work on his
senior thesis [3] under the guidance of Dr. Joshua Holden. He looked
at permutations (1-ary or unary functional graphs) and binary (2-ary)
functional graphs using the function found in (1) with a prime modulus.
He developed generating functions, combinatorial objects, to find theo-
retical statistics for the aspects of a random graph structure produced
by the discrete exponentiating function. The structure characteristics
looked at by Cloutier were average number of components, average
number of cyclic nodes, average number of image nodes, average cycle

1In [5], Murakami and Kasahara use a general composite modulus, but instead
of a primitive root, they use what they call the maximal generating element. In our
case, the primitive root is the maximal generating element.

DISCRETE LOGARITHM OVER COMPOSITE MODULI 5

length as seen from a node, average tail length as seen from a node,
and the maximum cycle length. After writing a C++ program to calcu-
late all possible unary and binary graphs produced from a given prime
modulus p, he was able to compare the statistics from the generated
graphs and the random graphs. What he found was, if n was prime,
then the structure of the discrete exponentiation functional graph was
very similar to that of a random unary or binary graph.

2.2. Max Brugger and Christina Frederick 2007. In 2007, Max
Brugger and Christina Frederick [2] continued Cloutier’s work, but on
ternary (3-ary) functional graphs with a prime modulus p. The aspects
they studied were average number of components, average number of
cyclic nodes, and average cycle length as seen from a node. In his senior
thesis, Brugger [1] looked at average tail length as seen from a node in
addition to those from his work with Frederick. They developed more
complex generating functions to find statistics for a random graph of
size p−1, since 0 and p are not included in the mapping. The equations
for these generating functions, plus the one Brugger developed, can be
found in Theorem 2.1.

Theorem 2.1. The exponential generating functions for the total num-
ber of components, total number of cyclic nodes, total cycle length as
seen from a node, and total tail length as seen from a node, in a random
ternary functional graph of size n are

(2) Number of Components =

[
d

du
euc(x)

]
u=1

=
1

2
x3 +

13

24
x6 +

83

144
x9 +

355

576
x12 +O(x15)

(3) Number of Cyclic Nodes =

[
d

du
e
ln 1

1− 1
2uxt(x)2

]
u=1

=
1

2
x3 +

2

3
x6 +

29

36
x9 +

17

18
x12 +O(x15)

(4) Cycle Length =

[
d2

dudw
ec(x) ln

1

1− 1
2
uwxt(wx)2

]
u=1,w=1

=
3

2
x3 +

13

4
x6 +

43

8
x9 +

191

24
x12 +O(x15)

6 M.L. MACE

(5) Tail Length =

[
d

du

xut(x)

(1− 1
2
xt(x)2)2(1− 1

2
uxt(x)2)

]
u=1

where

t(x) =
xt(x)3

3!
+ x and c(x) = ln

(
1

1− 1
2
xt(x)2

)
.

From [2], we know that the total number of graphs for ternary func-
tional graphs can be found from g(x) = ec(x), where c(x) comes from
Theorem 2.1. Brugger and Frederick then show that to find the aver-
ages, you must use a “normalizer.” Thus the equations for the desired
statistics are

average number of components =
total number of components

total number of graphs

average number of cyclic nodes =
total number of cyclic nodes

total number of graphs

average cycle length =
total cycle length

number of nodes ⋅ total number of graphs

average tail length =
total tail length

number of nodes ⋅ total number of graphs

Using Cloutier’s code, Brugger and Frederick also found that the
structure of the ternary graphs produced from Equation (1) was much
like that of a random ternary graph.

3. Composite Moduli Case

We now have to decide how to map this function given by Equation
(1) with a modulus of n = pb. If we follow what Cloutier and Brugger
and Frederick did, we would map

{1, 2, 3, . . . , n− 1} −→ Un

x 7−→ gx (mod n)

Unfortunately, this does not produce an m-ary mapping as we hoped
for, as seen in Figure 2. Without an m-ary mapping, the work by

DISCRETE LOGARITHM OVER COMPOSITE MODULI 7

Figure 2. x 7−→ 2x (mod 9)

Brugger and Frederick is of no use to us. However, if we consider the
mapping of

(6) {1, 2, 3, . . . , lcm(n, �(n))} −→ Un

x 7−→ gx (mod n)

we can force the mapping to be m-ary. In fact, Theorem (3.1) shows
that we can actually force it to be a p-ary mapping.

Theorem 3.1. Consider the mapping

{1, 2, 3, . . . , lcm(n, �(n))} −→ Un

x 7−→ gx (mod n).

If g is a primitive root modulo n = pb for an odd prime p, then the
resulting graph is p-ary.

Proof. Let lcm(n, �(n)) = m�(n). Note that since g is a primitive
root, it has order �(n), so the first �(n) domain elements are mapped
to distinct elements. To see that if x maps to a certain element, say y,
then x+k�(n), for some positive integer k, maps to y as well, note that
by Euler’s Theorem, if gcd(x, n) = 1, then x�(n) ≡ 1 (mod n). Thus,

gx+k�(n) = gxgk�(n) ≡ gx(g�(n))k ≡ gx (mod n)

Say that the first �(n) elements, denoted by x1, x2, . . ., x�(n), map
to y1, y2, . . ., y�(n), respectively. Then the following shows the rest of
the mapping.

x1 7→ y1 x1 + �(n) 7→ y1 ⋅ ⋅ ⋅ x1 + (m− 1)�(n) 7→ y1
x2 7→ y2 x2 + �(n) 7→ y2 ⋅ ⋅ ⋅ x2 + (m− 1)�(n) 7→ y2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

x�(n) 7→ y�(n) x�(n) + �(n) 7→ y�(n) ⋅ ⋅ ⋅ x�(n) + (m− 1)�(n) 7→ y�(n)

8 M.L. MACE

One can easily verify that all m�(n) domain elements are accounted
for. Thus, each yi has m input values, meaning the graph is m-ary. To
see that m = p, we know that

m =
lcm(n, �(n))

�(n)

or, equivalently

m =
lcm(pb, �(pb))

�(pb)
.

Then,

m =
lcm(pb, �(pb))

�(pb)
=

pb⋅�(pb)
gcd(pb,�(pb))

�(pb)

=
pb

gcd(pb, pb−1(p− 1))
=

pb

pb−1
= p.

□

Taking the example of mapping x 7−→ 2x (mod 9) from Figure 2, we
can now transform it into a ternary graph as shown in Figure 3. We
will refer to the mapping given by Equation (6) as the LCM method
for the rest of the paper.

Using the LCM method, we can also find the number of m-ary func-
tional graphs all possible generators g provide. The values of g and
the modulus n will determine the general structure of the graph. The
relationship between these numbers given in Theorem 3.2 will give us
the in-degree of each node.

Figure 3. x 7−→ 2x (mod 9), now a ternary graph

DISCRETE LOGARITHM OVER COMPOSITE MODULI 9

Theorem 3.2. Let n be a composite integer of the form n = pb or
n = 2pb for an odd prime p and integer b > 1. Let m be any positive
integer that divides �(n) and let lcm(n, �(n)) = k�(n). Then there are

�(�(n)
m

) km-ary functional graphs produced by the mappings

x 7→ gx (mod n)

for g, between 1 and n, and n. Furthermore, if r is any primitive root
of n, and g ≡ ra (mod n), then the values of g that produce a km-ary
graph are precisely those for which gcd(a, �(n)) = m.

Proof. Let r be a primitive root of n. Choose a and t so that g ≡ ra

(mod n) and y ≡ rt (mod n) for g and y in Equation (1). In terms of
r this becomes

rax ≡ rt (mod n)

Since r is a primitive root, the solutions for this equation are the same
as for

ax ≡ t (mod �(n))

Let m = gcd(a, �(n)). By Theorem 2.17 in [6], there are m solutions
between 1 and �(n) if m∣t, and no solutions if m ∤ t. Thus there will be
km solutions between 1 and k�(n) = lcm(n, �(n)). Since each solution
is one directed edge to y, the in-degree of y is either km or 0, depending
on whether m∣t. The values of a which satisfy m = gcd(a, �(n)) are
precisely the same as those which satisfy

1 = gcd
(a
m
,
�(n)

m

)
.

There are �(�(n)
m

) values of a
m

less than �(n)
m

and relatively prime to
�(n)
m

. Thus there are �(�(n)
m

) km-ary functional graphs. □

Since we do not have any generating functions with in-degree greater
than 3, we look for km = 3 because we are only able to compare ternary
graph structures. This provides only two cases because k and m are
both integers.
i) k = 1, m = 3

If this is true, then lcm(n, �(n)) = �(n), which implies that n∣�(n).
This cannot be true by the definition of � unless n = �(n). But
this implies that n = 1, which is not an option based on our
definition of n = pb. The following must be true then.

ii) k = 3, m = 1
This case implies that lcm(n, �(n)) = 3�(n). By some elementary

10 M.L. MACE

number theory we find that

3�(n) = 3�(pb) = lcm(pb, �(pb)) =
pb�(pb)

gcd(pb, �(pb))

=
pb�(pb)

pb−1
= p�(pb)⇒ 3 = p.

Thus our prime p must be 3. This is also useful because now �(n)
m

is guaranteed to be an integer since m = 1, giving us a nonzero
number of ternary graphs.

There is one major problem with the LCM method. It is that, even
though we can form a p-ary graph, this does us no good unless we can
find generating functions for p-ary graphs where p > 3. Restricting
ourselves to one value of p will not allow us to fully explore the structure
of the functional maps produced with composite moduli. If we find that
developing these generating functions is too difficult, then we will need
to find another way of comparing our functional graphs to random
graphs.

4. Statistics

Having shown that we must choose powers of 3 in order to generate
ternary graphs using the LCM method, we next have to choose which
powers of 3 we will use to compare the theoretical findings against the
observed results. Using Maple, I generated the powers of 3 up to 350.
If the lcm(3b, �(3b)) was greater than 1000, but less than 150,000, then
that power of 3 was included in the statistics that follow. The lower
bound is based on the fact that the C++ code used for the observed
values did not operate properly for values less than 1000. The upper
bound was obtained due to the computation time needed by Maple to
calculate the coefficient of the generating functions for a given value.
Numbers greater than 100,000 required nearly 5 hours to evaluate one
statistic. There were 5 values for 3b in which the lcm(3b, �(3b)) was
greater than 1,000 and less than 100,000: 36, 37, 38, 39, and 310.

We will compare the structures of the graphs using average number
of terminal nodes, average number of components, average number of
cyclic nodes, average cycle length as seen from a node, and average tail
length as seen from a node.

4.1. Theoretical Results. Using the same generating functions used
by Max Brugger in [1] and discussed in Section 2, I was able to collect
the theoretical values for the five statistics. I used Maple to transform

DISCRETE LOGARITHM OVER COMPOSITE MODULI 11

the exponential generating functions into differential equations. Then
I converted the differential equations to recursive equations that were
used to calculate the coefficients for the ternary functional graphs asso-
ciated with our values of the lcm(3b, �(3b)). These theoretical statistics
give us the expected number of whichever aspect of the graph structure
we are interested in.

4.2. Observed Results. In order to obtain the observed results, we
used a version of Daniel Cloutier’s C++ code, modified by Nathan
Lindle and later by Andrew Hoffman. This version of the code worked
only with prime moduli, but few changes were needed to make it com-
patible with composites of the form n = pb. The only major change was
editing the search for a primitive root function. The C++ performed
the same as in Cloutier’s and Brugger/Frederick’s cases by finding the
smallest primitive root of a given modulus n and then generating all
primitive roots from that primitive root. Using these primitive roots,
all possible m-ary graphs are found in order to collect the statistics.
The program would keep track of all the needed statistics, then report
them back to the user to compare against the theoretical data.

4.3. Analysis of Data. Tables 1, 2, 3, 4, and 5 show the comparisons
between the theoretical values obtained from the ternary generating
functions and the observed values from the modified C++ program.
The average number of terminal nodes came out to be the exact same
as expected, which is due to the fact that the value of the number of
terminal nodes can actually be proven. Cloutier proves the following
for the prime case in [3], but it can easily be modified to our composite
case.

Theorem 4.1. Let c = lcm(n, �(n)), the number of nodes of the graph.
The number of image nodes in an m-ary graph is c

m
. Equivalently, the

number of terminal nodes is c− c
m
.

In our case, m is 3, meaning two-thirds of our nodes should be ter-
minal nodes. This claim is backed up by our results. In all of the
other statistics, the observed and theoretical differ by quite a bit. The
average number of components is greater from our C++ program than
the expected value given by the generating functions by almost double.
However, the average cycle length as seen from a node and the average
tail length as seen from a node are both less than the expected values,
considerably different from what the generating functions predicted.
The average number of cyclic nodes begins higher than expected, but
around n = 38, it lags behind the theoretical value.

12 M.L. MACE

Table 1. Average Number of Terminal Nodes

n lcm(n, �(n)) No. of Ternary Graphs Theoretical Values Observed Values Rel. Error

36 1458 162 972 972 0.000
37 4374 486 2916 2916 0.000
38 13122 1458 8748 8748 0.000
39 39366 4374 26244 26244 0.000
310 118098 13122 78732 78732 0.000

Table 2. Average Number of Components

n lcm(n, �(n)) No. of Ternary Graphs Theoretical Values Observed Values Rel. Error

36 1458 162 3.93873 8.77778 1.22858
37 4374 486 4.48378 9.65432 1.15317
38 13122 1458 5.03221 10.64198 1.11477
39 39366 4374 5.58042 11.77229 1.10957
310 118098 13122 6.12910 12.73891 1.07843

Table 3. Average Number of Cyclic Nodes

n lcm(n, �(n)) No. of Ternary Graphs Theoretical Values Observed Values Rel. Error

36 1458 162 33.17953 52.59259 0.58509
37 4374 486 57.94893 74.62963 0.28785
38 13122 1458 100.85403 101.74897 0.00887
39 39366 4374 175.16974 147.48423 0.15805
310 118098 13122 303.88942 207.83905 0.31607

Table 4. Average Cycle Length (as seen from a node)

n lcm(n, �(n)) No. of Ternary Graphs Theoretical Values Observed Values Rel. Error

36 1458 162 17.08977 5.07654 0.70295
37 4374 486 29.47446 7.28542 0.75282
38 13122 1458 50.92701 9.40146 0.81539
39 39366 4374 88.08487 13.19326 0.85022
310 118098 13122 152.44471 18.31171 0.87987

Although each statistic by itself is worrying, the fact that the average
number of components is higher than expected, but the average cycle
length as seen from a node and the average tail length as seen from a
node are both less than the expected values makes sense. If there are

DISCRETE LOGARITHM OVER COMPOSITE MODULI 13

Table 5. Average Tail Length (as seen from a node)

n lcm(n, �(n)) No. of Ternary Graphs Theoretical Values Observed Values Rel. Error

36 1458 162 11.39318 5.30983 0.53395
37 4374 486 19.64964 7.61851 0.61228
38 13122 1458 33.95134 10.97598 0.67671
39 39366 4374 58.82325 14.92264 0.74631
310 118098 13122 101.62980 20.84103 0.79493

more components that the nodes must be spread throughout, it is not
unreasonable that the average cycle and tail length would both be less
since there are fewer nodes in each component to form a cycle or a tail.

5. Conclusion

While our statistics leave us in a large predicament of what to make
of our results, there are at least three possible explanations for our
findings. One is that the C++ code in which the observed results were
obtained has a programming bug. This is possible, but not likely given
that our terminal nodes came out exactly the way they should have.
Second is that we have found some evidence that the discrete exponen-
tiation graph is unlike a random map when the modulus is a composite
of the form n = pb. This would be a starting point to finding a way
to exploit the discrete logarithm problem. The last possibility is that
the theoretical generating functions we are using are wrong. Since we
are mapping (1) in an unconventional manner, it is possible that the
generating functions used for the prime case are not applicable to our
case. If this is the case, new generating functions must be developed
to account for the changes.

Composite cases to consider for future work are n = 2pb for an odd
prime p and integer b > 1, and n = pq for odd primes p and q. The
case where n = 2pb is the only other composite form which contains a
primitive root. The only question is to see if an m-ary mapping can be
naturally generated, and if not, be forced into one using a method sim-
ilar to the LCM method. The n = pq case looks at moduli in the form
of the RSA numbers, used in the RSA Cryptosystem. These numbers
do not have primitive roots, so it must be determined how to work
with them in order to obtain an m-ary graph, or to use an entirely new
approach. A possible starting point would be to look at the maximal
generating element described in [5].

Another area of future work would be to work on developing a

14 M.L. MACE

method for finding the associated generating function for a given m-
ary graph for m > 3. As the in-degree for these generating functions
increases, the more complex they become, making it nearly infeasible
to be derived by hand. In order to see if the LCM method is a plausible
agent in helping exploit the structure of these discrete exponentiation
graphs, it needs to be tested for primes other than 3. Developing these
higher order generating functions would help in verifying the results
given by the LCM method.

References

[1] Brugger, Max. Exploring the Discrete Logarithm with Random Ternary
Graphs. Senior thesis, Oregon State University, 2008.

[2] Brugger, Max and Christina Frederick. The Discrete Logarithm Problem and
Ternary Functional Graphs. Rose-Hulman Institute of Technology Undergrad-
uate Mathematics Journal 8 (2), 2007.

[3] Cloutier, Dan. Mapping the discrete logarithm. Undergraduate thesis, Rose-
Hulman Institute of Technology, 2005.

[4] Girault, Marc. An identity-based identification scheme based on discrete log-
arithms modulo a composite number. Lecture Notes in Computer Science 73,
1991. 481-486.

[5] Kasahara, Masao, and Yasuyuki Murakami. A Discrete Logarithm Problem
over Composite Modulus. Electronics and Comm. in Japan 76 (12), 1993. 37-
46.

[6] Niven, Ivan, Herbert S. Zuckerman, Hugh L. Montgomery. An Introduction to
the Theory of Numbers. John Wiley and Sons, Inc, 1991.

[7] Pointcheval, David. The Composite Discrete Logarithm and Secure Authenti-
cation. Lecture Notes in Computer Science 1751, 2000. 113-128.

[8] Rosen, Kenneth H. Elementary Number Theory and its Applications, 3rd Edi-
tion. Addison Wesley, 1993.

E-mail address: mlm05h@acu.edu

	Rose-Hulman Institute of Technology
	Rose-Hulman Scholar
	7-31-2009

	Discrete Logarithm over Composite Moduli
	Marcus L. Mace
	Recommended Citation

	09-07cover.pdf
	09-07direct.pdf

