
Rose-Hulman Institute of Technology
Rose-Hulman Scholar
Graduate Theses - Electrical and Computer
Engineering Graduate Theses

8-2018

Accuracy Improvement of Pedestrian Trajectory
Prediction by an Extended Kalman Filter and
Pedestrian Behavior Classification
Jiayu Guo
Rose-Hulman Institute of Technology

Follow this and additional works at: https://scholar.rose-hulman.edu/electrical_grad_theses

Part of the Electrical and Electronics Commons

This Thesis is brought to you for free and open access by the Graduate Theses at Rose-Hulman Scholar. It has been accepted for inclusion in Graduate
Theses - Electrical and Computer Engineering by an authorized administrator of Rose-Hulman Scholar. For more information, please contact
weir1@rose-hulman.edu.

Recommended Citation
Guo, Jiayu, "Accuracy Improvement of Pedestrian Trajectory Prediction by an Extended Kalman Filter and Pedestrian Behavior
Classification" (2018). Graduate Theses - Electrical and Computer Engineering. 13.
https://scholar.rose-hulman.edu/electrical_grad_theses/13

https://scholar.rose-hulman.edu?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/electrical_grad_theses?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/electrical_grad_theses?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/grad_theses?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/electrical_grad_theses?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/electrical_grad_theses/13?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:weir1@rose-hulman.edu

I

ACCURACY IMPROVEMENT OF PEDESTRIAN TRAJECTORY

PREDICTION BY AN EXTENDED KALMAN FILTER AND

PEDESTRIAN BEHAVIOR CLASSIFICATION

A Thesis

Submitted to the Faculty

of

Rose-Hulman Institute of Technology

by

Jiayu Guo

In Partial Fulfillment of the Requirements for the Degree

of

Master of Science in Electrical Engineering

August 2018

©2018 Jiayu Guo

II

III

ABSTRACT

Guo, Jiayu

M.S.E.E.

Rose-Hulman Institute of Technology

August 2018

Accuracy Improvement of Pedestrian Trajectory Prediction by an Extended Kalman Filter and

Pedestrian Behavior Classification

Thesis Advisor: Dr. Jianjian Song

The objective of this thesis is to improve the accuracy of predicting motion trajectory,

i.e., speed and direction, of a pedestrian in front of an Ego Vehicle which has a Mobileye camera

with an advanced driver assistance system (ADAS). The Ego Vehicle captures and records

videos of pedestrians in front of it, and these videos are analyzed to predict a pedestrian

trajectory from instantaneous, random actions of a pedestrian. Instant actions include, but are not

limited to, walking at a constant speed, sudden accelerations/decelerations, sudden dodging from

the Ego Vehicle, sudden advancements to the Ego Vehicle, sudden withdrawals or sudden stops

at the road edge, etc. Pedestrian positions and motion data from the videos can be used to

estimate pedestrian state parameters and predict pedestrian movement.

The pedestrian videos contain noises due to the nonlinear trajectory of a pedestrian and

the Ego Vehicle. An extended Kalman filter (EKF) and pedestrian behavior classification are

IV

applied to these pedestrian videos to obtain a more accurate pedestrian trajectory. The EKF is

used to suppress noises from the videos and aids in predicting the next state of pedestrian

movement. The EKF can reduce noises in a nonlinear system. The EKF is an efficient and

effective tool in creating more stable and smoother pedestrian positions from the Ego Vehicle

videos, as we have demonstrated from analyzing pedestrian trajectories from real-world videos.

These new position data inputs are used to calculate the new velocity of a pedestrian. This new

velocity is averaged over 30 consecutive video frames to obtain a more accurate and stable

velocity. After the new position and velocity are calculated, pedestrian behavior classification is

applied to the data to calculate and group pedestrian behaviors into instant actions. The behavior

classification is based on the estimation of the heading angle and acceleration of a pedestrian.

The combination of the extended Kalman filter and behavior classification forms a more

accurate pedestrian trajectory prediction system. This approach is verified with 12 hours of

ADAS camera Mobileye videos from an experimental car test site within a simulated urban area.

Ten cases of pedestrian motion behaviors are analyzed. By calculating the Time to Collision

(TTC) and comparing this result with the TTC directly from the ADAS camera, we have shown

that our new TTC prediction is more stable and less noisy when contrasted with the older TTC

predictions from an ADAS camera system.

V

ACKNOWLEDGMENTS

I would like to express my most humble and sincere gratitude to my advisor, Dr. Song,

for all his support and guidance throughout my thesis study. He greatly contributed to aiding me

in selecting my thesis, and it was under his guidance that I decided to carry out my study on

ADAS camera research and development. This work would not be successful or possible even

without Dr. Jianjian Song’s amazing efforts. I would also like to thank my other fellow

committee members: Dr. Mark A. Yoder and Dr. Michael F. McInerney. I learned the real-time

OS knowledge from Dr. Yoder and image processing knowledge from Dr. McInerney. This

knowledge shined much light upon this thesis study.

I am also grateful to all of my colleagues at APTIV; they helped me a lot with data

collection in the cold winter of 2018. Finally, I would like to thank my family for supporting and

loving me always.

VI

TABLE OF CONTENTS

LIST OF FIGURES ... VIII

LIST OF TABLES .. IX

LIST OF ABBREVIATIONS .. X

1 INTRODUCTION .. 1

 1.1 Overview of Mobileye’s Automatic Emergency Brake for Pedestrians 2

 1.2 Overview of Pedestrian Trajectory Prediction ... 3

2 COLLECTION AND SELECTION OF CAMERA DATA .. 6

 2.1 Pedestrian Behavior Classification .. 6

 2.2 ADAS Camera Data Collection ... 8

 2.3 ADAS Camera Data Selection ... 9

3 EXTENDED KALMAN FILTER FOR PEDESTRIAN TRAJECTORY PREDICTION 12

 3.1 Extended Kalman Filter ... 12

 3.1.1 Review of Kalman Filter .. 12

 3.1.2 Extended Kalman Filter for Pedestrian Trajectory Prediction 13

 3.2 Application to Pedestrian Trajectory Prediction .. 15

 3.2.1 Coordinate Conversion from Vehicle View to Top View ... 16

 3.2.2 Analysis of Extended Kalman Filter for Pedestrian Trajectory Prediction 17

4 BEHAVIOR CLASSIFICATION FOR PEDESTRIAN TRAJECTORY PREDICTION 21

 4.1 Trajectory Prediction Based on Classification ... 23

 4.2 Average Velocity Calculation with Observed Position .. 24

 4.2.1 Calculation of Average Velocity with Position Data .. 25

 4.2.2 Noise Reduction from Velocity Calculation ... 25

 4.3 Prediction of Heading Angle .. 27

 4.3.1 A New Method of Computing the Heading Angle ... 28

 4.3.2 Analysis of More Accurate Prediction of the Heading Angle 30

 4.3.3 Pedestrian Trajectory Prediction by Heading Angle in Classification 31

 4.4 Prediction of Acceleration .. 32

VII

 4.4.1 A New Method of Computing the Acceleration ... 33

 4.4.2 Analysis of the More Stable Prediction of Acceleration .. 34

 4.4.3 Pedestrian Trajectory Prediction by Acceleration in Classification 36

5 OPTIMIZED TRAJECTORY PREDICTION BY EKF AND BEHAVIOR

CLASSIFICATION... 37

 5.1 Combination of Extended Kalman Filter and Behavior Classification 38

 5.1.1 Input Data for Extended Kalman Filter and Classification .. 40

 5.1.2 Implementation of Extended Kalman Filter and Classification in Real Time 40

 5.2 Analysis of Prediction of Pedestrian Trajectories .. 41

 5.3 Time to Collision based on Pedestrian Trajectory Prediction .. 43

 5.3.1 Introduction to Computing Time to Collision .. 43

 5.3.2 Computation of Time to Collision by the Extended Kalman Filter 47

 5.3.3 Computation of Time to Collision by Behavior Classification 48

 5.3.4 Analysis of TCC by Extended Kalman Filter and Classification 48

6 CONCLUSION AND FUTURE DEVELOPMENT .. 51

LIST OF REFERENCES .. 53

APPENDICES .. 56

Appendix A. ADAS Camera User Interface Matlab GUI Design .. 57

Appendix B. Matlab Program of Callback functions with GUI ... 58

Appendix C. EKF Process and Classification Process Program .. 73

Appendix D. Matlab Program for Data Selection ... 81

Appendix E. Matlab Program for Dynamic Plain View ... 83

VIII

LIST OF FIGURES

Figure 1. Case A and Case B of Pedestrian Behaviors. .. 8

Figure 2. The Detection of a Pedestrian and a Vehicle by the ADAS Camera.11

Figure 3. Recognized Classes of Observed Obstacles (left) and Recorded Frame Numbers of

Pedestrian’s Action Fragments to be Cut Out (right). ..11

Figure 4. The Camera View and Top View of the Pedestrian. .. 16

Figure 5. One Step Prediction of Pedestrian with EKF in the Top View Coordinates. 18

Figure 6. The EKF Prediction of Pedestrian Crossing a Street at Constant Speed. 19

Figure 7. The EKF Prediction of Pedestrian Changing Direction Suddenly. 20

Figure 8. Average Velocity Calculation for Case A1. ... 26

Figure 9. Average Velocity Calculation for Case A4. ... 26

Figure 10. Comparison of Average Velocity and ADAS Velocity for Case A1 and Case A4. 27

Figure 11. Comparison of Old Camera Data (right) and New (left) Heading Angles for Cases A1,

A4 Left, A4 Right and A6. ... 29

Figure 12. Comparison of Old Camera Data (right) and New (left) Heading Angles

 for Case B2. ... 30

Figure 13. Detection of Sudden Withdrawal (Case A6) and Sudden Dodge (Case A4). 32

Figure 14. Old Velocity and Acceleration (Left Two Columns) and New Velocity and

Acceleration (Right Two Columns). .. 34

Figure 15. Detection of Sudden Acceleration (Case A2) and Sudden Deceleration (Case A3). ... 36

Figure 16. The State Flow of the Combination of EKF and Behavior Classification. 38

Figure 17. Comparing Error Rates of Case A1 and Case A4 in EKF. .. 42

Figure 18. Error Rate of Case A4 in the Combined Method. ... 43

Figure 19. The Ego Vehicle and Pedestrian Move in the Same Direction. 44

Figure 20. A Pedestrian Crosses a Street in Front of the Ego Vehicle. ... 45

Figure 21. A Pedestrian Crosses a Street in Front of the Ego Vehicle with Direction Changes. .. 46

Figure 22. Comparison of TTC in the EKF Process and Classification Process. 49

Figure 23. Comparison of TTC from the ADAS Camera and TTC Calculated from the Predicted

Trajectory. .. 50

IX

LIST OF TABLES

Table 1. Case A Data Collection Experiments .. 9

Table 2. Case B Data Collection Experiments .. 9

Table 3. Data Types Used for Pedestrian Prediction... 10

Table 4. Comparison of Ideal, Old and New Heading Angle Predictions 31

Table 5. Action Classes are Corresponding Action Cases .. 32

Table 6. Comparison of Velidea vs. Velcam|old vs. Velest|new .. 35

Table 7. Comparison of Accidea vs. Acccam|old vs. Accest|new ... 35

X

LIST OF ABBREVIATIONS

 ADAS Advanced Driver Assistance System

AEB Automatic Emergency Brake

AEB Pedestrian Automatic Emergency Brake for Pedestrian

V2P Vehicle-to-Pedestrian

V2V Vehicle-to-Vehicle

TTC Time to Collision

EKF Extended Kalman Filter

1

1 INTRODUCTION

An Automatic Emergency Brake (AEB) system is one of the most important and integral

parts of an Advanced Driver Assistance System (ADAS). The AEB identifies an imminent

collision and brakes without any driver intervention [1]. The European New Car Assessment

Programme (EUNCAP) has included the AEB system in its test requirements since 2014[1].

Volvo, Audi, Mercedes-Benz and some OEMs already have AEB systems standardized in their

production cars. Most ADAS suppliers and OEMs who have developed ADAS products by

themselves have already developed complex AEB systems. Those AEB systems can detect front

vehicles from cameras on the Ego Vehicle and calculate Vehicle-to-Vehicle (V2V) Time-to-

Collision (TTC) quickly and accurately.

The Automatic Emergency Brake for Pedestrian (AEB Pedestrian) is a critical component

of an AEB system. Recently, Vehicle-to-Pedestrian (V2P) accidents have become a major

concern for road safety. The United States recorded 5,376 pedestrian deaths in 2015. On average,

one pedestrian was killed every two hours and injured every seven minutes in traffic accidents

[3]. EUNCAP has already included AEB Pedestrian into its test requirements in 2016 [2], and the

US government’s National Highway Traffic Safety Administration (NHTSA) has also required

99% of OEMs to include AEB Pedestrian by 2022 [4].

Initially, the thesis study was based on a paper entitled “Pedestrian-Vehicular Collision

Avoidance Based on Vision System”, which introduced a method that uses the C4 algorithm to

detect the contour of pedestrian movement [5]. The Kalman filter was implemented in that paper

2

to track and record pedestrian movements, then the TTC and Time-to-Collision Range (TTCR)

would be calculated to establish three levels of hazard. On the hardware side, a single-optical

camera was installed on the experimental vehicle to detect pedestrians. A GPS was used to

estimate the Ego Vehicle’s motion. The motion of a pedestrian was considered as a linear motion

or could be clustered as several predictable trajectories with a Kalman filter.

This thesis will show with experimental data that it is more difficult for an AEB function

to estimate and track a pedestrian in front of the Ego Vehicle than to estimate and track a vehicle

in front of the Ego Vehicle. An extended Kalman filter and a pedestrian behavior classification

method are shown to predict pedestrian trajectories more accurately.

1.1 Overview of Mobileye’s Automatic Emergency Brake for

Pedestrians

Mobileye, an Intel company, is one of the largest computer vision and ADAS companies,

which provides its products to global automakers including BMW, Ford, General Motors,

Nissan, Volvo, Audi and Hyundai, etc. [6] In 2017, Intel acquired Mobileye [7] and the electric

vehicle company Tesla changed its core ADAS technology acquisition from Nvidia to Mobileye

[8]. The main product of Mobileye, the EyeQ series, is a system-on-chip (SoC) device with a

monocular camera. ADAS on an EyeQ device implements both active and passive functions. The

active functions will take real-time measurement, such as AEB, Adaptive Cruise Control, and

Lane Keeping Assist. The passive functions such as Lane Departure Warning and Forward

Collision Warning will alert drivers of potentially dangerous scenarios. There are multiple

generations of the EyeQ series products ranged from the EyeQ1 to the EyeQ4. The EyeQ3

device used on a test car in this study can detect 14 different kinds of targets (e.g. a car, truck,

bicycle, pedestrian, or traffic signs) and apply the active and passive functions on these targets.

3

One of the most important functions of the Mobileye’s ADAS system, which will simply

be called “Mobileye” through the rest of this thesis is the AEB function used for detecting and

avoiding obstacles. A Mobileye device will automatically calculate the TTC and set brakes for all

detected obstacles, including vehicles, motorcycles, bicycles, and pedestrians. A Mobileye device

also has AEB Pedestrian functions that will detect pedestrians and set the TTC based on current

pedestrian data to predict the pedestrian trajectory.

The pedestrian trajectory prediction of the AEB Pedestrian in the current Mobileye devices

does not consider random pedestrian behaviors. For example, when a pedestrian is walking on a

street, he/she could cross the street suddenly, or when a pedestrian crosses a street, he/she could

suddenly change direction. Without prediction of these instant actions of pedestrians, the

Mobileye devices could only predict the pedestrian trajectory based on the current constant

speed. However, a pedestrian has different movement behaviors compared to vehicles. Therefore,

the prediction of pedestrian trajectory will be inaccurate, and the AEB Pedestrian implementation

in current Mobileye devices is not yet suitable for a real-world pedestrian movement situation.

1.2 Overview of Pedestrian Trajectory Prediction

The study of pedestrian trajectory prediction can be divided into two parts, pedestrian

detection and pedestrian tracking. Pedestrian detection is the process of finding pedestrian

information in videos or a series of images of pedestrians by analyzing pedestrian contours as

well as histograms of oriented gradients (HOG). Pedestrian tracking is the process of finding and

determining a pedestrian trajectory based on the information from pedestrian detection. Usually,

pedestrian tracking can be done in two ways. One is to cluster a pedestrian trajectory by a

number of training pedestrian trajectories, the other is to predict the next step of pedestrian

movement by using a pedestrian history trajectory.

4

Pedestrian detection is based on 2D images or videos of the Front cameras of the Ego

Vehicle to find the position of an obstacle and to determine whether the detected obstacle is a

pedestrian. The Support Vector Machine (SVM) classifier is a popular trainable method for

object detection [9], which takes a series of pedestrian data to calculate the histogram of gradient

and develop a trained model. The trained model is then used to find the pedestrian in the test

images or videos. Another traditional method is the Haar Wavelet [10], which can describe

details of pedestrian patterns. Haar Wavelet image analysis consists of two steps. The first step is

the determination of the Haar function, which defines the pattern features of the Haar Wavelet.

The second step is the calculation of a scaling function which defines the scale filter. The higher

the scale of the scaling function of the Haar wavelet, the higher the resolution of the pattern.

The first method for pedestrian tracking is to estimate the next step of the pedestrian

trajectory based on the pedestrian’s trajectory history. The Kalman filter is the most popular

method for object tracking and predicting the next state of a linear system [11]. Since the

pedestrian movement is non-linear, the Kalman filter is not good for pedestrian trajectory

prediction. Therefore, an extended Kalman filter (EKF) was implemented for non-linear systems

by Y.W. Xu, X.B. Cao and T. Li. The authors utilized the EKF to track a pedestrian trajectory by

predicting each step of the pedestrian movement from a monocular camera system [12]. Three-

dimensional coordinates and the velocity of the pedestrian were provided. The entire pedestrian

trajectory was determined by applying the EKF regressively.

The second method of pedestrian tracking is to determine the pedestrian trajectory by a

model trained through a number of pedestrian trajectories. Pedestrian trajectories are grouped

into a number of clusters. Gaussian Process Regression (GPR) can be used to cluster the

pedestrian trajectories [13] [14]. Y. Chen, M. Liu, S. Y. Liu, J. Miller, and J. P. How introduced a

5

method that clusters the pedestrian trajectory patterns by applying GPR [15]. A number of

pedestrian trajectories on a crossroad can be divided into several clusters. When a new pedestrian

appears on this crossroad, the pedestrian will be predicted to belong to one of the clusters. This

method requires the pedestrian to start from a fixed position and end at a fixed position; for

example, the situation can be an airport shuttle station or a crossroad between buildings in a city.

6

2 COLLECTION AND SELECTION OF CAMERA DATA

In this thesis study, the Ego Vehicle was a production car equipped with an Intel

Mobileye ADAS camera to take pedestrian videos. First, the Ego Vehicle performed a road test to

collect testing data for three days with 600 video clips to simulate the real motion behaviors of a

pedestrian. Each video had at least one pedestrian motion event. From these pedestrian

movement videos, special cases of pedestrian behaviors were defined when a pedestrian walked

on the street, such as crossing, walking along the street, or sudden, randomized movements.

Based on the pedestrian behavior cases observed from the road test data, six sets of

training data for the behavior classification method were recorded from the experiments of

pedestrian actions in front of the Ego Vehicle. Besides the vision information from the ADAS

camera, the Ego Vehicle's velocity and yaw rate were available from the CAN bus of the Ego

Vehicle for classification training.

Once the raw training data was collected, all instant actions of pedestrians had to be

selected from the raw data. The selected data was divided into different cases, and the

characteristics such as the position and the velocity of a pedestrian were observed for

classification training.

2.1 Pedestrian Behavior Classification

Pedestrian behaviors were classified into two case groups and ten subcases: Case A:

Crossing the Street in Front of the Ego Vehicle and Case B: Walking on the Road alongside the

Ego Vehicle.

7

There could be seven subcases in Case A: (A1) Constant Speed, (A2) Sudden Acceleration,

(A3) Sudden Deceleration, (A4) Sudden Dodge from the Ego Vehicle, (A5) Sudden Advance to

the Ego Vehicle, (A6) Sudden Withdrawal, and (A7) Sudden Stop at the Edge of the Road.

Case A4 and Case A5 could be further divided based on which side of the Ego Vehicle the

pedestrian is passing, because it matters that the heading angles for both left and right actions

have different features. Case A4 Left is defined as the pedestrian passing from the left side of the

Ego Vehicle, while Case A4 Right is defined as the pedestrian passes from the right side of the

Ego Vehicle. Case A5 Left and Case A5 Right are both defined accordingly.

There could be three subcases in Case B: (B1) Constant Speed, (B2) A Sudden Turn

towards the Ego Vehicle and (B3) A Sudden Stop at the Road Edge.

In Case A1, the Ego Vehicle will go straight as in Figure 1, and the pedestrian will cross

the street at the various speed states such as in Cases A1, A2, A3, or in different directions such

as in Cases A4, A5, A6, or a stop by the side of the road such as in Case A7. For Case B, the Ego

Vehicle will go straight, while the pedestrian will concurrently walk in the same direction as the

Ego Vehicle. This situation normally takes place at a non-intersection street with no traffic

signals. The pedestrian can cross the street from either side of the road with the above actions.

8

x

y

v_p

Case A: A Pedestrian Is Crossing the Street.

x

y

v_p

Case B: A Pedestrian Is Walking on the Road alongside the Ego Vehicle.

Figure 1. Case A and Case B of Pedestrian Behaviors.

2.2 ADAS Camera Data Collection

The data collection was performed in Shanghai, China. Some of the data collection was

obtained at an experimental car test site in the Disneyland area while the rest was at Shanghai’s

9

Waigaoqiao Free Trade Zone. It took five days to collect the data since the first day was spent

setting up the ADAS camera, sensor devices, equipment, and vehicles, etc. The estimated time

for each test was about 5 minutes for an estimated total of 12 hours. As a result, 12 different

actions of data were recorded. All the data collection was held in good weather conditions to

make sure that no external environmental effects such as rain and snow would influence the

results. Two main groups were created for the pedestrian actions: Case A: crossing a street and

Case B: walking along a street. These two scenarios are shown in Figure 1.

For each pedestrian action case, six sets of experiments were performed and recorded. At

least one pedestrian was observed in each video clip at the nearest detected obstacle. The test

plan is shown in Table 1 and Table 2.

Table 1. Case A Data Collection Experiments

 Case

Data

A1 A2 A3 A4 right A4 left A5 right A5 left A6 A7

Experiments 6 6 6 6 6 6 6 6 6

Table 2. Case B Data Collection Experiments

 Case

Data

B1 B2 B3

Experiments 6 6 6

2.3 ADAS Camera Data Selection

Most of the current ADAS cameras generate a lot of information pertaining to the observed

obstacles, such as obstacle type, position, velocity, the angle between the Ego Vehicle and the

obstacle, the rear light of the front vehicle, the height, and the width of the obstacle, the TTC,

10

etc. These cameras also provide some information about the road, traffic signs, and barriers that

can be found on the roadside. Only pedestrian data from the ADAS camera was used in this

study. The data types that were used in this study are listed in Table 3.

Table 3. Data Types Used for Pedestrian Prediction

Type Symbol Range Unit

Obstacle classification Obstacle_type n/a n/a

Lateral position Lat_pos -128-128 m

Lateral velocity lat_vel -128-128 m/s

Longitudinal position. long_pos 0-256 m

Longitudinal velocity long_vel -128-128 m/s

Longitudinal acceleration long_acc -20-20 m/s^2

TTC based on constant velocity ttc_vel 0-7 s

TTC based on constant acceleration ttc_acc 0-7 s

pedestrian is on the pavement ped_occ 0-1 n/a

To make it easier to extract video clips containing pedestrians for further analysis, a

pedestrian clipping MATLAB program is written to detect videos containing pedestrians

automatically. For example, the pedestrian and the white car are both detected in Figure 2, and

the observed classes of pedestrians and vehicles are shown in the left column of Figure 3. The

MATLAB program reads the obstacle type information and saves all pedestrian video clips. Then

the pedestrian’s actions in each video were manually classified and grouped. The frame number

of the pedestrian actions fragmented in each video was recorded from the whole video. The

subframe of the number of pedestrian actions fragmented in each video clip can be found from

the frame number. The pedestrian actions fragment was cut out by this step. The right column in

11

Figure 3 shows the screenshot of one part of the look-up table that records the start and end

frame numbers for the whole video and the start and end frame numbers for each video clip.

Figure 2. The Detection of a Pedestrian and a Vehicle by the ADAS Camera.

Figure 3. Recognized Classes of Observed Obstacles (left) and Recorded Frame Numbers of

Pedestrian’s Action Fragments to be Cut Out (right).

12

3 EXTENDED KALMAN FILTER FOR PEDESTRIAN

TRAJECTORY PREDICTION

Kalman filter is a good noise reducing and data smoothing filter for a linear random noise

process such as an airplane’s flying or landing movements. However, a pedestrian’s movement

tends to be a non-linear random process, thus an extended Kalman filter should be used because

it can filter noises of a non-linear process. An extended Kalman filter has two state parameters x

and p; x is defined as the state, including the position and velocity information; p is defined as

the covariance which will be updated with the previous x state.

The ADAS camera can convert the coordinates from the Ego Vehicle’s view to a top view

and the pedestrian prediction implements the EKF with the pedestrian position in the top view

coordinates. In this EKF process, the new state is always predicted and updated from the

observed pedestrian position when there is no instant action.

3.1 Extended Kalman Filter

Kalman filter is used to predict states recursively in a linear system, and it will take every

measurement and previously predicted state into a new state estimation [16]. The extended

Kalman filter is a non-linear extension of the Kalman filter

3.1.1 Review of Kalman Filter

The Kalman filter has two main phases: the prediction phase and the update phase. For the

prediction phase, the filter will predict the current state using the previous state. Prediction

equations are shown below [17]:

13

𝑥𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑥𝑘−1|𝑢𝑝𝑑𝑎𝑡𝑒 (Eq 3.1)

𝑝𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑝𝑘−1|𝑢𝑝𝑑𝑎𝑡𝑒𝑎 (Eq 3.2)

The variable x is the estimated state, and 𝑘 is the state number. 𝑥𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 is the

predicted kth state from the prediction phase, and 𝑥𝑘−1|𝑢𝑝𝑑𝑎𝑡𝑒 is the updated (k − 1)th state from

the update phase. 𝑝 is the covariance of state 𝑥. 𝑝𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 is the predicted 𝑝 of the kth state

from the prediction phase and 𝑝𝑘−1|𝑢𝑝𝑑𝑎𝑡𝑒 is the updated p of (k − 1)th state from the update

phase. 𝑎 is a constant. For the update phase, the filter will update the current state using the new

true measurement. The update equations are shown below[17]:

𝑔𝑘 =
𝑝𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑝𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 + 𝑟

(Eq 3.3)

𝑥𝑘|𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑥𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 + 𝑔𝑘(𝑧𝑘 − 𝑥𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) (Eq 3.4)

𝑝𝑘|𝑢𝑝𝑑𝑎𝑡𝑒 = (1 − 𝑔𝑘)𝑝𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (Eq 3.5)

𝑔𝑘 is the current gain. 𝑟 is the average noise of the input data. 𝑧𝑘 is the observation

measurement.

3.1.2 Extended Kalman Filter for Pedestrian Trajectory Prediction

In this section, the detailed EKF implementation is discussed, and the initial states of the

EKF state parameters are defined. The EKF is applied when there is no instant action of a

pedestrian, while the observed pedestrian position data will be the input data to the EKF, and the

output will be the prediction of the next state of the pedestrian position.

14

The EKF contains two phases: prediction and update. In the prediction phase, the new state

and new covariance parameter are predicted. In the update phase, a system gain G is calculated

from the new predicted covariance parameter which comes from the prediction phase, and the

system gain is used to update the current state.

In the Prediction Phase of the EKF, the equations are listed below:

𝑥𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝐴 ∗ 𝑥𝑘−1|𝑢𝑝𝑑𝑎𝑡𝑒 + 𝐵 ∗ 𝑢𝑘 (Eq 3.6)

𝑝𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝐴 ∗ 𝑝𝑘−1|𝑢𝑝𝑑𝑎𝑡𝑒 ∗ 𝐴′ + Q (Eq 3.7)

The state x is a 4x1matrix, and the new state 𝑥𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑛 is predicted by the previous

updated state𝑥𝑘|𝑢𝑝𝑑𝑎𝑡𝑒 . B is a scale of the input control signal uk. For the initial state 𝑥0, the

value is set to [𝑙𝑎𝑡𝑝𝑜𝑠0 𝑙𝑜𝑛𝑔𝑝𝑜𝑠0 𝑙𝑎𝑡𝑣𝑒𝑙0 𝑙𝑜𝑛𝑔𝑣𝑒𝑙0] where 𝑙𝑎𝑡𝑝𝑜𝑠0 is the initial latitude position,

𝑙𝑜𝑛𝑔𝑝𝑜𝑠0 is the initial longitude position, 𝑙𝑎𝑡𝑣𝑒𝑙0 is the latitude velocity, and 𝑙𝑜𝑛𝑔𝑣𝑒𝑙0 is the

longitude velocity. 𝑙𝑎𝑡𝑝𝑜𝑠0 and 𝑙𝑜𝑛𝑔𝑝𝑜𝑠0 will be initialized to the center position. 𝑙𝑎𝑡𝑣𝑒𝑙0 and

𝑙𝑜𝑛𝑔𝑣𝑒𝑙0 will be initialized to 0. For the scale B and the input control signal 𝑢𝑘 in this study,

there is no extra control signal applied, so B and 𝑢𝑘 have been set to zero.

The covariance parameter 𝑝𝑘 is predicted by a constant matrix A and the state error

covariance matrix 𝑄. The initial value of 𝑝𝑘 needs to be an identity matrix times a nonzero

parameter when k is 0. If the estimate of the initial state 𝑥0 is accurate, 𝑝0 can be initialized to be

a small value. If the estimate of 𝑥0 is far from the true value, 𝑝0 should be initially set to be a

large value.

The constant matrix 𝐴 is used in the prediction step to calculate new state 𝑥𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑛from

the previous state 𝑥𝑘−1|𝑢𝑝𝑑𝑎𝑡𝑒and calculate the new covariance parameter 𝑃𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑛from the

15

previous 𝑝𝑘−1|𝑢𝑝𝑑𝑎𝑡𝑒. Matrix 𝐴 should be a 4x4 Jacobian matrix for the 4x1 state 𝑥 and the

matrix 𝐴 should be set to [[1, 0, 0, 0], [0, 1, 0, 0], [𝑑𝑡, 0, 1, 0], [0, 𝑑𝑡, 0, 1]] by calculating the

Jacobian matrix of state 𝑥.

The state error covariance 𝑄 should be set to a very small value according to the covariance

matrix p. In this study, 𝑄 was set to 0.01 ∗ 𝐼, where I is the identity matrix.

Equations for the update phase of the EKF are listed below:

𝐺𝑘 = 𝑃𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∗ 𝐻′ ∗ (𝐻 ∗ 𝑝𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∗ 𝐻′ + 𝑅)′ (Eq 3.8)

𝑥𝑘|𝑢𝑝𝑑𝑎𝑡𝑒 = 𝐺𝑘 ∗ 𝑧𝑘 + (𝐼 − 𝐻) ∗ 𝑥𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (Eq 3.9)

𝑝𝑘|𝑢𝑝𝑑𝑎𝑡𝑒 = (𝐼 − 𝐺𝑘 ∗ 𝐻) ∗ 𝑝𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (Eq 3.10)

The system gain 𝐺𝑘 can be calculated from the constant matrix 𝐻, the state covariance

matrix 𝑝𝑘 and the measurement error covariance 𝑅. The constant matrix 𝐻 is used for mapping

the state 𝑥𝑘 to the observation 𝑧𝑘, which is a 2x1 Jacobian matrix of the position

[𝑙𝑎𝑡𝑝𝑜𝑠𝑘 𝑙𝑜𝑛𝑔𝑝𝑜𝑠𝑘] of 𝑥𝑘. The measurement error covariance 𝑅 is calculated by the Mobileye

camera based on the measurement noise.

State 𝑥𝑘|𝑢𝑝𝑑𝑎𝑡𝑒 should be updated based on the system gain 𝐺𝑘 observation 𝑧𝑘 and the

prediction state 𝑥𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑛. The state covariance 𝑝𝑘|𝑢𝑝𝑑𝑎𝑡𝑒 should be updated based on the

system gain 𝐺𝑘 and the prediction state covariance 𝑃𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑛.

3.2 Application to Pedestrian Trajectory Prediction

The EKF takes pedestrian position data from the Mobileye ADAS camera as the input to

predict the pedestrian trajectory. There are two types of pedestrian position data. Both are

16

provided by the Mobileye in two different coordinates, the vehicle view and the top view. The

vehicle view is based on the camera, and the pedestrian location data is based on the pixel

information. The top view is based on the Ego Vehicle and a pedestrian. The pedestrian position

data is the real distance between the Ego Vehicle and the surrounding obstacles. The top view is

more accurate and used in the AEB Pedestrian function of the ADAS.

There were two situations in this study; one was the normal pedestrian movement without

any instant actions, the other was the instant actions of a pedestrian. The EKF was used to predict

the next step of the pedestrian trajectory without any instant actions, because the prediction was

more accurate for the normal action and had less deviation for the instant actions.

3.2.1 Coordinate Conversion from Vehicle View to Top View

In Figure 4, there are two coordinate systems: the first one is the Vehicle View of the

pedestrian detected in the video of the view of the Ego Vehicle, which is shown in Figure 4(a).

The x-axis is measured in pixels along the top horizontal edge of the video, while the y-axis is

measured in pixels along the right vertical edge of the video.

Figure 4. The Camera View and Top View of the Pedestrian.

17

The second one is shown in Figure 4(b), where the scene includes the pedestrian and the Ego

Vehicle, which is the Top View used in this study. The x-axis is the latitude position in meters,

and the y-axis is the longitude position in meters, where the coordinate system is based on the

pedestrian and the Ego Vehicle.

The coordinate conversion was done because calculations of velocity, acceleration, heading

angles, and TTC are based on the Top View Coordinate System. But to display the video from an

ADAS camera, the Vehicle View Coordinate System was used, where the pedestrian pixel

positions X and Y were used instead of the latitude and longitude positions.

3.2.2 Analysis of Extended Kalman Filter for Pedestrian Trajectory

Prediction

The EKF can predict a new state of pedestrian trajectory quickly with high accuracy based

on normal movement with no instant action on the part of the pedestrian. In this study, only when

the instant actions were not detected by the classification method, was the EKF applied to the

pedestrian trajectory prediction.

In Figure 5, the EKF is applied to predict the pedestrian trajectory. The dark rectangle block

at the bottom represents the Ego Vehicle. The small dark red square represents the observation

𝑧𝑘, and the yellow circle represents the predicted state 𝑥𝑘. The Ego Vehicle is located at the

center of the latitudinal position. The x-axis of Figure 5 is the latitudinal position in meters,

while the y-axis is the longitudinal position in meters. Two graphs in Figure 5 are adjacent

frames, and the real movement of the pedestrian is from left to right. Based on the observation

position 𝑧𝑘 of the current pedestrian, the EKF provides the pedestrian trajectory prediction for

one step ahead to the right. The predicted position in frame 24 is [1.2277 7.4731] and the next

18

observed position is [1.2304 7.4686] in frame 25. Therefore, the EKF can predict the pedestrian

trajectory when the pedestrian walks on the street with no instant action.

Figure 5. One Step Prediction of Pedestrian with EKF in the Top View Coordinates.

In Figure 6, pedestrian positions are shown in two adjacent frames of Case A1. Case A is

defined as a pedestrian crossing a street at a constant speed with no change of direction. The

moving direction of the pedestrian is from left to right. The x-axis is the latitudinal position of

the pedestrian, and the y-axis is the longitudinal position of the pedestrian. The diamond-shaped

position is the original observed position of the pedestrian, and the circle-shaped position is the

position prediction from the EKF. In this EKF prediction, the result is very accurate for Case A1.

19

Figure 6. The EKF Prediction of Pedestrian Crossing a Street at Constant Speed.

In Figure 7, the pedestrian positions are shown in two adjacent frames of Case A4 Right.

Case A4 Right is that a pedestrian suddenly changes direction when crossing the street. The

moving direction is from right to left. The diamond-shaped position is the original observed

position of the pedestrian, and the circle-shaped position is the prediction position from the EKF.

In this situation, the pedestrian has made an instant action, so the prediction is not accurate when

the pedestrian changes direction.

Moving Direction

20

Figure 7. The EKF Prediction of Pedestrian Changing Direction Suddenly.

Moving Direction

21

4 BEHAVIOR CLASSIFICATION FOR PEDESTRIAN

TRAJECTORY PREDICTION

Most ADAS cameras mounted on the Ego Vehicle can provide information such as the

class of each observed obstacle, distance between the Ego Vehicle and each obstacle, relative

position of each obstacle, velocity of each obstacle and the angle between the Ego Vehicle and

the obstacle, velocity and yaw-rate of the Ego Vehicle and the TTC and the brake warning of

each obstacle. An ADAS camera, which is well-suited for a Vehicle-to-Vehicle (V2V) AEB

system, can accurately calculate the TTC faster and set brake warning signals more correctly,

because in the V2V system the front vehicle moves at either constant speed or constant

acceleration.

However, TTC information about a pedestrian that comes from an ADAS camera is not

suitable for a real-world situation and may causes considerable errors sometime, because the

pedestrian trajectory prediction is not as accurate compared to the vehicle trajectory prediction,

and predicted velocity and the acceleration of the pedestrian may have a lot of noises. A

pedestrian does not usually move at constant speed along a straight line but moves suddenly and

occasionally. The pedestrian’s instant velocity, acceleration and heading angle from an ADAS

camera are less accurate than those of the V2V data are. These pedestrian measurement errors

will be propagated into the pedestrian’s tracking and adversely affect the V2P AEB Pedestrian

function.

Consider the case when the pedestrian walks along a street, and suddenly chooses to

cross the street. Or the pedestrian could be crossing the street and suddenly decide to turn

22

around. The ADAS camera would not be able to recognize these sudden behavioral changes of a

pedestrian very well, and it could report an inaccurate TTC to the AEB Pedestrian system of the

ADAS. Therefore, the current pedestrian trajectory prediction algorithm inside the ADAS camera

needs to be improved by making it capable of tracking a pedestrian’s instant action and removing

video noises.

Z. Chen et al. in their paper on pedestrian action classification proposed a method that

used the motion pattern to cluster the pedestrian trajectories [18]. The motion pattern includes

location, velocity and heading angle of a pedestrian. However, their method requires the fixed

starting and ending locations of a pedestrian. From another aspect of pedestrian trajectory

prediction, a survey shows that pedestrians can be grouped into three safety levels by traffic

lights [19]. Pedestrians can also be grouped by different environments and dates such as different

cities and whether it is a weekday or a weekend [20]. More specific behaviors of pedestrians that

influence pedestrian trajectories are listed in [21].

In this thesis, a new approach is proposed and has also been verified to improve

prediction of the heading angle and the acceleration of a pedestrian in front of an Ego Vehicle

from the video stream recorded by an ADAS camera on the Ego Vehicle. The main idea of this

portion of this thesis is to calculate the pedestrian velocity more accurately from the position data

of the pedestrian by averaging velocities over 30 frames to reducing noise due to velocity

fluctuation. It will be shown that the heading angle and the acceleration of the pedestrian

estimated from the new velocity are more stable and more realistic than those obtained from the

velocity calculation using just the raw video data.

Besides increasing the prediction accuracy, time complexity is a significant factor for an

AEB Pedestrian System. In this study, the frame rate is 36 frames per second and the camera will

23

record odd and even frame numbers into two video channels separately. Each pedestrian action

takes 1.66 seconds reaction time for the prediction, which is shorter than the average driver

reaction time of 2.3 seconds [22].

4.1 Trajectory Prediction Based on Classification

In this thesis, behavior classification is implemented based on the heading angle and the

acceleration of a pedestrian, which is used to classify instant actions of the pedestrian and to

predict the next position of the pedestrian.

The position data of a pedestrian is used to calculate the velocity of the pedestrian. In order

to remove the data fluctuation that causes velocity errors, the sampling points will be removed

from the velocity calculation if the fluctuation is larger than the threshold. The velocity accuracy

is further enhanced by taking a running average of velocities over 30 frames. The average

velocity is then used to calculate the heading angle and the acceleration of the pedestrian.

Pedestrian behavior cases were defined in Section 2.1 on Page 7. For convenience, the

definitions of behavior cases are repeated here: For Case A: (A1) Constant Speed, (A2) Sudden

Acceleration, (A3) Sudden Deceleration, (A4) Sudden Dodge from the Ego Vehicle, (A5)

Sudden Advance to the Ego Vehicle, (A6) Sudden Withdraw, and (A7) Sudden Stop at the Road

Edge. For Case B: (B1) Constant Speed, (B2) Sudden Turn towards the Ego Vehicle and (B3)

Sudden Stop at the Road Edge.

Several pedestrian’s behavior cases were extracted from the videos recorded by a Mobileye

ADAS camera. Raw instant velocities calculated from these videos were found to be unstable

and noisy. Heading angles and accelerations for these cases were calculated using both raw

instant velocity and the average velocity.

24

For Case A1 the heading angle and acceleration should not have any changes. For Case A2

and Case A3, the instant actions will be detected based on the acceleration of the pedestrian. If

the change of acceleration is from low to high, the pedestrian is in Case A2; vice versa for Case

A3. For Case A4 and Case A5, the instant actions will be detected based on the heading angle

and the starting position of the pedestrian. The pedestrian’s movement can be detected from the

heading angle, while the instant action can be detected from both the pedestrian’s movement and

starting position. For Case A6 and A7, the instant actions will be detected based on the heading

angle of the pedestrian. If the heading angle has a 180-degree change, the instant action will be

in Case A6, and if the heading angle has a 180-degree change and no changes for 30 frames, the

instant action will be in Case A7. For Case B2, instant actions will be detected based on the

heading angle of the pedestrian. If the heading angle has a 90-degree change and stays that way

for over 5 frames, the instant action is Case B2. Case B3 will not have a heading angle change

and the velocity of the pedestrian will be zero.

More examples of pedestrian trajectory prediction by classification are shown in Section

4.2.3 and 4.3.3.

4.2 Average Velocity Calculation with Observed Position

Pedestrian velocity is critical in accurately calculating heading angle and acceleration. The

pedestrian velocity data obtained directly from the ADAS camera is not very accurate. The range

of velocity is ±128 meters per second, which is well-suited for vehicle tracking but is not suitable

for measuring pedestrian velocity since a pedestrian’s movement is a non-uniform motion.

Pedestrian velocity can be calculated more accurately from the observed position information

taken directly from the video stream.

25

4.2.1 Calculation of Average Velocity with Position Data

A pedestrian’s position from the ADAS camera data contains both the latitude position and

longitude position. The range of the latitude position is from -128 meters to 128 meters, and the

center latitude position at the Ego Vehicle is 0 meters. The range of the longitude position is from

0 to 256 meters, and the closest position of longitude at the Ego Vehicle is 0 meters.

Position information taken from video frames can be used to calculate the velocity. The

frame rate of the camera is 36 frames per second and the video is divided into two channels;

therefore, the frame rate of each channel is 18 frames per second. Frame time interval 𝑑𝑡 is 0.055

seconds. The latitude velocity can be calculated as 𝑣𝑙𝑎𝑡 = 𝑑𝑥𝑙𝑎𝑡 / 𝑑𝑡, where 𝑑𝑥𝑙𝑎𝑡 is the latitude

position change between two adjacent frames. The longitude velocity can be calculated as

𝑣𝑙𝑜𝑛𝑔 = 𝑑𝑥𝑙𝑜𝑛𝑔 / 𝑑𝑡, where 𝑑𝑥𝑙𝑜𝑛𝑔 is the corresponding longitude position change.

More examples of new velocity predictions are shown in Figure 11 and Table 6 in Section 5

associated with the new acceleration calculation.

4.2.2 Noise Reduction from Velocity Calculation

Latitudinal velocity and longitudinal velocity calculated directly from the video position

data can be very noisy. The instant velocities calculated from the observed position are shown in

the first column of Figure 8 for Case A1 and Figure 9 for Case A4. The noises are caused by the

errors in the observed position and characteristics of the pedestrian. A noise filter needs to be

applied to remove the noises.

In order to remove these noises, the variance of the instant velocity is calculated and the

upper bound of the variance is set. Any sample points that have higher variances than the upper

bound are removed from the instant velocity points. The 30-frame moving average of the

26

remaining instant velocity points is then used to obtain the average velocity. For example, if the

variance of the latitude velocity is higher than 1.1, the corresponding velocity is removed from

the velocity calculation. As a result, the average velocity becomes smoother and less noisy.

Figure 8 and Figure 9 show the comparison of the raw velocity and average velocity. The first

column is the latitude velocity with noise. The second column is the variance value. The third

column is the noise-reduced velocity. The fourth column is the mean of the noise-reduced

velocity.

Instant Velocity variance New Instant Velocity Average Velocity

Figure 8. Average Velocity Calculation for Case A1.

Instant Velocity variance New Instant Velocity Average Velocity

Figure 9. Average Velocity Calculation for Case A4.

27

Compared to the velocity from the ADAS camera, the filtered average velocity is more stable

and smoother. The first column in Figure 10 shows the average velocity for Case A1 and the

second column shows the instant velocity. It is clear that the average velocity is much smoother

and more stable. Data for Case A4 in the two right columns in Figure 10 supports this conclusion

as well.

Average Velocity of this Study Velocity of ADAS CameraAverage Velocity of this Study Velocity of ADAS Camera

Figure 10. Comparison of Average Velocity and ADAS Velocity for Case A1 and Case A4.

4.3 Prediction of Heading Angle

The heading angle of a pedestrian crossing a street is the deviation angle from the straight

line of crossing. Four pedestrian action cases have angle changes: Case A4, Case A5, Case A6

and Case B2. The first two cases will cause a slight angle change which may be less than a 90-

degree change, Case A6 may cause an angle change of up to 180 degrees, and Case B2 may

cause up to a 90-degree change.

28

Pedestrian velocity taken directly from the ADAS camera data along the x- and y-axes can

be used to calculate the pedestrian heading angle [23], and the heading angle theta can be

calculated using 𝑎𝑟𝑐𝑡𝑎𝑛(𝑣𝑒𝑙𝑙𝑜𝑛𝑔/𝑣𝑒𝑙𝑙𝑎𝑡). The 𝑣𝑒𝑙𝑙𝑜𝑛𝑔 is the longitudinal velocity and 𝑣𝑒𝑙𝑙𝑎𝑡 is

the latitudinal velocity. The angle’s range is between -90 and 90 degrees.

The heading angle is calculated with the ADAS camera velocity data using the following

equation:

𝜃𝑜𝑙𝑑 = arctan (
𝑣𝑒𝑙𝑙𝑜𝑛𝑔|𝑐𝑎𝑚

𝑣𝑒𝑙𝑙𝑎𝑡|𝑐𝑎𝑚
)

(Eq 4.1)

The heading angle 𝜃𝑜𝑙𝑑 is directly calculated from the ADAS camera data, which is not

accurate. The upper left six graphs for Case A1 in Figure 11 show how inaccurate this calculation

is. Both the heading angle and the moving angle theta of these three examples of Case A1 data

sets should ideally be 0 degree, but 𝜃𝑜𝑙𝑑 in these three datasets are always changing and far from

0 degree.

4.3.1 A New Method of Computing the Heading Angle

A new method to calculate the moving angle theta is proposed in this thesis by using the new

average velocity calculated from the position information from the ADAS camera data as

discussed in Section 3. The heading angle 𝜃𝑛𝑒𝑤 is calculated as follows:

𝜃𝑛𝑒𝑤 = arctan (
𝑣𝑒𝑙𝑙𝑜𝑛𝑔|𝑛𝑒𝑤

𝑣𝑒𝑙𝑙𝑎𝑡|𝑛𝑒𝑤
)

(Eq 4.2)

Figure 11 shows a number of comparisons of the old camera data and the new calculated

heading angle for Case A. Figure 12 shows the heading angle comparisons for Case B2,

29

including the case of a pedestrian crossing street at a constant velocity straightly and the

pedestrian moving farther away from the Ego Vehicle while crossing the street with an obvious

direction change.

Figure 11. Comparison of Old Camera Data (right) and New (left) Heading Angles for Cases

A1, A4 Left, A4 Right and A6.

30

Case B2

θcam θest

Figure 12. Comparison of Old Camera Data (right) and New (left) Heading Angles for Case

B2.

4.3.2 Analysis of More Accurate Prediction of the Heading Angle

The heading angle for Case A1 is 0 degree, as the pedestrian walks in a straight line at

constant speed. The heading angle for Case A4 shows a sudden change from 0 degree to ±50

degrees as the pedestrian dodged suddenly from the Ego Vehicle. The heading angle for Case A6

shows a sudden jump from -90 to 90 degrees or 90 to -90 degrees, because for both before and

after the stopping point of the longitudinal, the velocity is ideally equal to 0. In addition, at the

point where pedestrian stops and make a U-turn, the angle changes by 180 degrees.

The heading angle for Case B2 should be about 90 degrees when the pedestrian suddenly

makes a 90-degree turn. The velocity should decrease to zero and the heading angle should

change suddenly to -90 degrees, then return to 0 degree.

31

Table 4 shows the comparison of the ideal, old, and new heading angle predictions for Cases

A1, A4, and A6. It is clearly shown that the new heading angle predictions for all cases are more

stable and more accurate than the old ones.

Table 4. Comparison of Ideal, Old and New Heading Angle Predictions

Pedestrian

actions

Ideal θ θ from camera θ from this study

Case A1 Constant at 0 degree 2 datasets fluctuated All Stable

Case A4 Sudden from 0 to ± 50 2 datasets have no

obvious angle change

All data sets are better

than the camera data

Case A6 Sudden from -90 to +90 at

stop point

None of them has

obvious angle change

All data sets have

obvious angle change

Case B2 Sudden from -90 to -90 then

0 with no bouncing

1 dataset has bouncing,

this will cause system to

recognize 2 turnings

None of them

bouncing.

4.3.3 Pedestrian Trajectory Prediction by Heading Angle in

Classification

Some cases of pedestrian’s instant actions can be detected and classified based on the

pedestrian heading angle. For example, in Case A6, the instant actions will be grouped into Class

1 corresponding to the case of a pedestrian suddenly turning back. And in Case A4 and Case A5,

the change of heading angle is used to detect these actions. Class 2 for suddenly turning closer to

the Ego Vehicle and Class 3 for suddenly turning even closer to the Ego Vehicle. Classes 4 and 5

are based on acceleration and will be discussed in Section 4.4.3. For Case B2, the instant action

class is Class 6. The class definition is shown in Table 5 below.

32

Table 5. Action Classes and Corresponding Action Cases

Actions Classes Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Actions Cases Case A6 Case A5 Case A4 Case A2 Case A3 Case B2

In Figure 13, two instant actions are detected separately. One is Case A6 on the left, the other

is Case A4 on the right. In this classification process, the change rates of the heading angle over

30 frames can be observed and the class number will be signed for each action. When the instant

action occurs, the class will be signed to the corresponding case.

Figure 13. Detection of Sudden Withdrawal (Case A6) and Sudden Dodge (Case A4).

4.4 Prediction of Acceleration

Another important factor for predicting pedestrian trajectories is pedestrian acceleration.

The velocity change 𝑑𝑣𝑙𝑎𝑡|𝑐𝑎𝑚 can be obtained from the latitude velocity change between two

adjacent frames and the acceleration can be calculated as follows:

𝑎𝑐𝑐𝑜𝑙𝑑|𝑙𝑎𝑡 =
𝑑𝑣𝑙𝑎𝑡|𝑐𝑎𝑚

𝑑𝑡

(Eq 4.3)

33

Using the velocity information directly from the ADAS camera to calculate the pedestrian

latitude velocity will produce an unstable acceleration prediction, as shown in Figure 14. The

first two columns in Figure 14 are velocity and acceleration obtained from the camera data

directly for three cases: Case A1 Constant Speed, Case A2 Acceleration and Case A3

Deceleration. Acceleration in all three cases shows unstable glitches.

4.4.1 A New Method of Computing the Acceleration

The way to get smoother and less noisy acceleration prediction is to use the new average

velocity. The new acceleration 𝑎𝑐𝑐𝑛𝑒𝑤|𝑙𝑎𝑡 is calculated as follows, where the velocity change is

based on the average velocity:

𝑎𝑐𝑐𝑛𝑒𝑤|𝑙𝑎𝑡 =
𝑑𝑣𝑙𝑎𝑡|𝑛𝑒𝑤

𝑑𝑡

(Eq 4.4)

The right two columns in Figure 14 are velocity and acceleration that have been calculated

with the new average velocity prediction for Cases A1, A2, and A3. The accelerations are much

more consistent than those based on the old velocity.

34

Case A1

Case A2

Case A3

Figure 14. Old Velocity and Acceleration (Left Two Columns) and New Velocity and

Acceleration (Right Two Columns).

4.4.2 Analysis of the More Stable Prediction of Acceleration

The velocity for Case A1 Constant Speed should be constant, and its acceleration should be

zero. The velocity for Case A2 Acceleration should be increasing monotonically, and its

35

acceleration should be positive. The velocity for Case A3 Deceleration should be decreasing

monotonically, and its acceleration should be negative.

Table 6 shows the comparison of the ideal, old, and new velocity calculation for cases in

Figure 14. Table 7 shows their acceleration comparison.

Figure 14, Table 6 and 7 have shown that the new methods of predicting velocity and

acceleration proposed in this thesis are much more stable and accurate than the old methods of

using the raw ADAS camera data.

Table 6. Comparison of Velidea vs. Velcam|old vs. Velest|new

Pedestrian

Actions
𝑣𝑒𝑙𝑖𝑑𝑒𝑎 𝑣𝑒𝑙𝑐𝑎𝑚|𝑜𝑙𝑑 𝑣𝑒𝑙𝑒𝑠𝑡|𝑛𝑒𝑤

Case A1 A constant value Speed is unstable and noisy Stable

Case A2 Increasing Two datasets have noise and

unsmooth

Smoother increasing

trend

Case A3 Decreasing All datasets are noisy and unstable Smoother and less

noise

Table 7. Comparison of Accidea vs. Acccam|old vs. Accest|new

Pedestrian

Actions
𝑎𝑐𝑐𝑖𝑑𝑒𝑎 𝑎𝑐𝑐𝑐𝑎𝑚|𝑜𝑙𝑑 𝑎𝑐𝑐𝑒𝑠𝑡|𝑛𝑒𝑤

Case A1 Constant at 0 One dataset is noisy and

unstable

All datasets are stable

Case A2 Positive value All datasets have a lot

of noise

All datasets are more stable and

smoother

Case A3 Negative

value

All datasets have large

noise

All datasets are better than the

datasets from the camera

36

4.4.3 Pedestrian Trajectory Prediction by Acceleration in Classification

Some cases of pedestrian’s instant actions can be detected by the classification based on

pedestrian acceleration. For example, in Case A2, the instant actions class will be detected as

Class 4 for a pedestrian suddenly speeding up. And in Case A3, the instant actions class will be

detected as Class 5 for a pedestrian suddenly slowing down. The class definition is shown in

Table 5 in Section 4.3.3.

In Figure 15, two instant actions are detected separately. One is Case A2 on the left, the

other is Case A3 on the right. In this classification process, the change rates of the acceleration

over 30 frames will be observed and the class number will be signed for each action. The left

figure in Figure 15 is Case A2, and the class is set to Class 4 when the instant action happens.

The right figure in Figure 15 is Case A3, and the class is set to Class 5 when the instant action

occurs.

Figure 15. Detection of Sudden Acceleration (Case A2) and Sudden Deceleration (Case A3).

37

5 OPTIMIZED TRAJECTORY PREDICTION BY EKF AND

BEHAVIOR CLASSIFICATION

In order to predict pedestrian trajectories accurately, extended Kalman filter (EKF)

discussed in Section 3 and the behavior classification in Section 4 have been combined into one

predictive system to perform the prediction. The EKF will reduce the observation noise of the

detected pedestrian data, and the behavior classification will track instant actions of the

pedestrian’s sudden movement. In this prediction system integrated by the EKF and

classification, the pedestrian data will initially be processed by the EKF process when the

pedestrian is moving at constant speed. Once an instant action of one of the classification cases is

detected by the system, the EKF process will stop calculation and reset its state and parameters.

When the instant action detection is finished, the prediction system will restart the EKF process.

When this prediction system performs EKF filtering, the situation is defined as the EKF

process. When this system stops the EKF and analyzes the pedestrian instant actions using

behavior classification, this situation is defined as the Classification process. The main purpose

of combining these two processes is to optimize the trajectory prediction by reducing the error

rate, which is defined by equation: (𝑧 − 𝑥𝑝)/𝑥𝑝, where 𝑧 is the observed position of the

pedestrian, and 𝑥𝑝 is the predicted position.

The Time to Collision (TTC) was originally defined by Hayward as “the time required for

two vehicles to collide if they continue at their present speed and on the same path. It is

measured continuously with time.” [24] The TTC is a key element in the AEB Pedestrian system

of the ADAS, and the TCC calculation is based on the pedestrian trajectory prediction. In the

38

ADAS camera used in this study, the default TTC is set to 7 seconds, which is a relatively safe

time range for collision avoidance. In some previous studies, the average TTC was observed to

be 1.1 seconds, and the maximum TTC was observed to be 4.4 seconds for their experimental

vehicles [25]. For this thesis, the braking decision was made based on the 7-second TTC.

5.1 Combination of Extended Kalman Filter and Behavior

Classification

In the previous sections, the EKF and the behavior classification were implemented

separately. A method of combining EKF and behavior classification will be discussed in this

section. For this new method, the main real-time flowchart is shown in Figure 16 below:

Figure 16. The State Flow of the Combination of EKF and Behavior Classification.

First, the system starts the EKF process to remove the observation noise and predicts the

new state and update its parameters. Then, the system will process 30 frames of pedestrian video

39

data by behavior classification. If an instant action is not detected, the system will calculate the

TTC from the results of the EKF process. If the TTC exceeds the limit, the brake alarm will be

turned on. Otherwise, the system will restart the EKF process. If an instant action is detected by

the behavior classification, the system will make a new prediction based on the behavior

classification, and it will then calculate the TTC from the results of the Classification process. If

the TTC exceeds the limitation, the brake alarm will be turned on. Otherwise, the system will

restart the EKF process.

This thesis has proposed two improvements in the state of the art of pedestrian trajectory

determination in Ego Car ADAS systems. The first improvement is based on the EKF process

where the “one state ahead” prediction of a pedestrian trajectory can save a 2-frame period for

pedestrian collision avoidance. The EKF process will also remove the observation noise to obtain

a smoother pedestrian trajectory.

The second improvement is in the classification of pedestrian behavior which can predict

instant actions made by a pedestrian, where the ADAS camera cannot predict instant actions. The

new method combined with the EKF and the behavior classification will provide a more

advanced prediction time reduction and instant action classes to predict the pedestrian trajectory

faster and more accurate.

The combination system will take these two improvements together to make the pedestrian

trajectory prediction more accurate. When there is no instant action detected by the system, the

EKF process will provide a noise-reduced prediction of the next pedestrian’s step, and when

there is an instant action detected by this system, the behavior classification process will provide

a prediction based on the classified actions.

40

5.1.1 Input Data for Extended Kalman Filter and Classification

The input data to the EKF process and the classification process are different: the raw

position data from the ADAS camera is the input data to the EKF process. Since the EKF process

is more focused on the fast computation of the next state in the real-time system, and it can also

remove the observation noise by continually updating the covariance matrix 𝑝𝑘 and the state 𝑥𝑘.

The classification process is much more focused on measuring the changes of the pedestrian

heading angle and acceleration data in a 30 frames period to detect when an instant action

occurs. Hence the input data to the classification process is well-filtered average velocity data of

the pedestrian. The average velocity data is used to calculate the pedestrian heading angle and

acceleration.

In this overall system that combines the EKF and the classification processes, the input data

need to be used in two different processes. First, the raw position data of a pedestrian from the

ADAS camera will be used for the EKF process. Second, the raw velocity will be calculated

from the raw position data for the classification calculation. The initial calculated velocity is

noisy and unstable so that an extra noise filter will be applied to the raw velocity and an average

will be taken by 30 frames. At this point, a well-filtered average velocity can be sent to the

Classification process as the input data.

5.1.2 Implementation of Extended Kalman Filter and Classification in

Real Time

The implementation of the EKF process is easy to do with only one pedestrian from the

ADAS camera, but in real-life applications, multiple pedestrians need to be tracked at the same

time. Although this study only considers examples of one single pedestrian, a Matlab program of

the EKF process in this study has been implemented to support multiple pedestrian tracking.

41

When multiple pedestrians are tracked in real-time, all the required state data and position

data need to be saved to the system buffer for one frame in order to be used in the next frame of

the state calculation and prediction. Each system buffer will need to be assigned an index

number.

To apply behavior classification in a real-time system, a sequence of 30 frames needs to be

analyzed to perform data filtering and to obtain an average. At the same time, this 30-frame

sequence must be used for the characteristics capture of an action detection. Therefore, in the

classification process, a 30-frames data buffer is required for two purposes. One is to filter and

average the velocity, and the other is to detect the changes in the heading angle and acceleration.

In the real-time integrated system, the classification process will start after the first 30 frames,

and the initial average velocity will be calculated. Before the classification process, the system

will run the EKF process.

5.2 Analysis of Prediction of Pedestrian Trajectories

In this study, the EKF was implemented to provide a noise-reduced prediction for one state

ahead based on the observed position of the pedestrian. This system will continuously process

the whole video from the ADAS camera, and when a pedestrian is found to be first entering the

video the EKF will be restarted and all of the covariance matrices and error parameters will be

reset to their initial values.

For a single pedestrian being tracked by the EKF in this study, each calculation is

performed in single frame increments, and the Mobileye ADAS camera saves one frame data in

every two frames. The EKF will predict the next state for a pedestrian in the next frame and by

this prediction, a two frames period can be saved, which takes 0.11 seconds. This is an

42

improvement over a current pedestrian tracking system, since it offers faster calculation and a

more accurate prediction by the EKF process.

Figure 17 shows the prediction error percentages of Case A1 and Case A4. Case A1 has no

instant action. Hence the error rate is low and Case A4 has an instant action with a direction

change, so the error rate is higher at that point.

Error Rate (%)

Frames #

Figure 17. Comparing Error Rates of Case A1 and Case A4 in EKF.

Behavior classification will fix the high error rate problem during the pedestrian

trajectory prediction by detecting instant actions and making a new prediction of the pedestrian’s

next step. Combining both the EKF and behavior classification will optimize the accuracy and

reduce the error rate of the trajectory prediction. In Figure 18, the error rate of Case A4 is

calculated based on the combination of the EKF and behavior classification. Compared to the

error rate of Case A4 in Figure 17, the error range in Figure 18 is lower.

43

Frames #

Error Rate (%)

Figure 18. Error Rate of Case A4 in the Combined Method.

5.3 Time to Collision based on Pedestrian Trajectory Prediction

In the real-time system, the TTC should be continuously calculated for each frame of a

video. Obtaining the TTC is a critical step of pedestrian trajectory prediction. For instant actions

of the pedestrian, the safety time will be less due to the unsafe actions of the pedestrian. Once the

TTC is above the limit, the system will set a brake alarm to warn the driver so that an impact on

the pedestrian can be avoided. In this study, the TTC needed to be calculated for both the EKF

and Classification processes.

5.3.1 Introduction to Computing Time to Collision

Based on the pedestrian movement cases in this study, calculations of the TTC are divided

into three situations. The first situation is when the Ego Vehicle and the pedestrian are moving in

the same direction and the TTC of Case B can be calculated for this situation. The second

situation is when a pedestrian crosses a street and the Ego Vehicle moves in a perpendicular

44

direction to the pedestrian’s movement. The third situation begins with the second situation, but

the pedestrian changes direction when crossing the street.

In the first situation shown in Figure 19, the Ego Vehicle and an observed pedestrian are

moving in the same direction and along the same path, which is the basic situation of the TTC

calculation. The TTC can be calculated by the following equation:

𝑇𝑇𝐶 =
𝐿𝑜

𝑉𝑓 − 𝑉𝑙

(Eq 5.1)

𝑉𝑓 is the velocity of the Ego Vehicle. 𝑉𝑙 is the velocity of an observed pedestrian. 𝐿𝑜 is the

distance between the Ego Vehicle and the pedestrian.

Figure 19. The Ego Vehicle and Pedestrian Move in the Same Direction.

In the second situation, the observed pedestrian is crossing a street with 0 degrees heading

angle and the Ego Vehicle is moving on the street in a straight direction, shown in Figure 20. If

the pedestrian’s velocity is too slow or too fast, collision between the pedestrian and the Ego

Vehicle won’t occur. Hence time required for the pedestrian to move to the edge of the road

needs to be calculated. For the near edge, time for the pedestrian to move to the edge can be

calculated as 𝑇𝑜2_1 = 𝐿𝑜2_1/𝑉𝑙. Here 𝐿𝑜2_1 is the distance between the pedestrian and the closer

edge of the road. 𝑉𝑙 is the velocity of the pedestrian arriving before the road. For the far edge,

time of pedestrian reaches the edge can be calculated as 𝑇𝑜2_2 = 𝐿𝑜2_1/𝑉𝑙. Here 𝐿𝑜2_2 is the

45

distance between the pedestrian to the further edge of road. Time for the Ego Vehicle to reach the

pedestrian latitudinal position can be calculated as 𝑇𝑜 = 𝐿𝑜1/𝑉𝑓. Here 𝐿𝑜1 is the distance

between the Ego Vehicle and the pedestrian. A collision will only occur when 𝑇𝑜2_1 ≤ 𝑇𝑜 ≤

 𝑇𝑜2_2. The TTC can be calculated by the following equation:

𝑇𝑇𝐶 =
𝐿𝑂1

𝑉𝑓

(Eq 5.2)

Figure 20. A Pedestrian Crosses a Street in Front of the Ego Vehicle.

In the third situation, the pedestrian will make a change in direction when crossing a

street and two possible directions are shown in Figure 21. For the near edge, time for a

pedestrian to reach the edge can be calculated as 𝑇𝑜2_𝑠1 = 𝐿𝑜2_𝑠1 / 𝑉𝑙_1. Here 𝐿𝑜2_𝑠1 is the

distance between the pedestrian and the closer edge of the road. Here 𝑉𝑙_1 is the velocity of the

pedestrian arriving at the road. For the far edge, time for a pedestrian to reach the edge can be

calculated as 𝑇𝑜2_1 = 𝐿𝑜2_1 / 𝑉𝑙_1 + 𝐿𝑜2_2 / 𝑉𝑙_2. Here 𝐿𝑜2_1 is the distance of a pedestrian

without direction change, and 𝐿𝑜2_2 is the distance of pedestrian after the direction change. Here

𝑉𝑙_2 is the velocity of the pedestrian on 𝐿𝑜2_2 direction. Time the Ego Vehicle takes to reach the

46

pedestrian’s latitudinal position can be calculated as 𝑇𝑜1 = 𝐿𝑜1 / 𝑉𝑓. A collision will only

happen when 𝑇𝑜2_𝑠1 ≤ 𝑇𝑜1 ≤ 𝑇𝑜2_1.

The TTC can be calculated in two situations: A collision occurs before or after the

pedestrian changes direction. When a collision occurs before the pedestrian changes direction,

time when the vehicle reaches the pedestrian will be 𝑇𝑜 ≤ 𝐿𝑜2_1/𝑉𝑙, and the equation is:

𝑇𝑇𝐶1 =
𝐿𝑂2

𝑉𝑓 − 𝑉1_1

(Eq 5.3)

When a collision occurs after a pedestrian changes direction, time when the vehicle

reaches the pedestrian will be 𝑇𝑜 ≥ 𝐿𝑜21
/𝑉𝑙, and the equation is:

𝑇𝑇𝐶2 =
𝐿𝑂2

𝑉𝑓 − 𝑉1_1 ∗ sin (θ)

(Eq 5.4)

𝐿𝑜2 is the distance between the Ego Vehicle and the pedestrian. θ is the heading angle of

the pedestrian.

Figure 21. A Pedestrian Crosses a Street in Front of the Ego Vehicle with Direction

Changes.

47

5.3.2 Computation of Time to Collision by the Extended Kalman Filter

When the instant action is not detected by the system, the TTC of the EKF process needs to

be calculated for this situation. In the EKF process, every time the observed pedestrian data is

taken into the EKF system, the new state will be predicted. Then the new position and velocity

will be updated by the new state.

First, time for the Ego Vehicle to reach the pedestrian’s longitudinal position, 𝑡1, can be

calculated as 𝑡1 = 𝑥𝑙𝑜𝑛𝑔/𝑣𝑐𝑎𝑟, where 𝑥𝑙𝑜𝑛𝑔 is the longitudinal distance from the updated step of

the EKF process between the Ego Vehicle and the pedestrian, and 𝑣𝑐𝑎𝑟 is the velocity of the Ego

Vehicle. Next, time when the pedestrian enters the driving path, 𝑡2, can be calculated as 𝑡2 =

 (𝑥𝑙𝑎𝑡 – 𝑙)/𝑣𝑙𝑎𝑡, where 𝑥𝑙𝑎𝑡 is the pedestrian’s latitudinal position from the updated step of the

EKF process from the center line of the Ego Vehicle to the pedestrian in the latitudinal direction.

Here 𝑥𝑙𝑎𝑡 − 𝑙 denotes the pedestrian’s latitudinal position minus half of the width of the Ego

Vehicle, where the width is 2 meters for a full-size car. Then time when the pedestrian leaves the

driving path can be calculated as 𝑡3 = (𝑥𝑙𝑎𝑡 + 𝑙)/𝑣𝑙𝑎𝑡. Here 𝑥𝑙𝑎𝑡 + 𝑙 means the pedestrian

latitudinal position plus half of the width of the Ego Vehicle.

When 𝑡1 is greater than or equal to 𝑡2, the pedestrian will collide with the Ego Vehicle. If

𝑡1 < 𝑡2, the Ego Vehicle will arrive at the pedestrian’s latitudinal position and the pedestrian can

see the vehicle moving in front of him/her and will not cross the street, which is a safe situation,

needing no further consideration. If 𝑡1 > 𝑡3, the pedestrian has already crossed the street before

the Ego Vehicle reaches the pedestrian’s latitudinal position, which is also a safe situation.

48

5.3.3 Computation of Time to Collision by Behavior Classification

When the instant action is detected by the system, the TTC of the Classification process

needs to be calculated. In the Classification process, each instant classification will predict a new

position and calculate an average velocity for the pedestrian. Based on the new predicted

position and the new average velocity, the TTC can be calculated.

First, elapse time when the Ego Vehicle reaches the pedestrian in longitudinal direction t1

can be calculated as 𝑡1 = 𝑥𝑙𝑜𝑛𝑔/𝑣𝑐𝑎𝑟, where 𝑥𝑙𝑜𝑛𝑔 is the longitudinal distance from the

classification prediction process between the Ego Vehicle and the pedestrian, and 𝑣𝑐𝑎𝑟 is the

velocity of the Ego Vehicle. Next, elapse time when a pedestrian enters the driving path can be

calculated 𝑎𝑠 𝑡2 = (𝑥𝑙𝑎𝑡 – 𝑙)/𝑣𝑙𝑎𝑡, where 𝑥𝑙𝑎𝑡 is the pedestrian’s latitudinal position from the

classification prediction process, measured from the centerline of the Ego Vehicle to the

pedestrian in the latitudinal direction. Then, elapse time when the pedestrian leaves the driving

path can be calculated as 𝑡2 = (𝑥𝑙𝑎𝑡 + 𝑙)/𝑣𝑙𝑎𝑡. Just as with the TTC of the EKF process, when

𝑡1 is greater than or equal to 𝑡2, the pedestrian will collide with the Ego Vehicle.

5.3.4 Analysis of TCC by Extended Kalman Filter and Classification

In the EKF process and Classification process, the TTC is calculated by the same method but

with different positions and velocity inputs. In the EKF process, the position information used in

the TTC calculation is from the EKF update step, which updates the velocity and position

information using the predicted parameters. In the Classification process, the information comes

from the prediction of the classified instant action that has a smoother and noise-reduced velocity

and position data. In Figure 22, the EKF Process has a TTC based on the predicted next state.

However, with little noise, the Classification process has a more stable trend, but it can only

calculate the TTC of the past 30 frames.

49

Figure 22. Comparison of TTC in the EKF Process and Classification Process.

There are four instant actions shown in Figure 23, the red markers are the original TTC from

the ADAS Camera, and the blue markers are the predicted TTC from this study. The y-axis is the

TTC in seconds, and the x-axis is the number of frames. These four instant actions are two for

Case A6 and two for Case A4. The original TTC does not include the instant action classification

and will not calculate an accurate TTC for the pedestrian. The predicted TTC is calculated based

50

on the prediction of both the EKF and the pedestrian behavior classification, and this yields more

accurate TTC for AEB Pedestrian to set the brake warning.

Figure 23. Comparison of TTC from the ADAS Camera and TTC Calculated from the

Predicted Trajectory.

51

6 CONCLUSION AND FUTURE DEVELOPMENT

The observation noise of the pedestrian position data was removed by the EKF, and a

new state was predicted by the previous state. The EKF is a dynamic model capable of fast

calculations, of removing noise, of self-correction and of predicting a new state from a previous

state, which does not require saving the data in its history database.

For behavior classification, the pedestrian’s instant actions were detected based on the

pedestrian heading angle and acceleration. The heading angle and the acceleration were

calculated from the new average velocity. The main idea is to calculate the average velocity from

the position data of the pedestrian by reducing noise due to velocity fluctuation and by taking the

average of velocities over 30 frames.

This study proposes an improved method of predicting pedestrian trajectory by

combining the EKF and behavior classification to predict pedestrian trajectory from raw

pedestrian position data from the ADAS camera. The EKF was used to smooth the original

position data to remove the observation noise and to predict a new position. The EKF provides a

fast calculation of the next state prediction and saves 0.11 seconds over two frames for the TTC

calculation. The resulting heading angle and acceleration were then calculated and used as inputs

to the behavior classification process in order to identify each behavior class based on the new

average velocity estimated from the previous filtering step. Behavior classification provides a

prediction with more stability and less noise.

52

Future work might entail using more training data and attempting to classify a larger

variety of pedestrian actions into more detailed classes. Weather conditions and night time

conditions could be added as variables for the prediction. The location of the Ego Vehicle could

be provided by GPS and this information might be added to the prediction. Regarding the

hardware of the ADAS camera, a newer generation of the Mobileye camera will be released in

2020 [26], which will have a face detection function. With this function, behavior classification

will be more accurate with respect to heading angle detection.

53

LIST OF REFERENCES

[1] “ADAS technology,” 2018. [Online]. Available: https://www.mobileye.com/our-

technology/adas/.

[2] “Euro NCAP | Timeline.” 2017. [Online]. Available: https://www.euroncap.com/en/about-

euro-ncap/timeline/.

[3] “Pedestrian Safety | NHTSA.” 2017 [Online]. Available: https://www.nhtsa.gov/road-

safety/pedestrian-safety.

[4] “U.S. DOT and IIHS announce historic commitment of 20 automakers| NHTSA.” 2017

[Online]. Available: http://www.iihs.org/iihs/news/desktopnews/u-s-dot-and-iihs-

announce-historic-commitment-of-20-automakers-to-make-automatic-emergency-braking-

standard-on-new-vehicles.

[5] Zhijun Chen, Chaozhong Wu, Nengchao Lyu, Gang Liu, and Yi He, “Pedestrian-vehicular

collision avoidance based on vision system,” 7th IEEE International Conference

Intelligent Transportation System, October 3-6, 2004, Washington, WA. 2004.

[6] “ABOUT MOBILEYE N.V.,” 2018. [Online]. Available: https://www.mobileye.com/en-

us/about-mobileye/.

[7] Kirsten Korosec, “Mobileye, Why Intel Bought,” 2017. [Online]. Available:

http://fortune.com/2017/03/13/why-intel-bought-mobileye/.

[8] “Intel: 2M Nissan, BMW, VW Cars Will Use Mobileye,” 2018. [Online]. Available:

https://www.investopedia.com/news/intel-2m-nissan-bmw-vw-cars-will-use-mobileye/

[9] Pablo Negri and Damian Garayalde, “Concatenating multiple trajectories using Kalman

filter for pedestrian tracking,” 2014 IEEE Biennial Congress of Argentina, June 11-13,

2014, Bariloche, Argentina, 2014.

[10] Fuliang Li, Ronghui Zhang, and Feng You, “Fast pedestrian detection and dynamic

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6857932

54

tracking for intelligent vehicles within V2V cooperative environment,” IET Image

Processing, vol. 11, no. 10, pp. 833-840, 2017.

[11] Kang Chen and Wangchen Ge, “Pedestrian tracking algorithm based on Kalman filter and

partial mean-shift tracking,” 2nd International Conference System Informatics, November

15-17, 2014, Shanghai, China, 2014.

[12] Yanwu Xu, Xiaobin Cao, and Tingxia. Li, “Extended Kalman filter based pedestrian

localization for collision avoidance,” 2009 International Conference Mechatronics

Automation, August 9-12, 2009, Changchun, China, 2009.

[13] David Ellis, Eric Sommerlade, and Ian Reid, “Modelling pedestrian trajectory patterns

with Gaussian processes,” IEEE 12th International Conference Computer Vision,

September 27 - October 4, 2009, Kyoto, Japan, 2009.

[14] Kihwan Kim, Dongryeol Lee, and Iifan Essa, “Gaussian process regression flow for

analysis of motion trajectories,” 2011 IEEE International Conference Computer Vision,

November 6-13, Barcelona, Spain, 2011.

[15] Yufan Chen, Miao Liu, Shih-Yuan Liu, Justin Miller, and Jonathan P. How, “Predictive

Modeling of Pedestrian Motion Patterns with Bayesian Nonparametrics,” 2016 AIAA

Guidance Navigation Control Conference, January 4-8, 2016, San Diego, California,

2016.

[16] Neil Thacker, Tony Lacey, “Tutorial: The kalman filter,” Imaging Science and Biomedical

Engineering Division - Tina Memo no. 1006-002. pp. 133–140, 1998.

[17] Simon. D. Levy, “The Extended Kalman Filter: An Interactive Tutorial.” 2016 [Online],

Available at: https://home.wlu.edu/~levys/kalman_tutorial/

[18] Zhuo. Chen, Daniel Chi Kit Ngai, Nelson Hon Ching Yung “Pedestrian Behavior

Prediction based on Motion Patterns for Vehicle-to-Pedestrian Collision Avoidance,” 11th

Intelligent Transportation System International Conference IEEE, October 12-15, 2008,

Beijing, China, 2008.

[19] Ying Ni, Yingying Cao, and Keping Li, “Pedestrians’ Safety Perception at Signalized

Intersections in Shanghai,” Transportation Research Procedia, vol. 25, no. June, pp.

1960–1968, 2017.

55

[20] Steven Bennett, Adam Felton, and Rahmi Akçelik, “Pedestrian movement characteristics

at signalized intersections,” 23rd Conference Australia Institutes Transportation Research,

December 10-12, 2001, Melbourne, Australia, 2001.

[21] Mohammed M. Hamed, “Analysis of pedestrians’ behavior at pedestrian crossings,” Safety

Science, vol. 38, no. 1, pp. 63–82, 2001.

[22] Daniel V. McGehee, Elizabeth N. Mazzae, and GH Scott Baldwin, “Driver Reaction Time

in Crash Avoidance Research: Validation of a Driving Simulator Study on a Test Track,”

Processing Human Factors Ergonomics Society Annual Meeting, vol. 44, no. 20, pp. 3-

320-3–323, 2000.

[23] Ross Grote Stirling, “Development of a Pedestrian Navigation System Using Shoe

Mounted Sensors,” University of Alberta Master Thesis of 2004 Canada.

[24] John C. Hayward, “Near-Miss Determination Through,” Highway Research Board, vol.

384, no. 385-1972, pp. 24–35, 1971.

[25] Kristofer D. Kusano, Hamptom Gabler, “Method for Estimating Time to Collision at

Braking in Real-World, Lead Vehicle Stopped Rear-End Crashes for Use in Pre-Crash

System Design,” SAE International Journal Passenger Cars - Machines Systems, vol. 4,

no. 01-0576, pp. 435-443, 2011.

[26] “The Evolution of EyeQ,” 2018. [Online]. Available: https://www.mobileye.com/our-

technology/evolution-eyeq-chip/.

56

APPENDICES

57

Appendix A. ADAS Camera User Interface Matlab GUI Design

58

Appendix B. Matlab Program of Callback functions with GUI

function varargout = AHBC(varargin)

% AHBC MATLAB code for AHBC.fig

% AHBC, by itself, creates a new AHBC or raises the existing

% singleton*.

%

% H = AHBC returns the handle to a new AHBC or the handle to

% the existing singleton*.

%

% AHBC('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in AHBC.M with the given input arguments.

%

% AHBC('Property','Value',...) creates a new AHBC or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before AHBC_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to AHBC_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help AHBC

% Last Modified by GUIDE v2.5 08-Feb-2016 16:01:00

% Begin initialization code - DO NOT EDIT

 gui_Singleton = 1;

 gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @AHBC_OpeningFcn, ...

 'gui_OutputFcn', @AHBC_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

59

 'gui_Callback', []);

 if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

 end

 global v;

 global p_frame_buf;

 global p_frame_data;

 % Init value for image buffer

 v = zeros(1280,960,'uint8');

 % Pointer to image buffer

 p_frame_buf = libpointer('uint8Ptr',v);

 % For sync data

 struct frame_data ('idx',0,'gid',0,'time',0,'drop',0);

 loadlibrary('vidsframe',@mHeader);

 p_frame_data = libpointer('FRAME_DATAPtr');

 if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

 else

 gui_mainfcn(gui_State, varargin{:});

 end

% End initialization code - DO NOT EDIT

% --- Executes just before AHBC is made visible.

function AHBC_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to AHBC (see VARARGIN)

% Choose default command line output for AHBC

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% --- Outputs from this function are returned to the command line.

function varargout = AHBC_OutputFcn(hObject, eventdata, handles)

60

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in OpenButton. open button

function OpenButton_Callback(hObject, eventdata, handles)

% hObject handle to OpenButton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global filename;

global pathname;

global filter;

global currentFrame;

global avi_path;

global mudp_path;

global mudp_data;

global nFrame;

global startStopPauseFlag;

currentFrame =1;

startStopPauseFlag = 0;

[filename pathname filter] = uigetfile('*.avi','Select AVI File');

avi_path = [pathname,filename]

calllib('vidsframe', 'open', avi_path);

ind = findstr(avi_path, '.');

mudp_path = [avi_path(1:ind),'mudp']

mudp_data = read_mudp_data(mudp_path, [5]);

nFrame = calllib('vidsframe','get_nFrame');

set(handles.path,'String',avi_path);

set(handles.slider1,'Sliderstep',[1/nFrame,1/nFrame]);

set(handles.slider1,'Max',nFrame);

61

% --- Executes on button press in Start.

function Start_Callback(hObject, eventdata, handles)

% hObject handle to Start (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

 global p_frame_buf;

 global frame_data;

 global p_frame_data;

 global mudp_data;

 global nFrame;

 global currentFrame;

 global startStopPauseFlag;

 global lastFlag;

 global Type;

 % Buttom state

 lastFlag = startStopPauseFlag;

 startStopPauseFlag =0;% start 0; stop 1; pause 2;

 if(lastFlag ~= 2)

 currentFrame =1;

 lastFlag=0;

 end

 if(lastFlag == 2)

 currentFrame

 end

 % Kalman filter initialization

 pre_ID = 0;

 MR = 5; % the inital state value

 MC = 5;

 r1=0.2;

 r2=0.02;

 R=[[r1,0]',[0,r2]']; % Measurement error covariance

 H=[[1,0]',[0,1]',[0,0]',[0,0]'];

 Q=0.01*eye(4); % State error covariance

 dt=1; % Step

 A=[[1,0,0,0]',[0,1,0,0]',[dt,0,1,0]',[0,dt,0,1]']; % Jacobian matrix

 Bu = [0,0,0,0]'; % Control Signal is none

62

 xyv=zeros(100,4);

 count = 1;

 est_lat_vel_ped=zeros(nFrame,1);

 est_long_vel_ped=zeros(nFrame,1);

 lat_pos_ped = zeros(nFrame,1);

 long_pos_ped = zeros(nFrame,1);

 lat_pos_ped_pre = zeros(nFrame,1);

 long_pos_ped_pre = zeros(nFrame,1);

 lat_ped_vel = zeros(nFrame,1);

 ctrf = 1;

 nextStepClassifiy =0;

 set(handles.slider1,'Sliderstep',[1/nFrame,1/nFrame]);

 for i = currentFrame:nFrame

 set(handles.slider1,'Value',currentFrame);

 if(startStopPauseFlag ~= 0)

 break;

 end

 ctrf = ctrf + 1;

 axes(handles.Topview);

 if(i == nFrame)

 i = nFrame-1;

 end

 plainviewplayer(i,handles);

 % Pedestrian selection and movement

 if(mudp_data.vision_obstacles_info.visObs.obstacle_class(i,1) ~= 4)

 buf = sprintf('ID: %s Type: %s TTC: %s ', '----', '----', '----');

 set(handles.spot1,'String', buf);

 else

 lat_pos_ped(i) = mudp_data.vision_obstacles_info.visObs.lat_pos(i,1);

 long_pos_ped(i) = mudp_data.vision_obstacles_info.visObs.long_pos(i,1);

 lat_ped_vel(i) = mudp_data.vision_obstacles_info.visObs.lat_vel(i,1);

 % long_ped_vel(i) = mudp_data.vision_obstacles_info.visObs.long_vel(i,1);

 if(i > 1)

 lat_pos_ped_pre(i) = mudp_data.vision_obstacles_info.visObs.lat_pos(i-1,1);

 long_pos_ped_pre(i) = mudp_data.vision_obstacles_info.visObs.long_pos(i-1,1);

 end

63

 ID = mudp_data.vision_obstacles_info.visObs.id(i,1);

 Type = mudp_data.vision_obstacles_info.visObs.obstacle_class(i,1);

 ad_ttc(i) = mudp_data.vision_obstacles_info.visObs.ttc_const_vel(i,1);

 car_vel = mudp_data.vision_vehicle_info.vehicleVelocity(i);

 %EKF

 x_po = lat_pos_ped(i);

 y_po = long_pos_ped(i);

 if(ID ~= pre_ID)

 kfinit=0;

 m = 1;

 count = count +1;

 else

 m =m +1;

 end

 x(m) = x_po; % Obervation data

 y(m) = y_po; % zk = [x[i] y[i]]

 hold on;

 % rectangle('Position', [x(m), y(m), 15, 15],'EdgeColor', 'r');

 processFlag=0;

 % Kalman Predict if kfinit is not 0, otherwise initialize parameters

 if kfinit==0

 xp = [MC/2,MR/2,0,0]';

 P = 1*eye(4); % Process error covariance

 PP= P;

 else

 xp=A*xyv(m-1,:)' + Bu;

 PP = A*P*A' + Q;

 end

 kfinit=1;

 % Update

 K = PP*H'*inv(H*PP*H'+R);

 xyv(m,:) = (xp + K*([x(m),y(m)]' - H*xp))';

 P = (eye(4)-K*H)*PP;

 xyv(m,3) = lat_ped_vel(i);

 rectangle('Position',[xyv(m,1),xyv(m,2),0.5,0.5],'Curvature',1,'facecolor','yellow');

 plot(handles.Topview, [xyv(m,1)+0.25 lat_pos_ped(i)+0.25],[xyv(m,2)+0.25

long_pos_ped(i)+0.25], 'color', 'black');

 hold off;

 pre_ID =ID;

64

 % Classification of theta

 er_vel = 3; %

 dd=4;

 dt = 0.44;

 if(ctrf > 1 && i > 2 && i< 1086)

 if(abs(lat_pos_ped(i) - lat_pos_ped(i-1))/0.055 < er_vel)

 est_lat_vel_ped(ctrf) = (lat_pos_ped(i) - lat_pos_ped_pre(i))/0.055;

 else

 est_lat_vel_ped(ctrf) = est_lat_vel_ped(ctrf-1);

 end

 if(abs(long_pos_ped(i) - long_pos_ped(i-1))/0.055 < 1)

 est_long_vel_ped(ctrf) = (long_pos_ped(i) - long_pos_ped_pre(i))/0.055;

 else

 est_long_vel_ped(ctrf) = est_long_vel_ped(ctrf-1);

 end

 if(ctrf > 30)

 mean_est_long_vel_ped(ctrf) = mean(est_long_vel_ped(ctrf-30:ctrf));

 mean_est_lat_vel_ped(ctrf) = mean(est_lat_vel_ped(ctrf-30:ctrf));

 mean_est_theta_ped(ctrf) =

rad2deg(atan(mean_est_long_vel_ped(ctrf)/mean_est_lat_vel_ped(ctrf)));

 est_lat_acc_ped(ctrf) = (mean_est_lat_vel_ped(ctrf)-mean_est_lat_vel_ped(ctrf-dd))/dt;

 % Check sudden actions based on 30 frames

 g_arr = zeros(1,30);

 a_arr = zeros(1,30);

 d_arr = zeros(1,30);

 gCheckPre30 = zeros(1,30);

 aCheckPre30 = zeros(1,30);

 dCheckPre30 = zeros(1,30);

 for h = 1:30

 g_arr(h) = mean_est_theta_ped(ctrf+1-h)-mean_est_theta_ped(ctrf-h);

 a_arr(h) = est_lat_acc_ped(ctrf+1-h) - est_lat_acc_ped(ctrf-h);

 d_arr(h) = -a_arr(h);

 if(h>1 && g_arr(h) -g_arr(h-1) < 20)

 gCheckPre30(h) = 1;

 end

65

 if(h>1 && a_arr(h) -a_arr(h-1) < 0.15 && a_arr(h) ~= 0)

 aCheckPre30(h) = 1;

 end

 if(h>1 && d_arr(h) - d_arr(h-1) > -0.15 && a_arr(h) ~= 0)

 dCheckPre30(h) = 1;

 end

 end

 cp = sum(gCheckPre30);

 ap = sum(aCheckPre30);

 dp = sum(dCheckPre30);

 if(cp == 29 && mean_est_theta_ped(ctrf)-mean_est_theta_ped(ctrf-1) >150)% Check Sudden

back

 nextStepClassifiy = 1;

 elseif(cp == 29 && mean_est_theta_ped(ctrf)-mean_est_theta_ped(ctrf-29)> 30 &&

mean_est_theta_ped(ctrf)>0 && mean_est_theta_ped(ctrf-29)<0)% sudden far

 nextStepClassifiy = 2;

 elseif(cp == 29 && abs(mean_est_theta_ped(ctrf)-mean_est_theta_ped(ctrf-29))> 30 &&

mean_est_theta_ped(ctrf)<0 && mean_est_theta_ped(ctrf-29)>0)% sudden close

 nextStepClassifiy = 3;

 end

 if(ap == 29)% Check acceleration

 nextStepClassifiy = 4;

 elseif(dp == 29)% Check dcceleration

 nextStepClassifiy = 5;

 end

 if(nextStepClassifiy ==1)% Check Sudden back

 mean_est_lat_vel_ped(ctrf+1)=mean_est_lat_vel_ped(ctrf-1);

 elseif (nextStepClassifiy ==2)% sudden far

 mean_est_long_vel_ped(ctrf) = 1.02*mean_est_long_vel_ped(ctrf);

 elseif (nextStepClassifiy ==3)% sudden close

 mean_est_long_vel_ped(ctrf) = 0.98*mean_est_long_vel_ped(ctrf);

 elseif (nextStepClassifiy ==4)

 mean_est_lat_vel_ped(ctrf)=1.02*mean_est_lat_vel_ped(ctrf);

 elseif (nextStepClassifiy ==5)

 mean_est_lat_vel_ped(ctrf)=0.98*mean_est_lat_vel_ped(ctrf);

 else

 % Deflaut: no changes

 end

 if(mean_est_lat_vel_ped(ctrf) ~= 0)

 if(processFlag == 0) %ekf pro

66

 t1 = abs(xyv(m,2) / car_vel);

 t2 = abs((abs(xyv(m,1))-1)/xyv(m,3));

 t3 = abs((abs(xyv(m,1))+1)/xyv(m,3));

 ttc(ctrf) = abs(xyv(m,2) / (car_vel-xyv(m,3)));

 else

 t1 = abs(xyv(m,2) / car_vel);

 t2 = abs((abs(xyv(m,1))-1)/mean_est_lat_vel_ped(ctrf));

 t3 = abs((abs(xyv(m,1))+1)/mean_est_lat_vel_ped(ctrf));

 ttc(ctrf) = abs(xyv(m,2) / (car_vel-mean_est_long_vel_ped(ctrf)));

 end

 if(abs(ttc(ctrf)) > 8)

 ttc(ctrf) = 7;

 end

 if(t1 >= t2)

 if(ttc(ctrf)>10)

 buf = sprintf('ID:%-4d Type:%-4d TTC:%-4d', ID, Type, ttc(ctrf));

 else

 buf = sprintf('ID:%-4d Type:%-4d TTC:%-4d EXCEEDED', ID, Type, ttc(ctrf));

 end

 set(handles.spot1,'String', buf);

 end

 end

 end

 end

 end

 % Call function to play video

 calllib('vidsframe','seek',i);

 calllib('vidsframe','get_frame',p_frame_buf);

 p_frame_data = calllib('vidsframe', 'get_frame_info');

 axes(handles.Image);

 imshow(get(p_frame_buf,'Value')');

 % In Camera View

 % Mark the pedetrian position

% if(top>0 && bottom>0 && right-left>0 && top-bottom>0)

% %axes(handles.Image);

% rectangle('Position', [left, (960-top), (right-left), (top-bottom)],'EdgeColor', 'g');

% text(left, (960-top),txt_str,'color',[1,1,1]);

67

% end

% buf = sprintf('ID:%-4d Type:%-4d', ID, Type);

% set(handles.spot1,'String', buf);

% x_po = (left+right)/2;

% y_po = 960-(top+bottom)/2;

% rectangle('Position', [x_po, y_po, 15, 15],'EdgeColor', 'r');

 set(handles.slider1,'Value',currentFrame);

 currentFrame = currentFrame + 1;

 end

 nsize = size(mean_est_lat_vel_ped);

 if(startStopPauseFlag == 0)

 figure;

 subplot(4,1,1);

 plot(mean_est_lat_vel_ped(30:nsize(2)-1)); %nFrame

 axis([0 nsize(2) -6 6]);

 subplot(4,1,2);

 plot(mean_est_long_vel_ped(30:nsize(2)-1));

 axis([0 nsize(2) -6 6]);

 subplot(4,1,3);

 plot(mean_est_theta_ped(30:nsize(2)-1),'o');

 title('theta deg mean');

 axis([0 nsize(2) -100 100]);

 subplot(4,1,4);

 plot(est_lat_acc_ped(30:nsize(2)-1));

 title('Accel lat');

 axis([0 nsize(2) -3 3]);

 grid;

 figure;

 plot(ttc,'o');

 figure;

 plot(ad_ttc,'o');

 end

 if(startStopPauseFlag == 1 || startStopPauseFlag == 2)

 % Call function to play video

 calllib('vidsframe','seek',i);

 calllib('vidsframe','get_frame',p_frame_buf);

 p_frame_data = calllib('vidsframe', 'get_frame_info');

 axes(handles.Image);

 imshow(get(p_frame_buf,'Value')');

 ID = mudp_data.vision_obstacles_info.visObs.id(currentFrame,1);

 Type = mudp_data.vision_obstacles_info.visObs.obstacle_class(currentFrame,1);

68

 if(mudp_data.vision_obstacles_info.visObs.obstacle_class(currentFrame,1) ~= 4)

 buf = sprintf('ID:%-4d Type:%-4d TTC:%-4d', ID, Type, ttc(ctrf));

 set(handles.spot1,'String', buf);

 else

 axes(handles.Topview);

 plainviewplayer(currentFrame,handles);

 end

 end

unloadlibrary('vidsframe');

function plainviewplayer(idx,exdls)

global mudp_data;

global pos_veh;

global Type;

 vox=[0 0];

 voy=[-5 45];

 hox=[-25 25];

 hoy=[0 0];

 plot(vox,voy,hox,hoy);

 axis([-25 25 -5 45]);

 if(Type == 4)

 lat_ped_pos = mudp_data.vision_obstacles_info.visObs.lat_pos(idx,1);

 long_ped_pos = mudp_data.vision_obstacles_info.visObs.long_pos(idx,1);

 % Vehicle

 pos_veh = 0;%pos_veh + lat_vel_veh*0.055;

 rectangle('Position',[-1,-3.5+pos_veh,1.8,3.5],'facecolor','black');

 % Ped

 rectangle('Position',[lat_ped_pos,long_ped_pos+pos_veh,0.5,0.5],'facecolor','red');

 axis([-25 25 -5 45]);

 grid;

 end

% --- Executes on button press in Pause.

function Pause_Callback(hObject, eventdata, handles)

% hObject handle to Pause (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

69

% handles structure with handles and user data (see GUIDATA)

global startStopPauseFlag;

global lastFlag;

lastFlag = startStopPauseFlag;

startStopPauseFlag =2;

% --- Executes on button press in Stop.

function Stop_Callback(hObject, eventdata, handles)

% hObject handle to Stop (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global currentFrame;

global startStopPauseFlag;

global lastFlag;

global p_frame_buf;

global frame_data;

global p_frame_data;

lastFlag = startStopPauseFlag;

startStopPauseFlag =1;

currentFrame =1;

 videoplayer(currentFrame, handles);

 updateInfo(currentFrame, handles);

% --- Executes on slider movement.

function slider1_Callback(hObject, eventdata, handles)

% hObject handle to slider1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider

% get(hObject,'Min') and get(hObject,'Max') to determine range of slider

global nFrame;

global currentFrame;

global startStopPauseFlag;

global lastFlag;

70

lastFlag = startStopPauseFlag;

startStopPauseFlag =2;

click = get(hObject, 'Value');

currentFrame = int16(click);

 videoplayer(currentFrame, handles);

updateInfo(currentFrame, handles);

function drawLightArea(left,right, top, bottom, objExist)

 c_x = 684;

c_y = 340;

edge_h = 500.0;

k2=-0.269;

b2=804;

k1=0.234;

b1=460;

 %imshow(img);

 hold on;

 y1 = 960-(left*k1+b1);

 y2 = 960-(right*k2+b2);

if(objExist == 1)

 if(bottom >c_y)

 if(left <= c_x && right >= c_x)% in the middle

 if(y1<bottom && y2<bottom)

 c = [1 1 left left right right 1279 1279];

 r = [959 edge_h y1 bottom bottom y2 edge_h 959];

 plot(c,r,'y');

 elseif(y1<bottom && y2>bottom)

 x2 = (960-bottom-b2)/k2;

 c = [1 1 left left x2 1279 1279];

 r = [959 edge_h y1 bottom bottom edge_h 959];

 plot(c,r,'y');

 elseif(y1>bottom && y2<bottom)

 x1 = (960-bottom-b1)/k1

 c = [1 1 x1 right right 1279 1279];

 r = [959 edge_h bottom bottom y2 edge_h 959];

71

 plot(c,r,'y');

 elseif(y1>=bottom && y2>=bottom)

 x1 = (960-bottom-b1)/k1;

 x2 = (960-bottom-b2)/k2;

 c = [1 1 x1 x2 1279 1279];

 r = [959 edge_h bottom bottom edge_h 959];

 plot(c,r,'y');

 end

 else

 if(left>c_x)%on right side

 y1 = 960-(left*k2+b2);

 if(y1<=bottom && y2<=bottom)

 c = [1 1 c_x left left right right 1279 1279];

 r = [959 edge_h c_y y1 bottom bottom y2 edge_h 959];

 plot(c,r,'y');

 elseif(y1<bottom && y2>bottom)

 x2 = ((960-bottom)-b2)/k2;

 c = [1 1 c_x left left x2 1279 1279];

 r = [959 edge_h c_y y1 bottom bottom edge_h 959];

 plot(c,r,'y');

 else

 c = [1 1 c_x 1279 1279];

 r = [959 edge_h c_y edge_h 959];

 plot(c,r,'y');

 end

 elseif(right<c_x)

 y2 = 960-(right*k1+b1);

 if(y1<=bottom && y2<=bottom)

 c = [1 1 left left right right c_x 1279 1279];

 r = [959 edge_h y1 bottom bottom y2 c_y edge_h 959];

 plot(c,r,'y');

 elseif(y1>bottom && y2<bottom)

 x1 = (960-bottom-b1)/k1;

 c = [1 1 x1 right right c_x 1279 1279];

 r = [959 edge_h bottom bottom y2 c_y edge_h 959];

 plot(c,r,'y');

 else

 c = [1 1 c_x 1279 1279];

 r = [959 edge_h c_y edge_h 959];

 plot(c,r,'y');

 end

 end

 end

72

 else

 c = [1 1 c_x 1279 1279];

 r = [959 edge_h c_y edge_h 959];

 plot(c,r,'y');

 end

else

 c = [1 1 c_x 1279 1279];

 r = [959 edge_h c_y edge_h 959];

 plot(c,r,'y');

end

 hold off;

73

Appendix C. EKF Process and Classification Process Program

function Start_Callback(hObject, eventdata, handles)

% hObject handle to Start (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

 global p_frame_buf;

 global frame_data;

 global p_frame_data;

 global mudp_data;

 global nFrame;

 global currentFrame;

 global startStopPauseFlag;

 global lastFlag;

 global Type;

 % Buttom state

 lastFlag = startStopPauseFlag;

 startStopPauseFlag =0;% start 0; stop 1; pause 2;

 if(lastFlag ~= 2)

 currentFrame =1;

 lastFlag=0;

 end

 if(lastFlag == 2)

 currentFrame

 end

 % Kalman filter initialization

 pre_ID = 0;

 MR = 5; % the inital state value

 MC = 5;

 r1=0.2;

 r2=0.02;

 R=[[r1,0]',[0,r2]']; % Measurement error covariance

74

 H=[[1,0]',[0,1]',[0,0]',[0,0]'];

 Q=0.01*eye(4); % State error covariance

 dt=1; % Step

 A=[[1,0,0,0]',[0,1,0,0]',[dt,0,1,0]',[0,dt,0,1]']; % Jacobian matrix

 Bu = [0,0,0,0]'; % Control Signal is none

 xyv=zeros(100,4);

 count = 1;

 est_lat_vel_ped=zeros(nFrame,1);

 est_long_vel_ped=zeros(nFrame,1);

 lat_pos_ped = zeros(nFrame,1);

 long_pos_ped = zeros(nFrame,1);

 lat_pos_ped_pre = zeros(nFrame,1);

 long_pos_ped_pre = zeros(nFrame,1);

 lat_ped_vel = zeros(nFrame,1);

 ctrf = 1;

 nextStepClassifiy =0;

 set(handles.slider1,'Sliderstep',[1/nFrame,1/nFrame]);

 for i = currentFrame:nFrame

 set(handles.slider1,'Value',currentFrame);

 if(startStopPauseFlag ~= 0)

 break;

 end

 ctrf = ctrf + 1;

 axes(handles.Topview);

 if(i == nFrame)

 i = nFrame-1;

 end

 plainviewplayer(i,handles);

 % Pedestrian selection and movement

 if(mudp_data.vision_obstacles_info.visObs.obstacle_class(i,1) ~= 4)

 buf = sprintf('ID: %s Type: %s TTC: %s ', '----', '----', '----');

 set(handles.spot1,'String', buf);

 else

 lat_pos_ped(i) = mudp_data.vision_obstacles_info.visObs.lat_pos(i,1);

 long_pos_ped(i) = mudp_data.vision_obstacles_info.visObs.long_pos(i,1);

 lat_ped_vel(i) = mudp_data.vision_obstacles_info.visObs.lat_vel(i,1);

 % long_ped_vel(i) = mudp_data.vision_obstacles_info.visObs.long_vel(i,1);

75

 if(i > 1)

 lat_pos_ped_pre(i) = mudp_data.vision_obstacles_info.visObs.lat_pos(i-1,1);

 long_pos_ped_pre(i) = mudp_data.vision_obstacles_info.visObs.long_pos(i-1,1);

 end

 ID = mudp_data.vision_obstacles_info.visObs.id(i,1);

 Type = mudp_data.vision_obstacles_info.visObs.obstacle_class(i,1);

 ad_ttc(i) = mudp_data.vision_obstacles_info.visObs.ttc_const_vel(i,1);

 car_vel = mudp_data.vision_vehicle_info.vehicleVelocity(i);

 %EKF

 x_po = lat_pos_ped(i);

 y_po = long_pos_ped(i);

 if(ID ~= pre_ID)

 kfinit=0;

 m = 1;

 count = count +1;

 else

 m =m +1;

 end

 x(m) = x_po; % Obervation data

 y(m) = y_po; % zk = [x[i] y[i]]

 hold on;

 % rectangle('Position', [x(m), y(m), 15, 15],'EdgeColor', 'r');

 processFlag=0;

 % Kalman Predict if kfinit is not 0, otherwise initialize parameters

 if kfinit==0

 xp = [MC/2,MR/2,0,0]';

 P = 1*eye(4); % Process error covariance

 PP= P;

 else

 xp=A*xyv(m-1,:)' + Bu;

 PP = A*P*A' + Q;

 end

 kfinit=1;

 % Update

 K = PP*H'*inv(H*PP*H'+R);

 xyv(m,:) = (xp + K*([x(m),y(m)]' - H*xp))';

 P = (eye(4)-K*H)*PP;

76

 xyv(m,3) = lat_ped_vel(i);

 rectangle('Position',[xyv(m,1),xyv(m,2),0.5,0.5],'Curvature',1,'facecolor','yellow');

 plot(handles.Topview, [xyv(m,1)+0.25 lat_pos_ped(i)+0.25],[xyv(m,2)+0.25

long_pos_ped(i)+0.25], 'color', 'black');

 hold off;

 pre_ID =ID;

 % Classification of theta

 er_vel = 3; %

 dd=4;

 dt = 0.44;

 if(ctrf > 1 && i > 2 && i< 1086)

 if(abs(lat_pos_ped(i) - lat_pos_ped(i-1))/0.055 < er_vel)

 est_lat_vel_ped(ctrf) = (lat_pos_ped(i) - lat_pos_ped_pre(i))/0.055;

 else

 est_lat_vel_ped(ctrf) = est_lat_vel_ped(ctrf-1);

 end

 if(abs(long_pos_ped(i) - long_pos_ped(i-1))/0.055 < 1)

 est_long_vel_ped(ctrf) = (long_pos_ped(i) - long_pos_ped_pre(i))/0.055;

 else

 est_long_vel_ped(ctrf) = est_long_vel_ped(ctrf-1);

 end

 if(ctrf > 30)

 mean_est_long_vel_ped(ctrf) = mean(est_long_vel_ped(ctrf-30:ctrf));

 mean_est_lat_vel_ped(ctrf) = mean(est_lat_vel_ped(ctrf-30:ctrf));

 mean_est_theta_ped(ctrf) =

rad2deg(atan(mean_est_long_vel_ped(ctrf)/mean_est_lat_vel_ped(ctrf)));

 est_lat_acc_ped(ctrf) = (mean_est_lat_vel_ped(ctrf)-mean_est_lat_vel_ped(ctrf-dd))/dt;

 % Check sudden actions based on 30 frames

 g_arr = zeros(1,30);

 a_arr = zeros(1,30);

 d_arr = zeros(1,30);

 gCheckPre30 = zeros(1,30);

 aCheckPre30 = zeros(1,30);

 dCheckPre30 = zeros(1,30);

 for h = 1:30

 g_arr(h) = mean_est_theta_ped(ctrf+1-h)-mean_est_theta_ped(ctrf-h);

 a_arr(h) = est_lat_acc_ped(ctrf+1-h) - est_lat_acc_ped(ctrf-h);

 d_arr(h) = -a_arr(h);

77

 if(h>1 && g_arr(h) -g_arr(h-1) < 20)

 gCheckPre30(h) = 1;

 end

 if(h>1 && a_arr(h) -a_arr(h-1) < 0.15 && a_arr(h) ~= 0)

 aCheckPre30(h) = 1;

 end

 if(h>1 && d_arr(h) - d_arr(h-1) > -0.15 && a_arr(h) ~= 0)

 dCheckPre30(h) = 1;

 end

 end

 cp = sum(gCheckPre30);

 ap = sum(aCheckPre30);

 dp = sum(dCheckPre30);

 if(cp == 29 && mean_est_theta_ped(ctrf)-mean_est_theta_ped(ctrf-1) >150)% Check Sudden

back

 nextStepClassifiy = 1;

 elseif(cp == 29 && mean_est_theta_ped(ctrf)-mean_est_theta_ped(ctrf-29)> 30 &&

mean_est_theta_ped(ctrf)>0 && mean_est_theta_ped(ctrf-29)<0)% sudden far

 nextStepClassifiy = 2;

 elseif(cp == 29 && abs(mean_est_theta_ped(ctrf)-mean_est_theta_ped(ctrf-29))> 30 &&

mean_est_theta_ped(ctrf)<0 && mean_est_theta_ped(ctrf-29)>0)% sudden close

 nextStepClassifiy = 3;

 end

 if(ap == 29)% Check acceleration

 nextStepClassifiy = 4;

 elseif(dp == 29)% Check dcceleration

 nextStepClassifiy = 5;

 end

 if(nextStepClassifiy ==1)% Check Sudden back

 mean_est_lat_vel_ped(ctrf+1)=mean_est_lat_vel_ped(ctrf-1);

 elseif (nextStepClassifiy ==2)% sudden far

 mean_est_long_vel_ped(ctrf) = 1.02*mean_est_long_vel_ped(ctrf);

 elseif (nextStepClassifiy ==3)% sudden close

 mean_est_long_vel_ped(ctrf) = 0.98*mean_est_long_vel_ped(ctrf);

 elseif (nextStepClassifiy ==4)

 mean_est_lat_vel_ped(ctrf)=1.02*mean_est_lat_vel_ped(ctrf);

 elseif (nextStepClassifiy ==5)

 mean_est_lat_vel_ped(ctrf)=0.98*mean_est_lat_vel_ped(ctrf);

78

 else

 % Deflaut: no changes

 end

 if(mean_est_lat_vel_ped(ctrf) ~= 0)

 if(processFlag == 0) %ekf pro

 t1 = abs(xyv(m,2) / car_vel);

 t2 = abs((abs(xyv(m,1))-1)/xyv(m,3));

 t3 = abs((abs(xyv(m,1))+1)/xyv(m,3));

 ttc(ctrf) = abs(xyv(m,2) / (car_vel-xyv(m,3)));

 else

 t1 = abs(xyv(m,2) / car_vel);

 t2 = abs((abs(xyv(m,1))-1)/mean_est_lat_vel_ped(ctrf));

 t3 = abs((abs(xyv(m,1))+1)/mean_est_lat_vel_ped(ctrf));

 ttc(ctrf) = abs(xyv(m,2) / (car_vel-mean_est_long_vel_ped(ctrf)));

 end

 if(abs(ttc(ctrf)) > 8)

 ttc(ctrf) = 7;

 end

 if(t1 >= t2)

 if(ttc(ctrf)>10)

 buf = sprintf('ID:%-4d Type:%-4d TTC:%-4d', ID, Type, ttc(ctrf));

 else

 buf = sprintf('ID:%-4d Type:%-4d TTC:%-4d EXCEEDED', ID, Type, ttc(ctrf));

 end

 set(handles.spot1,'String', buf);

 end

 end

 end

 end

 end

 % Call function to play video

 calllib('vidsframe','seek',i);

 calllib('vidsframe','get_frame',p_frame_buf);

 p_frame_data = calllib('vidsframe', 'get_frame_info');

 axes(handles.Image);

 imshow(get(p_frame_buf,'Value')');

79

 % In Camera View

 % Mark the pedetrian position

% if(top>0 && bottom>0 && right-left>0 && top-bottom>0)

% %axes(handles.Image);

% rectangle('Position', [left, (960-top), (right-left), (top-bottom)],'EdgeColor', 'g');

% text(left, (960-top),txt_str,'color',[1,1,1]);

% end

% buf = sprintf('ID:%-4d Type:%-4d', ID, Type);

% set(handles.spot1,'String', buf);

% x_po = (left+right)/2;

% y_po = 960-(top+bottom)/2;

% rectangle('Position', [x_po, y_po, 15, 15],'EdgeColor', 'r');

 set(handles.slider1,'Value',currentFrame);

 currentFrame = currentFrame + 1;

 end

 nsize = size(mean_est_lat_vel_ped);

 if(startStopPauseFlag == 0)

 figure;

 subplot(4,1,1);

 plot(mean_est_lat_vel_ped(30:nsize(2)-1)); %nFrame

 axis([0 nsize(2) -6 6]);

 subplot(4,1,2);

 plot(mean_est_long_vel_ped(30:nsize(2)-1));

 axis([0 nsize(2) -6 6]);

 subplot(4,1,3);

 plot(mean_est_theta_ped(30:nsize(2)-1),'o');

 title('theta deg mean');

 axis([0 nsize(2) -100 100]);

 subplot(4,1,4);

 plot(est_lat_acc_ped(30:nsize(2)-1));

 title('Accel lat');

 axis([0 nsize(2) -3 3]);

 grid;

 figure;

 plot(ttc,'o');

 figure;

 plot(ad_ttc,'o');

 end

 if(startStopPauseFlag == 1 || startStopPauseFlag == 2)

 % Call function to play video

 calllib('vidsframe','seek',i);

 calllib('vidsframe','get_frame',p_frame_buf);

80

 p_frame_data = calllib('vidsframe', 'get_frame_info');

 axes(handles.Image);

 imshow(get(p_frame_buf,'Value')');

 ID = mudp_data.vision_obstacles_info.visObs.id(currentFrame,1);

 Type = mudp_data.vision_obstacles_info.visObs.obstacle_class(currentFrame,1);

 if(mudp_data.vision_obstacles_info.visObs.obstacle_class(currentFrame,1) ~= 4)

 buf = sprintf('ID:%-4d Type:%-4d TTC:%-4d', ID, Type, ttc(ctrf));

 set(handles.spot1,'String', buf);

else

 axes(handles.Topview);

 plainviewplayer(currentFrame,handles);

 end

 end

unloadlibrary('vidsframe');

81

Appendix D. Matlab Program for Data Selection

[filename pathname filter] = uigetfile('*.avi','Select AVI File');

avi_path = [pathname,filename]

ind = findstr(avi_path, '.');

mudp_path = [avi_path(1:ind),'mudp']

mudp_data = read_mudp_data(mudp_path, [5]);

pathname1 = mudp_data.vision_obstacles_info.visObs;

%% edit here

st =n1/2;

en =m1/2;

num = 1;

%%

top1 = pathname1.pixel_top(st:en,num);

bottom1 = pathname1.pixel_bottom(st:en,num);

left1 = pathname1.pixel_left(st:en,num);

right1 = pathname1.pixel_right(st:en,num);

lat_pos1 = pathname1.lat_pos(st:en,num);

long_pos1 = pathname1.long_pos(st:en,num);

lat_vel = pathname1.lat_vel(st:en,num);

long_vel = pathname1.long_vel(st:en,num);

veh_vel = mudp_data.vision_vehicle_info.vehicleVelocity(st:en,num);

veh_yr = mudp_data.vision_vehicle_info.vehicleYawRate(st:en,num);

 x1 = left1+(right1 - left1)/2;

 y1 = bottom1+(top1 - bottom1)/2;

% x1 = lat_pos1;

% y1 = long_pos1;

82

c1 = linspace(1,10,length(x1));

figure;

scatter(x1,y1,[],c1);

axis([0, 1280, 0, 960]);

data1 = [x1';y1';lat_pos1';long_pos1';lat_vel';long_vel';veh_vel';veh_yr']';

%% edit here

save('sel_s_wst_data1','data1');

%save('ccs1','mudp_data');

83

Appendix E. Matlab Program for Dynamic Plain View

csf_data1 = load('sel_s_wst_data1.mat');

csf_data2 = load('sel_s_wst_data2.mat');

csf_data3 = load('sel_s_wst_data3.mat');

x_ped1 = csf_data1.data1(:,3);

y_ped1 = csf_data1.data1(:,4);

x_ped2 = csf_data2.data1(:,3);

y_ped2 = csf_data2.data1(:,4);

x_ped3 = csf_data3.data1(:,3);

y_ped3 = csf_data3.data1(:,4);

m1 = size(x_ped1);

m2 = size(x_ped2);

m3 = size(x_ped3);

n1 = min([m1(1) m2(1) m3(1)]);

p=0;

vox=[0 0];

voy=[-5 25];

hox=[-15 15];

hoy=[0 0];

hold on;

for i=2:n1

title(Case A /Case B set 1');

 subplot(3,1,1);

 hold on;

 plot(vox,voy,hox,hoy,'b');

rectangle('Position',[x_ped1(i),y_ped1(i)+p,0.02,0.1],'Curvature',1,'facecolo

r','red','edgecolor','red');

 axis([-10 10 -5 15]);

 grid;

 p=0;

84

 rectangle('Position',[-1,-3.5+p,1.8,3.5],'facecolor','black');

 axis([-10 10 -5 15]);

 title(Case A /Case B set 2');

 subplot(3,1,2);

 hold on;

 plot(vox,voy,hox,hoy,'b');

rectangle('Position',[x_ped2(i),y_ped2(i)+p,0.02,0.1],'Curvature',1,'facecolo

r','red','edgecolor','red');

 axis([-10 10 -5 15]);

 grid;

 p=0;

 rectangle('Position',[-1,-3.5+p,1.8,3.5],'facecolor','black');

 axis([-10 10 -5 15]);

 title('Case A /Case B set 3');

 subplot(3,1,3);

 hold on;

 plot(vox,voy,hox,hoy,'b');

rectangle('Position',[x_ped3(i),y_ped3(i)+p,0.02,0.1],'Curvature',1,'facecolo

r','red','edgecolor','red');

 axis([-10 10 -5 15]);

 grid;

 p=0;

 rectangle('Position',[-1,-3.5+p,1.8,3.5],'facecolor','black');

 axis([-10 10 -5 15]);

 pause(0.055);

end

 axis([-10 10 -5 15]);

grid

	Rose-Hulman Institute of Technology
	Rose-Hulman Scholar
	8-2018

	Accuracy Improvement of Pedestrian Trajectory Prediction by an Extended Kalman Filter and Pedestrian Behavior Classification
	Jiayu Guo
	Recommended Citation

	ACCURACY IMPROVEMENT OF PEDESTRIAN TRAJECTORY PREDICTION BY AN EXTENDED KALMAN FILTER AND PEDESTRIAN BEHAVIOR CLASSIFICATION

