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ABSTRACT 

Guo, Jiayu 

M.S.E.E. 

Rose-Hulman Institute of Technology 

August 2018 

Accuracy Improvement of Pedestrian Trajectory Prediction by an Extended Kalman Filter and 

Pedestrian Behavior Classification  

Thesis Advisor: Dr. Jianjian Song 

 

The objective of this thesis is to improve the accuracy of predicting motion trajectory, 

i.e., speed and direction, of a pedestrian in front of an Ego Vehicle which has a Mobileye camera 

with an advanced driver assistance system (ADAS). The Ego Vehicle captures and records 

videos of pedestrians in front of it, and these videos are analyzed to predict a pedestrian 

trajectory from instantaneous, random actions of a pedestrian. Instant actions include, but are not 

limited to, walking at a constant speed, sudden accelerations/decelerations, sudden dodging from 

the Ego Vehicle, sudden advancements to the Ego Vehicle, sudden withdrawals or sudden stops 

at the road edge, etc. Pedestrian positions and motion data from the videos can be used to 

estimate pedestrian state parameters and predict pedestrian movement. 

The pedestrian videos contain noises due to the nonlinear trajectory of a pedestrian and 

the Ego Vehicle. An extended Kalman filter (EKF) and pedestrian behavior classification are 
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applied to these pedestrian videos to obtain a more accurate pedestrian trajectory. The EKF is 

used to suppress noises from the videos and aids in predicting the next state of pedestrian 

movement. The EKF can reduce noises in a nonlinear system. The EKF is an efficient and 

effective tool in creating more stable and smoother pedestrian positions from the Ego Vehicle 

videos, as we have demonstrated from analyzing pedestrian trajectories from real-world videos. 

These new position data inputs are used to calculate the new velocity of a pedestrian. This new 

velocity is averaged over 30 consecutive video frames to obtain a more accurate and stable 

velocity. After the new position and velocity are calculated, pedestrian behavior classification is 

applied to the data to calculate and group pedestrian behaviors into instant actions. The behavior 

classification is based on the estimation of the heading angle and acceleration of a pedestrian. 

The combination of the extended Kalman filter and behavior classification forms a more 

accurate pedestrian trajectory prediction system. This approach is verified with 12 hours of 

ADAS camera Mobileye videos from an experimental car test site within a simulated urban area. 

Ten cases of pedestrian motion behaviors are analyzed. By calculating the Time to Collision 

(TTC) and comparing this result with the TTC directly from the ADAS camera, we have shown 

that our new TTC prediction is more stable and less noisy when contrasted with the older TTC 

predictions from an ADAS camera system.  
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1 INTRODUCTION 

An Automatic Emergency Brake (AEB) system is one of the most important and integral 

parts of an Advanced Driver Assistance System (ADAS). The AEB identifies an imminent 

collision and brakes without any driver intervention [1]. The European New Car Assessment 

Programme (EUNCAP) has included the AEB system in its test requirements since 2014[1]. 

Volvo, Audi, Mercedes-Benz and some OEMs already have AEB systems standardized in their 

production cars. Most ADAS suppliers and OEMs who have developed ADAS products by 

themselves have already developed complex AEB systems. Those AEB systems can detect front 

vehicles from cameras on the Ego Vehicle and calculate Vehicle-to-Vehicle (V2V) Time-to-

Collision (TTC) quickly and accurately. 

The Automatic Emergency Brake for Pedestrian (AEB Pedestrian) is a critical component 

of an AEB system. Recently, Vehicle-to-Pedestrian (V2P) accidents have become a major 

concern for road safety. The United States recorded 5,376 pedestrian deaths in 2015. On average, 

one pedestrian was killed every two hours and injured every seven minutes in traffic accidents 

[3]. EUNCAP has already included AEB Pedestrian into its test requirements in 2016 [2], and the 

US government’s National Highway Traffic Safety Administration (NHTSA) has also required 

99% of OEMs to include AEB Pedestrian by 2022 [4].  

Initially, the thesis study was based on a paper entitled “Pedestrian-Vehicular Collision 

Avoidance Based on Vision System”, which introduced a method that uses the C4 algorithm to 

detect the contour of pedestrian movement [5]. The Kalman filter was implemented in that paper 
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to track and record pedestrian movements, then the TTC and Time-to-Collision Range (TTCR) 

would be calculated to establish three levels of hazard. On the hardware side, a single-optical 

camera was installed on the experimental vehicle to detect pedestrians. A GPS was used to 

estimate the Ego Vehicle’s motion. The motion of a pedestrian was considered as a linear motion 

or could be clustered as several predictable trajectories with a Kalman filter. 

This thesis will show with experimental data that it is more difficult for an AEB function 

to estimate and track a pedestrian in front of the Ego Vehicle than to estimate and track a vehicle 

in front of the Ego Vehicle. An extended Kalman filter and a pedestrian behavior classification 

method are shown to predict pedestrian trajectories more accurately.  

1.1 Overview of Mobileye’s Automatic Emergency Brake for 

Pedestrians 

Mobileye, an Intel company, is one of the largest computer vision and ADAS companies, 

which provides its products to global automakers including BMW, Ford, General Motors, 

Nissan, Volvo, Audi and Hyundai, etc. [6] In 2017, Intel acquired Mobileye [7] and the electric 

vehicle company Tesla changed its core ADAS technology acquisition from Nvidia to Mobileye 

[8]. The main product of Mobileye, the EyeQ series, is a system-on-chip (SoC) device with a 

monocular camera. ADAS on an EyeQ device implements both active and passive functions. The 

active functions will take real-time measurement, such as AEB, Adaptive Cruise Control, and 

Lane Keeping Assist. The passive functions such as Lane Departure Warning and Forward 

Collision Warning will alert drivers of potentially dangerous scenarios. There are multiple 

generations of the EyeQ series products ranged from the EyeQ1 to the EyeQ4. The EyeQ3 

device used on a test car in this study can detect 14 different kinds of targets (e.g. a car, truck, 

bicycle, pedestrian, or traffic signs) and apply the active and passive functions on these targets. 
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One of the most important functions of the Mobileye’s ADAS system, which will simply 

be called “Mobileye” through the rest of this thesis is the AEB function used for detecting and 

avoiding obstacles. A Mobileye device will automatically calculate the TTC and set brakes for all 

detected obstacles, including vehicles, motorcycles, bicycles, and pedestrians. A Mobileye device 

also has AEB Pedestrian functions that will detect pedestrians and set the TTC based on current 

pedestrian data to predict the pedestrian trajectory. 

The pedestrian trajectory prediction of the AEB Pedestrian in the current Mobileye devices 

does not consider random pedestrian behaviors. For example, when a pedestrian is walking on a 

street, he/she could cross the street suddenly, or when a pedestrian crosses a street, he/she could 

suddenly change direction. Without prediction of these instant actions of pedestrians, the 

Mobileye devices could only predict the pedestrian trajectory based on the current constant 

speed. However, a pedestrian has different movement behaviors compared to vehicles. Therefore, 

the prediction of pedestrian trajectory will be inaccurate, and the AEB Pedestrian implementation 

in current Mobileye devices is not yet suitable for a real-world pedestrian movement situation.  

1.2  Overview of Pedestrian Trajectory Prediction 

The study of pedestrian trajectory prediction can be divided into two parts, pedestrian 

detection and pedestrian tracking. Pedestrian detection is the process of finding pedestrian 

information in videos or a series of images of pedestrians by analyzing pedestrian contours as 

well as histograms of oriented gradients (HOG). Pedestrian tracking is the process of finding and 

determining a pedestrian trajectory based on the information from pedestrian detection. Usually, 

pedestrian tracking can be done in two ways. One is to cluster a pedestrian trajectory by a 

number of training pedestrian trajectories, the other is to predict the next step of pedestrian 

movement by using a pedestrian history trajectory. 
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Pedestrian detection is based on 2D images or videos of the Front cameras of the Ego 

Vehicle to find the position of an obstacle and to determine whether the detected obstacle is a 

pedestrian. The Support Vector Machine (SVM) classifier is a popular trainable method for 

object detection [9], which takes a series of pedestrian data to calculate the histogram of gradient 

and develop a trained model. The trained model is then used to find the pedestrian in the test 

images or videos. Another traditional method is the Haar Wavelet [10], which can describe 

details of pedestrian patterns. Haar Wavelet image analysis consists of two steps. The first step is 

the determination of the Haar function, which defines the pattern features of the Haar Wavelet. 

The second step is the calculation of a scaling function which defines the scale filter. The higher 

the scale of the scaling function of the Haar wavelet, the higher the resolution of the pattern.  

The first method for pedestrian tracking is to estimate the next step of the pedestrian 

trajectory based on the pedestrian’s trajectory history. The Kalman filter is the most popular 

method for object tracking and predicting the next state of a linear system [11]. Since the 

pedestrian movement is non-linear, the Kalman filter is not good for pedestrian trajectory 

prediction. Therefore, an extended Kalman filter (EKF) was implemented for non-linear systems 

by Y.W. Xu, X.B. Cao and T. Li. The authors utilized the EKF to track a pedestrian trajectory by 

predicting each step of the pedestrian movement from a monocular camera system [12]. Three-

dimensional coordinates and the velocity of the pedestrian were provided. The entire pedestrian 

trajectory was determined by applying the EKF regressively.  

The second method of pedestrian tracking is to determine the pedestrian trajectory by a 

model trained through a number of pedestrian trajectories. Pedestrian trajectories are grouped 

into a number of clusters. Gaussian Process Regression (GPR) can be used to cluster the 

pedestrian trajectories [13] [14]. Y. Chen, M. Liu, S. Y. Liu, J. Miller, and J. P. How introduced a 
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method that clusters the pedestrian trajectory patterns by applying GPR [15]. A number of 

pedestrian trajectories on a crossroad can be divided into several clusters. When a new pedestrian 

appears on this crossroad, the pedestrian will be predicted to belong to one of the clusters. This 

method requires the pedestrian to start from a fixed position and end at a fixed position; for 

example, the situation can be an airport shuttle station or a crossroad between buildings in a city. 
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2 COLLECTION AND SELECTION OF CAMERA DATA  

In this thesis study, the Ego Vehicle was a production car equipped with an Intel 

Mobileye ADAS camera to take pedestrian videos. First, the Ego Vehicle performed a road test to 

collect testing data for three days with 600 video clips to simulate the real motion behaviors of a 

pedestrian. Each video had at least one pedestrian motion event. From these pedestrian 

movement videos, special cases of pedestrian behaviors were defined when a pedestrian walked 

on the street, such as crossing, walking along the street, or sudden, randomized movements.  

Based on the pedestrian behavior cases observed from the road test data, six sets of 

training data for the behavior classification method were recorded from the experiments of 

pedestrian actions in front of the Ego Vehicle. Besides the vision information from the ADAS 

camera, the Ego Vehicle's velocity and yaw rate were available from the CAN bus of the Ego 

Vehicle for classification training. 

Once the raw training data was collected, all instant actions of pedestrians had to be 

selected from the raw data. The selected data was divided into different cases, and the 

characteristics such as the position and the velocity of a pedestrian were observed for 

classification training. 

2.1 Pedestrian Behavior Classification 

Pedestrian behaviors were classified into two case groups and ten subcases: Case A: 

Crossing the Street in Front of the Ego Vehicle and Case B: Walking on the Road alongside the 

Ego Vehicle. 
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There could be seven subcases in Case A: (A1) Constant Speed, (A2) Sudden Acceleration, 

(A3) Sudden Deceleration, (A4) Sudden Dodge from the Ego Vehicle, (A5) Sudden Advance to 

the Ego Vehicle, (A6) Sudden Withdrawal, and (A7) Sudden Stop at the Edge of the Road.  

Case A4 and Case A5 could be further divided based on which side of the Ego Vehicle the 

pedestrian is passing, because it matters that the heading angles for both left and right actions 

have different features. Case A4 Left is defined as the pedestrian passing from the left side of the 

Ego Vehicle, while Case A4 Right is defined as the pedestrian passes from the right side of the 

Ego Vehicle. Case A5 Left and Case A5 Right are both defined accordingly. 

There could be three subcases in Case B: (B1) Constant Speed, (B2) A Sudden Turn 

towards the Ego Vehicle and (B3) A Sudden Stop at the Road Edge. 

In Case A1, the Ego Vehicle will go straight as in Figure 1, and the pedestrian will cross 

the street at the various speed states such as in Cases A1, A2, A3, or in different directions such 

as in Cases A4, A5, A6, or a stop by the side of the road such as in Case A7. For Case B, the Ego 

Vehicle will go straight, while the pedestrian will concurrently walk in the same direction as the 

Ego Vehicle. This situation normally takes place at a non-intersection street with no traffic 

signals. The pedestrian can cross the street from either side of the road with the above actions. 
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Case A: A Pedestrian Is Crossing the Street. 
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Case B: A Pedestrian Is Walking on the Road alongside the Ego Vehicle. 

Figure 1. Case A and Case B of Pedestrian Behaviors. 

2.2 ADAS Camera Data Collection 

The data collection was performed in Shanghai, China. Some of the data collection was 

obtained at an experimental car test site in the Disneyland area while the rest was at Shanghai’s 
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Waigaoqiao Free Trade Zone. It took five days to collect the data since the first day was spent 

setting up the ADAS camera, sensor devices, equipment, and vehicles, etc. The estimated time 

for each test was about 5 minutes for an estimated total of 12 hours. As a result, 12 different 

actions of data were recorded. All the data collection was held in good weather conditions to 

make sure that no external environmental effects such as rain and snow would influence the 

results. Two main groups were created for the pedestrian actions: Case A: crossing a street and 

Case B: walking along a street. These two scenarios are shown in Figure 1.  

For each pedestrian action case, six sets of experiments were performed and recorded.  At 

least one pedestrian was observed in each video clip at the nearest detected obstacle. The test 

plan is shown in Table 1 and Table 2. 

Table 1. Case A Data Collection Experiments 

        Case 

Data  

A1 A2 A3 A4 right A4 left A5 right A5 left A6 A7 

Experiments 6 6 6 6 6 6 6 6 6 

 

Table 2. Case B Data Collection Experiments 

         Case 

Data 

B1 B2 B3 

Experiments 6 6 6 

 

2.3 ADAS Camera Data Selection 

Most of the current ADAS cameras generate a lot of information pertaining to the observed 

obstacles, such as obstacle type, position, velocity, the angle between the Ego Vehicle and the 

obstacle, the rear light of the front vehicle, the height, and the width of the obstacle, the TTC, 
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etc. These cameras also provide some information about the road, traffic signs, and barriers that 

can be found on the roadside. Only pedestrian data from the ADAS camera was used in this 

study. The data types that were used in this study are listed in Table 3. 

Table 3. Data Types Used for Pedestrian Prediction  

Type Symbol Range Unit 

Obstacle classification Obstacle_type n/a n/a 

Lateral position Lat_pos -128-128 m 

Lateral velocity  lat_vel -128-128 m/s 

Longitudinal position.   long_pos 0-256 m 

Longitudinal velocity   long_vel -128-128 m/s 

Longitudinal acceleration long_acc  -20-20 m/s^2 

TTC based on constant velocity ttc_vel 0-7 s 

TTC based on constant acceleration ttc_acc  0-7 s 

pedestrian is on the pavement ped_occ 0-1 n/a 

 

To make it easier to extract video clips containing pedestrians for further analysis, a 

pedestrian clipping MATLAB program is written to detect videos containing pedestrians 

automatically. For example, the pedestrian and the white car are both detected in Figure 2, and 

the observed classes of pedestrians and vehicles are shown in the left column of Figure 3. The 

MATLAB program reads the obstacle type information and saves all pedestrian video clips. Then 

the pedestrian’s actions in each video were manually classified and grouped. The frame number 

of the pedestrian actions fragmented in each video was recorded from the whole video. The 

subframe of the number of pedestrian actions fragmented in each video clip can be found from 

the frame number. The pedestrian actions fragment was cut out by this step. The right column in 
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Figure 3 shows the screenshot of one part of the look-up table that records the start and end 

frame numbers for the whole video and the start and end frame numbers for each video clip. 

 

Figure 2. The Detection of a Pedestrian and a Vehicle by the ADAS Camera. 

 

Figure 3. Recognized Classes of Observed Obstacles (left) and Recorded Frame Numbers of 

Pedestrian’s Action Fragments to be Cut Out (right). 
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3 EXTENDED KALMAN FILTER FOR PEDESTRIAN 

TRAJECTORY PREDICTION 

Kalman filter is a good noise reducing and data smoothing filter for a linear random noise 

process such as an airplane’s flying or landing movements. However, a pedestrian’s movement 

tends to be a non-linear random process, thus an extended Kalman filter should be used because 

it can filter noises of a non-linear process. An extended Kalman filter has two state parameters x 

and p; x is defined as the state, including the position and velocity information; p is defined as 

the covariance which will be updated with the previous x state.  

The ADAS camera can convert the coordinates from the Ego Vehicle’s view to a top view 

and the pedestrian prediction implements the EKF with the pedestrian position in the top view 

coordinates. In this EKF process, the new state is always predicted and updated from the 

observed pedestrian position when there is no instant action.  

3.1 Extended Kalman Filter 

Kalman filter is used to predict states recursively in a linear system, and it will take every 

measurement and previously predicted state into a new state estimation [16]. The extended 

Kalman filter is a non-linear extension of the Kalman filter 

3.1.1 Review of Kalman Filter 

The Kalman filter has two main phases: the prediction phase and the update phase. For the 

prediction phase, the filter will predict the current state using the previous state. Prediction 

equations are shown below [17]: 
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𝑥𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑥𝑘−1|𝑢𝑝𝑑𝑎𝑡𝑒  (Eq 3.1) 

𝑝𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑝𝑘−1|𝑢𝑝𝑑𝑎𝑡𝑒𝑎 (Eq 3.2) 

The variable x is the estimated state, and 𝑘 is the state number. 𝑥𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 is the 

predicted kth state from the prediction phase, and 𝑥𝑘−1|𝑢𝑝𝑑𝑎𝑡𝑒 is the updated (k − 1)th state from 

the update phase. 𝑝 is the covariance of state 𝑥. 𝑝𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 is the predicted 𝑝 of the kth state 

from the prediction phase and 𝑝𝑘−1|𝑢𝑝𝑑𝑎𝑡𝑒 is the updated p of (k − 1)th state from the update 

phase. 𝑎 is a constant. For the update phase, the filter will update the current state using the new 

true measurement. The update equations are shown below[17]: 

𝑔𝑘 =
𝑝𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑝𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 + 𝑟
 

(Eq 3.3) 

 

𝑥𝑘|𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑥𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 + 𝑔𝑘(𝑧𝑘 − 𝑥𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) (Eq 3.4) 

 

𝑝𝑘|𝑢𝑝𝑑𝑎𝑡𝑒 = (1 − 𝑔𝑘)𝑝𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (Eq 3.5) 

 

𝑔𝑘 is the current gain. 𝑟 is the average noise of the input data. 𝑧𝑘 is the observation 

measurement. 

3.1.2 Extended Kalman Filter for Pedestrian Trajectory Prediction 

In this section, the detailed EKF implementation is discussed, and the initial states of the 

EKF state parameters are defined. The EKF is applied when there is no instant action of a 

pedestrian, while the observed pedestrian position data will be the input data to the EKF, and the 

output will be the prediction of the next state of the pedestrian position. 
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The EKF contains two phases: prediction and update. In the prediction phase, the new state 

and new covariance parameter are predicted. In the update phase, a system gain G is calculated 

from the new predicted covariance parameter which comes from the prediction phase, and the 

system gain is used to update the current state. 

In the Prediction Phase of the EKF, the equations are listed below:  

𝑥𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝐴 ∗ 𝑥𝑘−1|𝑢𝑝𝑑𝑎𝑡𝑒 + 𝐵 ∗ 𝑢𝑘 (Eq 3.6) 

𝑝𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝐴 ∗ 𝑝𝑘−1|𝑢𝑝𝑑𝑎𝑡𝑒 ∗ 𝐴′ + Q (Eq 3.7) 

The state x is a 4x1matrix, and the new state 𝑥𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑛 is predicted by the previous 

updated state𝑥𝑘|𝑢𝑝𝑑𝑎𝑡𝑒 . B is a scale of the input control signal uk. For the initial state 𝑥0, the 

value is set to [𝑙𝑎𝑡𝑝𝑜𝑠0 𝑙𝑜𝑛𝑔𝑝𝑜𝑠0 𝑙𝑎𝑡𝑣𝑒𝑙0 𝑙𝑜𝑛𝑔𝑣𝑒𝑙0] where 𝑙𝑎𝑡𝑝𝑜𝑠0 is the initial latitude position, 

𝑙𝑜𝑛𝑔𝑝𝑜𝑠0 is the initial longitude position, 𝑙𝑎𝑡𝑣𝑒𝑙0 is the latitude velocity, and 𝑙𝑜𝑛𝑔𝑣𝑒𝑙0 is the 

longitude velocity. 𝑙𝑎𝑡𝑝𝑜𝑠0 and 𝑙𝑜𝑛𝑔𝑝𝑜𝑠0 will be initialized to the center position. 𝑙𝑎𝑡𝑣𝑒𝑙0 and 

𝑙𝑜𝑛𝑔𝑣𝑒𝑙0 will be initialized to 0. For the scale B and the input control signal 𝑢𝑘 in this study, 

there is no extra control signal applied, so B and 𝑢𝑘 have been set to zero.  

The covariance parameter 𝑝𝑘 is predicted by a constant matrix A and the state error 

covariance matrix 𝑄. The initial value of 𝑝𝑘 needs to be an identity matrix times a nonzero 

parameter when k is 0. If the estimate of the initial state 𝑥0 is accurate, 𝑝0 can be initialized to be 

a small value. If the estimate of 𝑥0 is far from the true value, 𝑝0 should be initially set to be a 

large value.  

The constant matrix 𝐴 is used in the prediction step to calculate new state 𝑥𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑛from 

the previous state 𝑥𝑘−1|𝑢𝑝𝑑𝑎𝑡𝑒and calculate the new covariance parameter 𝑃𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑛from the 
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previous 𝑝𝑘−1|𝑢𝑝𝑑𝑎𝑡𝑒. Matrix 𝐴 should be a 4x4 Jacobian matrix for the 4x1 state 𝑥 and the 

matrix 𝐴 should be set to [[1, 0, 0, 0], [0, 1, 0, 0], [𝑑𝑡, 0, 1, 0], [0, 𝑑𝑡, 0, 1]] by calculating the 

Jacobian matrix of state 𝑥.  

The state error covariance 𝑄 should be set to a very small value according to the covariance 

matrix p. In this study, 𝑄 was set to 0.01 ∗ 𝐼, where I is the identity matrix. 

Equations for the update phase of the EKF are listed below:  

𝐺𝑘 = 𝑃𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∗ 𝐻′ ∗ (𝐻 ∗ 𝑝𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∗ 𝐻′ + 𝑅)′ (Eq 3.8)  

𝑥𝑘|𝑢𝑝𝑑𝑎𝑡𝑒 = 𝐺𝑘 ∗ 𝑧𝑘 + (𝐼 − 𝐻) ∗ 𝑥𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (Eq 3.9) 

𝑝𝑘|𝑢𝑝𝑑𝑎𝑡𝑒 = (𝐼 − 𝐺𝑘 ∗ 𝐻) ∗ 𝑝𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (Eq 3.10) 

The system gain 𝐺𝑘 can be calculated from the constant matrix 𝐻, the state covariance 

matrix 𝑝𝑘 and the measurement error covariance 𝑅. The constant matrix 𝐻 is used for mapping 

the state 𝑥𝑘 to the observation 𝑧𝑘, which is a 2x1 Jacobian matrix of the position 

[𝑙𝑎𝑡𝑝𝑜𝑠𝑘 𝑙𝑜𝑛𝑔𝑝𝑜𝑠𝑘] of 𝑥𝑘. The measurement error covariance 𝑅 is calculated by the Mobileye 

camera based on the measurement noise.  

State 𝑥𝑘|𝑢𝑝𝑑𝑎𝑡𝑒 should be updated based on the system gain 𝐺𝑘 observation 𝑧𝑘 and the 

prediction state 𝑥𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑛. The state covariance 𝑝𝑘|𝑢𝑝𝑑𝑎𝑡𝑒 should be updated based on the 

system gain 𝐺𝑘 and the prediction state covariance 𝑃𝑘|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑛.  

3.2  Application to Pedestrian Trajectory Prediction 

The EKF takes pedestrian position data from the Mobileye ADAS camera as the input to 

predict the pedestrian trajectory. There are two types of pedestrian position data. Both are 



16 

 

provided by the Mobileye in two different coordinates, the vehicle view and the top view. The 

vehicle view is based on the camera, and the pedestrian location data is based on the pixel 

information. The top view is based on the Ego Vehicle and a pedestrian. The pedestrian position 

data is the real distance between the Ego Vehicle and the surrounding obstacles. The top view is 

more accurate and used in the AEB Pedestrian function of the ADAS. 

There were two situations in this study; one was the normal pedestrian movement without 

any instant actions, the other was the instant actions of a pedestrian. The EKF was used to predict 

the next step of the pedestrian trajectory without any instant actions, because the prediction was 

more accurate for the normal action and had less deviation for the instant actions. 

3.2.1 Coordinate Conversion from Vehicle View to Top View 

In Figure 4, there are two coordinate systems: the first one is the Vehicle View of the 

pedestrian detected in the video of the view of the Ego Vehicle, which is shown in Figure 4(a). 

The x-axis is measured in pixels along the top horizontal edge of the video, while the y-axis is 

measured in pixels along the right vertical edge of the video. 

 

Figure 4. The Camera View and Top View of the Pedestrian. 
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The second one is shown in Figure 4(b), where the scene includes the pedestrian and the Ego 

Vehicle, which is the Top View used in this study. The x-axis is the latitude position in meters, 

and the y-axis is the longitude position in meters, where the coordinate system is based on the 

pedestrian and the Ego Vehicle. 

The coordinate conversion was done because calculations of velocity, acceleration, heading 

angles, and TTC are based on the Top View Coordinate System. But to display the video from an 

ADAS camera, the Vehicle View Coordinate System was used, where the pedestrian pixel 

positions X and Y were used instead of the latitude and longitude positions.  

3.2.2 Analysis of Extended Kalman Filter for Pedestrian Trajectory 

Prediction 

The EKF can predict a new state of pedestrian trajectory quickly with high accuracy based 

on normal movement with no instant action on the part of the pedestrian. In this study, only when 

the instant actions were not detected by the classification method, was the EKF applied to the 

pedestrian trajectory prediction. 

In Figure 5, the EKF is applied to predict the pedestrian trajectory. The dark rectangle block 

at the bottom represents the Ego Vehicle. The small dark red square represents the observation 

𝑧𝑘, and the yellow circle represents the predicted state 𝑥𝑘. The Ego Vehicle is located at the 

center of the latitudinal position. The x-axis of Figure 5 is the latitudinal position in meters, 

while the y-axis is the longitudinal position in meters. Two graphs in Figure 5 are adjacent 

frames, and the real movement of the pedestrian is from left to right. Based on the observation 

position 𝑧𝑘 of the current pedestrian, the EKF provides the pedestrian trajectory prediction for 

one step ahead to the right. The predicted position in frame 24 is [1.2277 7.4731] and the next 
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observed position is [1.2304 7.4686] in frame 25. Therefore, the EKF can predict the pedestrian 

trajectory when the pedestrian walks on the street with no instant action. 

 

Figure 5. One Step Prediction of Pedestrian with EKF in the Top View Coordinates. 

In Figure 6, pedestrian positions are shown in two adjacent frames of Case A1. Case A is 

defined as a pedestrian crossing a street at a constant speed with no change of direction. The 

moving direction of the pedestrian is from left to right. The x-axis is the latitudinal position of 

the pedestrian, and the y-axis is the longitudinal position of the pedestrian. The diamond-shaped 

position is the original observed position of the pedestrian, and the circle-shaped position is the 

position prediction from the EKF. In this EKF prediction, the result is very accurate for Case A1. 
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Figure 6. The EKF Prediction of Pedestrian Crossing a Street at Constant Speed. 

In Figure 7, the pedestrian positions are shown in two adjacent frames of Case A4 Right. 

Case A4 Right is that a pedestrian suddenly changes direction when crossing the street. The 

moving direction is from right to left. The diamond-shaped position is the original observed 

position of the pedestrian, and the circle-shaped position is the prediction position from the EKF. 

In this situation, the pedestrian has made an instant action, so the prediction is not accurate when 

the pedestrian changes direction. 

Moving Direction 
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Figure 7. The EKF Prediction of Pedestrian Changing Direction Suddenly. 

 

 

 

 

 

 

 

  

Moving Direction 
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4 BEHAVIOR CLASSIFICATION FOR PEDESTRIAN 

TRAJECTORY PREDICTION  

Most ADAS cameras mounted on the Ego Vehicle can provide information such as the 

class of each observed obstacle, distance between the Ego Vehicle and each obstacle, relative 

position of each obstacle, velocity of each obstacle and the angle between the Ego Vehicle and 

the obstacle, velocity and yaw-rate of the Ego Vehicle and the TTC and the brake warning of 

each obstacle. An ADAS camera, which is well-suited for a Vehicle-to-Vehicle (V2V) AEB 

system, can accurately calculate the TTC faster and set brake warning signals more correctly, 

because in the V2V system the front vehicle moves at either constant speed or constant 

acceleration.  

However, TTC information about a pedestrian that comes from an ADAS camera is not 

suitable for a real-world situation and may causes considerable errors sometime, because the 

pedestrian trajectory prediction is not as accurate compared to the vehicle trajectory prediction, 

and predicted velocity and the acceleration of the pedestrian may have a lot of noises. A 

pedestrian does not usually move at constant speed along a straight line but moves suddenly and 

occasionally. The pedestrian’s instant velocity, acceleration and heading angle from an ADAS 

camera are less accurate than those of the V2V data are. These pedestrian measurement errors 

will be propagated into the pedestrian’s tracking and adversely affect the V2P AEB Pedestrian 

function. 

Consider the case when the pedestrian walks along a street, and suddenly chooses to 

cross the street. Or the pedestrian could be crossing the street and suddenly decide to turn 



22 

 

around. The ADAS camera would not be able to recognize these sudden behavioral changes of a 

pedestrian very well, and it could report an inaccurate TTC to the AEB Pedestrian system of the 

ADAS. Therefore, the current pedestrian trajectory prediction algorithm inside the ADAS camera 

needs to be improved by making it capable of tracking a pedestrian’s instant action and removing 

video noises.  

Z. Chen et al. in their paper on pedestrian action classification proposed a method that 

used the motion pattern to cluster the pedestrian trajectories [18]. The motion pattern includes 

location, velocity and heading angle of a pedestrian. However, their method requires the fixed 

starting and ending locations of a pedestrian. From another aspect of pedestrian trajectory 

prediction, a survey shows that pedestrians can be grouped into three safety levels by traffic 

lights [19]. Pedestrians can also be grouped by different environments and dates such as different 

cities and whether it is a weekday or a weekend [20]. More specific behaviors of pedestrians that 

influence pedestrian trajectories are listed in [21]. 

In this thesis, a new approach is proposed and has also been verified to improve 

prediction of the heading angle and the acceleration of a pedestrian in front of an Ego Vehicle 

from the video stream recorded by an ADAS camera on the Ego Vehicle. The main idea of this 

portion of this thesis is to calculate the pedestrian velocity more accurately from the position data 

of the pedestrian by averaging velocities over 30 frames to reducing noise due to velocity 

fluctuation. It will be shown that the heading angle and the acceleration of the pedestrian 

estimated from the new velocity are more stable and more realistic than those obtained from the 

velocity calculation using just the raw video data. 

Besides increasing the prediction accuracy, time complexity is a significant factor for an 

AEB Pedestrian System. In this study, the frame rate is 36 frames per second and the camera will 
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record odd and even frame numbers into two video channels separately. Each pedestrian action 

takes 1.66 seconds reaction time for the prediction, which is shorter than the average driver 

reaction time of 2.3 seconds [22]. 

4.1 Trajectory Prediction Based on Classification 

In this thesis, behavior classification is implemented based on the heading angle and the 

acceleration of a pedestrian, which is used to classify instant actions of the pedestrian and to 

predict the next position of the pedestrian.  

The position data of a pedestrian is used to calculate the velocity of the pedestrian. In order 

to remove the data fluctuation that causes velocity errors, the sampling points will be removed 

from the velocity calculation if the fluctuation is larger than the threshold. The velocity accuracy 

is further enhanced by taking a running average of velocities over 30 frames. The average 

velocity is then used to calculate the heading angle and the acceleration of the pedestrian. 

Pedestrian behavior cases were defined in Section 2.1 on Page 7. For convenience, the 

definitions of behavior cases are repeated here: For Case A: (A1) Constant Speed, (A2) Sudden 

Acceleration, (A3) Sudden Deceleration, (A4) Sudden Dodge from the Ego Vehicle, (A5) 

Sudden Advance to the Ego Vehicle, (A6) Sudden Withdraw, and (A7) Sudden Stop at the Road 

Edge. For Case B: (B1) Constant Speed, (B2) Sudden Turn towards the Ego Vehicle and (B3) 

Sudden Stop at the Road Edge. 

Several pedestrian’s behavior cases were extracted from the videos recorded by a Mobileye 

ADAS camera. Raw instant velocities calculated from these videos were found to be unstable 

and noisy. Heading angles and accelerations for these cases were calculated using both raw 

instant velocity and the average velocity.  
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For Case A1 the heading angle and acceleration should not have any changes. For Case A2 

and Case A3, the instant actions will be detected based on the acceleration of the pedestrian. If 

the change of acceleration is from low to high, the pedestrian is in Case A2; vice versa for Case 

A3. For Case A4 and Case A5, the instant actions will be detected based on the heading angle 

and the starting position of the pedestrian. The pedestrian’s movement can be detected from the 

heading angle, while the instant action can be detected from both the pedestrian’s movement and 

starting position. For Case A6 and A7, the instant actions will be detected based on the heading 

angle of the pedestrian. If the heading angle has a 180-degree change, the instant action will be 

in Case A6, and if the heading angle has a 180-degree change and no changes for 30 frames, the 

instant action will be in Case A7. For Case B2, instant actions will be detected based on the 

heading angle of the pedestrian. If the heading angle has a 90-degree change and stays that way 

for over 5 frames, the instant action is Case B2. Case B3 will not have a heading angle change 

and the velocity of the pedestrian will be zero. 

More examples of pedestrian trajectory prediction by classification are shown in Section 

4.2.3 and 4.3.3. 

4.2 Average Velocity Calculation with Observed Position 

Pedestrian velocity is critical in accurately calculating heading angle and acceleration. The 

pedestrian velocity data obtained directly from the ADAS camera is not very accurate. The range 

of velocity is ±128 meters per second, which is well-suited for vehicle tracking but is not suitable 

for measuring pedestrian velocity since a pedestrian’s movement is a non-uniform motion. 

Pedestrian velocity can be calculated more accurately from the observed position information 

taken directly from the video stream. 
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4.2.1 Calculation of Average Velocity with Position Data 

A pedestrian’s position from the ADAS camera data contains both the latitude position and 

longitude position. The range of the latitude position is from -128 meters to 128 meters, and the 

center latitude position at the Ego Vehicle is 0 meters. The range of the longitude position is from 

0 to 256 meters, and the closest position of longitude at the Ego Vehicle is 0 meters.  

Position information taken from video frames can be used to calculate the velocity. The 

frame rate of the camera is 36 frames per second and the video is divided into two channels; 

therefore, the frame rate of each channel is 18 frames per second. Frame time interval 𝑑𝑡 is 0.055 

seconds. The latitude velocity can be calculated as 𝑣𝑙𝑎𝑡  =  𝑑𝑥𝑙𝑎𝑡  / 𝑑𝑡, where 𝑑𝑥𝑙𝑎𝑡 is the latitude 

position change between two adjacent frames. The longitude velocity can be calculated as 

𝑣𝑙𝑜𝑛𝑔  =  𝑑𝑥𝑙𝑜𝑛𝑔 / 𝑑𝑡, where 𝑑𝑥𝑙𝑜𝑛𝑔 is the corresponding longitude position change. 

More examples of new velocity predictions are shown in Figure 11 and Table 6 in Section 5 

associated with the new acceleration calculation. 

4.2.2 Noise Reduction from Velocity Calculation 

Latitudinal velocity and longitudinal velocity calculated directly from the video position 

data can be very noisy. The instant velocities calculated from the observed position are shown in 

the first column of Figure 8 for Case A1 and Figure 9 for Case A4. The noises are caused by the 

errors in the observed position and characteristics of the pedestrian. A noise filter needs to be 

applied to remove the noises. 

In order to remove these noises, the variance of the instant velocity is calculated and the 

upper bound of the variance is set. Any sample points that have higher variances than the upper 

bound are removed from the instant velocity points. The 30-frame moving average of the 
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remaining instant velocity points is then used to obtain the average velocity. For example, if the 

variance of the latitude velocity is higher than 1.1, the corresponding velocity is removed from 

the velocity calculation. As a result, the average velocity becomes smoother and less noisy. 

Figure 8 and Figure 9 show the comparison of the raw velocity and average velocity. The first 

column is the latitude velocity with noise. The second column is the variance value. The third 

column is the noise-reduced velocity. The fourth column is the mean of the noise-reduced 

velocity. 

Instant Velocity                                variance                        New Instant Velocity                 Average Velocity

 

Figure 8. Average Velocity Calculation for Case A1. 

Instant Velocity                                variance                        New Instant Velocity                 Average Velocity

 

Figure 9. Average Velocity Calculation for Case A4. 
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Compared to the velocity from the ADAS camera, the filtered average velocity is more stable 

and smoother. The first column in Figure 10 shows the average velocity for Case A1 and the 

second column shows the instant velocity. It is clear that the average velocity is much smoother 

and more stable. Data for Case A4 in the two right columns in Figure 10 supports this conclusion 

as well. 

Average Velocity of this Study               Velocity of ADAS CameraAverage Velocity of this Study                Velocity of ADAS Camera

 

Figure 10. Comparison of Average Velocity and ADAS Velocity for Case A1 and Case A4. 

4.3 Prediction of Heading Angle 

The heading angle of a pedestrian crossing a street is the deviation angle from the straight 

line of crossing. Four pedestrian action cases have angle changes: Case A4, Case A5, Case A6 

and Case B2. The first two cases will cause a slight angle change which may be less than a 90-

degree change, Case A6 may cause an angle change of up to 180 degrees, and Case B2 may 

cause up to a 90-degree change. 
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Pedestrian velocity taken directly from the ADAS camera data along the x- and y-axes can 

be used to calculate the pedestrian heading angle [23], and the heading angle theta can be 

calculated using 𝑎𝑟𝑐𝑡𝑎𝑛(𝑣𝑒𝑙𝑙𝑜𝑛𝑔/𝑣𝑒𝑙𝑙𝑎𝑡). The 𝑣𝑒𝑙𝑙𝑜𝑛𝑔 is the longitudinal velocity and 𝑣𝑒𝑙𝑙𝑎𝑡 is 

the latitudinal velocity. The angle’s range is between -90 and 90 degrees.  

The heading angle is calculated with the ADAS camera velocity data using the following 

equation:  

𝜃𝑜𝑙𝑑 = arctan (
𝑣𝑒𝑙𝑙𝑜𝑛𝑔|𝑐𝑎𝑚

𝑣𝑒𝑙𝑙𝑎𝑡|𝑐𝑎𝑚
) 

(Eq 4.1) 

The heading angle 𝜃𝑜𝑙𝑑 is directly calculated from the ADAS camera data, which is not 

accurate. The upper left six graphs for Case A1 in Figure 11 show how inaccurate this calculation 

is. Both the heading angle and the moving angle theta of these three examples of Case A1 data 

sets should ideally be 0 degree, but  𝜃𝑜𝑙𝑑 in these three datasets are always changing and far from 

0 degree. 

4.3.1 A New Method of Computing the Heading Angle 

A new method to calculate the moving angle theta is proposed in this thesis by using the new 

average velocity calculated from the position information from the ADAS camera data as 

discussed in Section 3. The heading angle 𝜃𝑛𝑒𝑤 is calculated as follows: 

𝜃𝑛𝑒𝑤 = arctan (
𝑣𝑒𝑙𝑙𝑜𝑛𝑔|𝑛𝑒𝑤

𝑣𝑒𝑙𝑙𝑎𝑡|𝑛𝑒𝑤
) 

(Eq 4.2) 

Figure 11 shows a number of comparisons of the old camera data and the new calculated 

heading angle for Case A. Figure 12 shows the heading angle comparisons for Case B2, 
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including the case of a pedestrian crossing street at a constant velocity straightly and the 

pedestrian moving farther away from the Ego Vehicle while crossing the street with an obvious 

direction change. 

 

Figure 11. Comparison of Old Camera Data (right) and New (left) Heading Angles for Cases 

A1, A4 Left, A4 Right and A6. 
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Case B2

θcam θest

 

Figure 12. Comparison of Old Camera Data (right) and New (left) Heading Angles for Case 

B2. 

4.3.2 Analysis of More Accurate Prediction of the Heading Angle 

The heading angle for Case A1 is 0 degree, as the pedestrian walks in a straight line at 

constant speed. The heading angle for Case A4 shows a sudden change from 0 degree to ±50 

degrees as the pedestrian dodged suddenly from the Ego Vehicle. The heading angle for Case A6 

shows a sudden jump from -90 to 90 degrees or 90 to -90 degrees, because for both before and 

after the stopping point of the longitudinal, the velocity is ideally equal to 0. In addition, at the 

point where pedestrian stops and make a U-turn, the angle changes by 180 degrees. 

The heading angle for Case B2 should be about 90 degrees when the pedestrian suddenly 

makes a 90-degree turn. The velocity should decrease to zero and the heading angle should 

change suddenly to -90 degrees, then return to 0 degree. 
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Table 4 shows the comparison of the ideal, old, and new heading angle predictions for Cases 

A1, A4, and A6. It is clearly shown that the new heading angle predictions for all cases are more 

stable and more accurate than the old ones. 

Table 4. Comparison of Ideal, Old and New Heading Angle Predictions 

Pedestrian 

actions 

Ideal θ θ from camera θ from this study 

Case A1 Constant at 0 degree 2 datasets fluctuated All Stable 

Case A4 Sudden from 0 to ± 50 2 datasets have no 

obvious angle change 

All data sets are better 

than the camera data 

Case A6 Sudden from -90 to +90 at 

stop point 

None of them has 

obvious angle change 

All data sets have 

obvious angle change 

Case B2 Sudden from -90 to -90 then 

0 with no bouncing 

1 dataset has bouncing, 

this will cause system to 

recognize 2 turnings 

None of them 

bouncing. 

 

4.3.3 Pedestrian Trajectory Prediction by Heading Angle in 

Classification 

Some cases of pedestrian’s instant actions can be detected and classified based on the 

pedestrian heading angle. For example, in Case A6, the instant actions will be grouped into Class 

1 corresponding to the case of a pedestrian suddenly turning back. And in Case A4 and Case A5, 

the change of heading angle is used to detect these actions. Class 2 for suddenly turning closer to 

the Ego Vehicle and Class 3 for suddenly turning even closer to the Ego Vehicle. Classes 4 and 5 

are based on acceleration and will be discussed in Section 4.4.3. For Case B2, the instant action 

class is Class 6. The class definition is shown in Table 5 below. 
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Table 5. Action Classes and Corresponding Action Cases 

Actions Classes Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 

Actions Cases Case A6 Case A5 Case A4 Case A2 Case A3 Case B2 

 

In Figure 13, two instant actions are detected separately. One is Case A6 on the left, the other 

is Case A4 on the right. In this classification process, the change rates of the heading angle over 

30 frames can be observed and the class number will be signed for each action. When the instant 

action occurs, the class will be signed to the corresponding case. 

 

Figure 13. Detection of Sudden Withdrawal (Case A6) and Sudden Dodge (Case A4). 

4.4 Prediction of Acceleration 

Another important factor for predicting pedestrian trajectories is pedestrian acceleration. 

The velocity change 𝑑𝑣𝑙𝑎𝑡|𝑐𝑎𝑚 can be obtained from the latitude velocity change between two 

adjacent frames and the acceleration can be calculated as follows:  

𝑎𝑐𝑐𝑜𝑙𝑑|𝑙𝑎𝑡 =
𝑑𝑣𝑙𝑎𝑡|𝑐𝑎𝑚

𝑑𝑡
 

(Eq 4.3) 
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Using the velocity information directly from the ADAS camera to calculate the pedestrian 

latitude velocity will produce an unstable acceleration prediction, as shown in Figure 14. The 

first two columns in Figure 14 are velocity and acceleration obtained from the camera data 

directly for three cases: Case A1 Constant Speed, Case A2 Acceleration and Case A3 

Deceleration. Acceleration in all three cases shows unstable glitches. 

4.4.1 A New Method of Computing the Acceleration 

The way to get smoother and less noisy acceleration prediction is to use the new average 

velocity. The new acceleration 𝑎𝑐𝑐𝑛𝑒𝑤|𝑙𝑎𝑡 is calculated as follows, where the velocity change is 

based on the average velocity:  

𝑎𝑐𝑐𝑛𝑒𝑤|𝑙𝑎𝑡 =
𝑑𝑣𝑙𝑎𝑡|𝑛𝑒𝑤

𝑑𝑡
 

(Eq 4.4) 

The right two columns in Figure 14 are velocity and acceleration that have been calculated 

with the new average velocity prediction for Cases A1, A2, and A3. The accelerations are much 

more consistent than those based on the old velocity. 
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Case A1

Case A2

Case A3

 

Figure 14. Old Velocity and Acceleration (Left Two Columns) and New Velocity and 

Acceleration (Right Two Columns). 

4.4.2 Analysis of the More Stable Prediction of Acceleration 

The velocity for Case A1 Constant Speed should be constant, and its acceleration should be 

zero. The velocity for Case A2 Acceleration should be increasing monotonically, and its 
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acceleration should be positive. The velocity for Case A3 Deceleration should be decreasing 

monotonically, and its acceleration should be negative. 

Table 6 shows the comparison of the ideal, old, and new velocity calculation for cases in 

Figure 14. Table 7 shows their acceleration comparison. 

Figure 14, Table 6 and 7 have shown that the new methods of predicting velocity and 

acceleration proposed in this thesis are much more stable and accurate than the old methods of 

using the raw ADAS camera data. 

Table 6. Comparison of Velidea vs. Velcam|old vs. Velest|new 

Pedestrian 

Actions 
𝑣𝑒𝑙𝑖𝑑𝑒𝑎 𝑣𝑒𝑙𝑐𝑎𝑚|𝑜𝑙𝑑 𝑣𝑒𝑙𝑒𝑠𝑡|𝑛𝑒𝑤 

Case A1 A constant value Speed is unstable and noisy Stable 

Case A2 Increasing  Two datasets have noise and 

unsmooth 

Smoother increasing 

trend 

Case A3 Decreasing  All datasets are noisy and unstable Smoother and less 

noise 

 

Table 7. Comparison of Accidea vs. Acccam|old vs. Accest|new 

Pedestrian 

Actions 
𝑎𝑐𝑐𝑖𝑑𝑒𝑎 𝑎𝑐𝑐𝑐𝑎𝑚|𝑜𝑙𝑑 𝑎𝑐𝑐𝑒𝑠𝑡|𝑛𝑒𝑤 

Case A1 Constant at 0 One dataset is noisy and 

unstable 

All datasets are stable 

Case A2 Positive value  All datasets have a lot 

of noise 

All datasets are more stable and 

smoother 

Case A3 Negative 

value  

All datasets have large 

noise  

All datasets are better than the 

datasets from the camera  
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4.4.3 Pedestrian Trajectory Prediction by Acceleration in Classification 

Some cases of pedestrian’s instant actions can be detected by the classification based on 

pedestrian acceleration. For example, in Case A2, the instant actions class will be detected as 

Class 4 for a pedestrian suddenly speeding up. And in Case A3, the instant actions class will be 

detected as Class 5 for a pedestrian suddenly slowing down. The class definition is shown in 

Table 5 in Section 4.3.3. 

In Figure 15, two instant actions are detected separately. One is Case A2 on the left, the 

other is Case A3 on the right. In this classification process, the change rates of the acceleration 

over 30 frames will be observed and the class number will be signed for each action. The left 

figure in Figure 15 is Case A2, and the class is set to Class 4 when the instant action happens. 

The right figure in Figure 15 is Case A3, and the class is set to Class 5 when the instant action 

occurs.  

 

Figure 15. Detection of Sudden Acceleration (Case A2) and Sudden Deceleration (Case A3). 
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5 OPTIMIZED TRAJECTORY PREDICTION BY EKF AND 

BEHAVIOR CLASSIFICATION 

In order to predict pedestrian trajectories accurately, extended Kalman filter (EKF) 

discussed in Section 3 and the behavior classification in Section 4 have been combined into one 

predictive system to perform the prediction. The EKF will reduce the observation noise of the 

detected pedestrian data, and the behavior classification will track instant actions of the 

pedestrian’s sudden movement. In this prediction system integrated by the EKF and 

classification, the pedestrian data will initially be processed by the EKF process when the 

pedestrian is moving at constant speed. Once an instant action of one of the classification cases is 

detected by the system, the EKF process will stop calculation and reset its state and parameters. 

When the instant action detection is finished, the prediction system will restart the EKF process. 

When this prediction system performs EKF filtering, the situation is defined as the EKF 

process. When this system stops the EKF and analyzes the pedestrian instant actions using 

behavior classification, this situation is defined as the Classification process. The main purpose 

of combining these two processes is to optimize the trajectory prediction by reducing the error 

rate, which is defined by equation: (𝑧 −  𝑥𝑝)/𝑥𝑝, where 𝑧 is the observed position of the 

pedestrian, and 𝑥𝑝 is the predicted position. 

The Time to Collision (TTC) was originally defined by Hayward as “the time required for 

two vehicles to collide if they continue at their present speed and on the same path. It is 

measured continuously with time.” [24]  The TTC is a key element in the AEB Pedestrian system 

of the ADAS, and the TCC calculation is based on the pedestrian trajectory prediction. In the 
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ADAS camera used in this study, the default TTC is set to 7 seconds, which is a relatively safe 

time range for collision avoidance. In some previous studies, the average TTC was observed to 

be 1.1 seconds, and the maximum TTC was observed to be 4.4 seconds for their experimental 

vehicles [25]. For this thesis, the braking decision was made based on the 7-second TTC.  

5.1 Combination of Extended Kalman Filter and Behavior 

Classification 

In the previous sections, the EKF and the behavior classification were implemented 

separately. A method of combining EKF and behavior classification will be discussed in this 

section. For this new method, the main real-time flowchart is shown in Figure 16 below: 

 

Figure 16. The State Flow of the Combination of EKF and Behavior Classification. 

First, the system starts the EKF process to remove the observation noise and predicts the 

new state and update its parameters. Then, the system will process 30 frames of pedestrian video 



39 

 

data by behavior classification. If an instant action is not detected, the system will calculate the 

TTC from the results of the EKF process. If the TTC exceeds the limit, the brake alarm will be 

turned on. Otherwise, the system will restart the EKF process. If an instant action is detected by 

the behavior classification, the system will make a new prediction based on the behavior 

classification, and it will then calculate the TTC from the results of the Classification process. If 

the TTC exceeds the limitation, the brake alarm will be turned on. Otherwise, the system will 

restart the EKF process. 

This thesis has proposed two improvements in the state of the art of pedestrian trajectory 

determination in Ego Car ADAS systems. The first improvement is based on the EKF process 

where the “one state ahead” prediction of a pedestrian trajectory can save a 2-frame period for 

pedestrian collision avoidance. The EKF process will also remove the observation noise to obtain 

a smoother pedestrian trajectory.  

The second improvement is in the classification of pedestrian behavior which can predict 

instant actions made by a pedestrian, where the ADAS camera cannot predict instant actions. The 

new method combined with the EKF and the behavior classification will provide a more 

advanced prediction time reduction and instant action classes to predict the pedestrian trajectory 

faster and more accurate. 

The combination system will take these two improvements together to make the pedestrian 

trajectory prediction more accurate. When there is no instant action detected by the system, the 

EKF process will provide a noise-reduced prediction of the next pedestrian’s step, and when 

there is an instant action detected by this system, the behavior classification process will provide 

a prediction based on the classified actions. 
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5.1.1 Input Data for Extended Kalman Filter and Classification 

The input data to the EKF process and the classification process are different: the raw 

position data from the ADAS camera is the input data to the EKF process. Since the EKF process 

is more focused on the fast computation of the next state in the real-time system, and it can also 

remove the observation noise by continually updating the covariance matrix 𝑝𝑘 and the state 𝑥𝑘. 

The classification process is much more focused on measuring the changes of the pedestrian 

heading angle and acceleration data in a 30 frames period to detect when an instant action 

occurs. Hence the input data to the classification process is well-filtered average velocity data of 

the pedestrian. The average velocity data is used to calculate the pedestrian heading angle and 

acceleration. 

In this overall system that combines the EKF and the classification processes, the input data 

need to be used in two different processes. First, the raw position data of a pedestrian from the 

ADAS camera will be used for the EKF process. Second, the raw velocity will be calculated 

from the raw position data for the classification calculation. The initial calculated velocity is 

noisy and unstable so that an extra noise filter will be applied to the raw velocity and an average 

will be taken by 30 frames. At this point, a well-filtered average velocity can be sent to the 

Classification process as the input data. 

5.1.2 Implementation of Extended Kalman Filter and Classification in 

Real Time 

The implementation of the EKF process is easy to do with only one pedestrian from the 

ADAS camera, but in real-life applications, multiple pedestrians need to be tracked at the same 

time. Although this study only considers examples of one single pedestrian, a Matlab program of 

the EKF process in this study has been implemented to support multiple pedestrian tracking. 
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When multiple pedestrians are tracked in real-time, all the required state data and position 

data need to be saved to the system buffer for one frame in order to be used in the next frame of 

the state calculation and prediction. Each system buffer will need to be assigned an index 

number. 

To apply behavior classification in a real-time system, a sequence of 30 frames needs to be 

analyzed to perform data filtering and to obtain an average. At the same time, this 30-frame 

sequence must be used for the characteristics capture of an action detection. Therefore, in the 

classification process, a 30-frames data buffer is required for two purposes. One is to filter and 

average the velocity, and the other is to detect the changes in the heading angle and acceleration. 

In the real-time integrated system, the classification process will start after the first 30 frames, 

and the initial average velocity will be calculated. Before the classification process, the system 

will run the EKF process. 

5.2 Analysis of Prediction of Pedestrian Trajectories 

In this study, the EKF was implemented to provide a noise-reduced prediction for one state 

ahead based on the observed position of the pedestrian. This system will continuously process 

the whole video from the ADAS camera, and when a pedestrian is found to be first entering the 

video the EKF will be restarted and all of the covariance matrices and error parameters will be 

reset to their initial values.  

For a single pedestrian being tracked by the EKF in this study, each calculation is 

performed in single frame increments, and the Mobileye ADAS camera saves one frame data in 

every two frames. The EKF will predict the next state for a pedestrian in the next frame and by 

this prediction, a two frames period can be saved, which takes 0.11 seconds. This is an 
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improvement over a current pedestrian tracking system, since it offers faster calculation and a 

more accurate prediction by the EKF process. 

Figure 17 shows the prediction error percentages of Case A1 and Case A4. Case A1 has no 

instant action. Hence the error rate is low and Case A4 has an instant action with a direction 

change, so the error rate is higher at that point. 

Error Rate (%)

Frames #  

Figure 17. Comparing Error Rates of Case A1 and Case A4 in EKF. 

Behavior classification will fix the high error rate problem during the pedestrian 

trajectory prediction by detecting instant actions and making a new prediction of the pedestrian’s 

next step. Combining both the EKF and behavior classification will optimize the accuracy and 

reduce the error rate of the trajectory prediction. In Figure 18, the error rate of Case A4 is 

calculated based on the combination of the EKF and behavior classification. Compared to the 

error rate of Case A4 in Figure 17, the error range in Figure 18 is lower. 
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Frames #

Error Rate (%)

 

Figure 18. Error Rate of Case A4 in the Combined Method. 

5.3 Time to Collision based on Pedestrian Trajectory Prediction 

In the real-time system, the TTC should be continuously calculated for each frame of a 

video. Obtaining the TTC is a critical step of pedestrian trajectory prediction. For instant actions 

of the pedestrian, the safety time will be less due to the unsafe actions of the pedestrian. Once the 

TTC is above the limit, the system will set a brake alarm to warn the driver so that an impact on 

the pedestrian can be avoided. In this study, the TTC needed to be calculated for both the EKF 

and Classification processes. 

5.3.1 Introduction to Computing Time to Collision 

Based on the pedestrian movement cases in this study, calculations of the TTC are divided 

into three situations. The first situation is when the Ego Vehicle and the pedestrian are moving in 

the same direction and the TTC of Case B can be calculated for this situation. The second 

situation is when a pedestrian crosses a street and the Ego Vehicle moves in a perpendicular 
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direction to the pedestrian’s movement. The third situation begins with the second situation, but 

the pedestrian changes direction when crossing the street. 

In the first situation shown in Figure 19, the Ego Vehicle and an observed pedestrian are 

moving in the same direction and along the same path, which is the basic situation of the TTC 

calculation. The TTC can be calculated by the following equation: 

𝑇𝑇𝐶 =
𝐿𝑜

𝑉𝑓 − 𝑉𝑙
 

(Eq 5.1) 

𝑉𝑓  is the velocity of the Ego Vehicle. 𝑉𝑙  is the velocity of an observed pedestrian. 𝐿𝑜 is the 

distance between the Ego Vehicle and the pedestrian. 

 

Figure 19. The Ego Vehicle and Pedestrian Move in the Same Direction. 

In the second situation, the observed pedestrian is crossing a street with 0 degrees heading 

angle and the Ego Vehicle is moving on the street in a straight direction, shown in Figure 20. If 

the pedestrian’s velocity is too slow or too fast, collision between the pedestrian and the Ego 

Vehicle won’t occur. Hence time required for the pedestrian to move to the edge of the road 

needs to be calculated. For the near edge, time for the pedestrian to move to the edge can be 

calculated as 𝑇𝑜2_1  =  𝐿𝑜2_1/𝑉𝑙. Here 𝐿𝑜2_1 is the distance between the pedestrian and the closer 

edge of the road. 𝑉𝑙 is the velocity of the pedestrian arriving before the road. For the far edge, 

time of pedestrian reaches the edge can be calculated as 𝑇𝑜2_2  =  𝐿𝑜2_1/𝑉𝑙. Here 𝐿𝑜2_2 is the 
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distance between the pedestrian to the further edge of road. Time for the Ego Vehicle to reach the 

pedestrian latitudinal position can be calculated as 𝑇𝑜  =  𝐿𝑜1/𝑉𝑓. Here 𝐿𝑜1 is the distance 

between the Ego Vehicle and the pedestrian. A collision will only occur when 𝑇𝑜2_1 ≤  𝑇𝑜  ≤

 𝑇𝑜2_2. The TTC can be calculated by the following equation: 

𝑇𝑇𝐶 =
𝐿𝑂1

𝑉𝑓
 

(Eq 5.2) 

 

Figure 20. A Pedestrian Crosses a Street in Front of the Ego Vehicle. 

In the third situation, the pedestrian will make a change in direction when crossing a 

street and two possible directions are shown in Figure 21. For the near edge, time for a 

pedestrian to reach the edge can be calculated as 𝑇𝑜2_𝑠1  = 𝐿𝑜2_𝑠1 / 𝑉𝑙_1. Here 𝐿𝑜2_𝑠1 is the 

distance between the pedestrian and the closer edge of the road. Here 𝑉𝑙_1 is the velocity of the 

pedestrian arriving at the road. For the far edge, time for a pedestrian to reach the edge can be 

calculated as 𝑇𝑜2_1  =  𝐿𝑜2_1 / 𝑉𝑙_1  +  𝐿𝑜2_2 / 𝑉𝑙_2. Here 𝐿𝑜2_1 is the distance of a pedestrian 

without direction change, and 𝐿𝑜2_2 is the distance of pedestrian after the direction change. Here 

𝑉𝑙_2 is the velocity of the pedestrian on 𝐿𝑜2_2 direction. Time the Ego Vehicle takes to reach the 
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pedestrian’s latitudinal position can be calculated as 𝑇𝑜1  =  𝐿𝑜1 / 𝑉𝑓. A collision will only 

happen when 𝑇𝑜2_𝑠1  ≤  𝑇𝑜1  ≤  𝑇𝑜2_1.  

The TTC can be calculated in two situations: A collision occurs before or after the 

pedestrian changes direction. When a collision occurs before the pedestrian changes direction, 

time when the vehicle reaches the pedestrian will be 𝑇𝑜 ≤  𝐿𝑜2_1/𝑉𝑙, and the equation is: 

𝑇𝑇𝐶1 =
𝐿𝑂2

𝑉𝑓 − 𝑉1_1
 

(Eq 5.3) 

When a collision occurs after a pedestrian changes direction, time when the vehicle 

reaches the pedestrian will be 𝑇𝑜 ≥  𝐿𝑜21
/𝑉𝑙, and the equation is: 

𝑇𝑇𝐶2 =
𝐿𝑂2

𝑉𝑓 − 𝑉1_1 ∗ sin (θ)
 

(Eq 5.4) 

𝐿𝑜2 is the distance between the Ego Vehicle and the pedestrian. θ is the heading angle of 

the pedestrian. 

 

Figure 21. A Pedestrian Crosses a Street in Front of the Ego Vehicle with Direction 

Changes. 
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5.3.2 Computation of Time to Collision by the Extended Kalman Filter 

When the instant action is not detected by the system, the TTC of the EKF process needs to 

be calculated for this situation. In the EKF process, every time the observed pedestrian data is 

taken into the EKF system, the new state will be predicted. Then the new position and velocity 

will be updated by the new state. 

First, time for the Ego Vehicle to reach the pedestrian’s longitudinal position, 𝑡1, can be 

calculated as 𝑡1  =  𝑥𝑙𝑜𝑛𝑔/𝑣𝑐𝑎𝑟, where 𝑥𝑙𝑜𝑛𝑔  is the longitudinal distance from the updated step of 

the EKF process between the Ego Vehicle and the pedestrian, and 𝑣𝑐𝑎𝑟  is the velocity of the Ego 

Vehicle. Next, time when the pedestrian enters the driving path,  𝑡2, can be calculated as 𝑡2  =

 (𝑥𝑙𝑎𝑡 –  𝑙)/𝑣𝑙𝑎𝑡, where 𝑥𝑙𝑎𝑡 is the pedestrian’s latitudinal position from the updated step of the 

EKF process from the center line of the Ego Vehicle to the pedestrian in the latitudinal direction. 

Here 𝑥𝑙𝑎𝑡 − 𝑙 denotes the pedestrian’s latitudinal position minus half of the width of the Ego 

Vehicle, where the width is 2 meters for a full-size car. Then time when the pedestrian leaves the 

driving path can be calculated as 𝑡3  =  (𝑥𝑙𝑎𝑡  + 𝑙)/𝑣𝑙𝑎𝑡. Here 𝑥𝑙𝑎𝑡  + 𝑙 means the pedestrian 

latitudinal position plus half of the width of the Ego Vehicle. 

When 𝑡1 is greater than or equal to 𝑡2, the pedestrian will collide with the Ego Vehicle. If 

𝑡1 <  𝑡2, the Ego Vehicle will arrive at the pedestrian’s latitudinal position and the pedestrian can 

see the vehicle moving in front of him/her and will not cross the street, which is a safe situation, 

needing no further consideration. If 𝑡1 >  𝑡3, the pedestrian has already crossed the street before 

the Ego Vehicle reaches the pedestrian’s latitudinal position, which is also a safe situation. 
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5.3.3 Computation of Time to Collision by Behavior Classification 

When the instant action is detected by the system, the TTC of the Classification process 

needs to be calculated. In the Classification process, each instant classification will predict a new 

position and calculate an average velocity for the pedestrian. Based on the new predicted 

position and the new average velocity, the TTC can be calculated. 

First, elapse time when the Ego Vehicle reaches the pedestrian in longitudinal direction t1 

can be calculated as 𝑡1  =  𝑥𝑙𝑜𝑛𝑔/𝑣𝑐𝑎𝑟, where 𝑥𝑙𝑜𝑛𝑔  is the longitudinal distance from the 

classification prediction process between the Ego Vehicle and the pedestrian, and 𝑣𝑐𝑎𝑟  is the 

velocity of the Ego Vehicle. Next, elapse time when a pedestrian enters the driving path can be 

calculated 𝑎𝑠 𝑡2  =  (𝑥𝑙𝑎𝑡 –  𝑙)/𝑣𝑙𝑎𝑡, where 𝑥𝑙𝑎𝑡 is the pedestrian’s latitudinal position from the 

classification prediction process, measured from the centerline of the Ego Vehicle to the 

pedestrian in the latitudinal direction. Then, elapse time when the pedestrian leaves the driving 

path can be calculated as 𝑡2  =  (𝑥𝑙𝑎𝑡  + 𝑙)/𝑣𝑙𝑎𝑡. Just as with the TTC of the EKF process, when 

𝑡1 is greater than or equal to 𝑡2, the pedestrian will collide with the Ego Vehicle. 

5.3.4 Analysis of TCC by Extended Kalman Filter and Classification 

In the EKF process and Classification process, the TTC is calculated by the same method but 

with different positions and velocity inputs. In the EKF process, the position information used in 

the TTC calculation is from the EKF update step, which updates the velocity and position 

information using the predicted parameters. In the Classification process, the information comes 

from the prediction of the classified instant action that has a smoother and noise-reduced velocity 

and position data. In Figure 22, the EKF Process has a TTC based on the predicted next state. 

However, with little noise, the Classification process has a more stable trend, but it can only 

calculate the TTC of the past 30 frames. 



49 

 

 

Figure 22. Comparison of TTC in the EKF Process and Classification Process. 

There are four instant actions shown in Figure 23, the red markers are the original TTC from 

the ADAS Camera, and the blue markers are the predicted TTC from this study. The y-axis is the 

TTC in seconds, and the x-axis is the number of frames. These four instant actions are two for 

Case A6 and two for Case A4. The original TTC does not include the instant action classification 

and will not calculate an accurate TTC for the pedestrian. The predicted TTC is calculated based 
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on the prediction of both the EKF and the pedestrian behavior classification, and this yields more 

accurate TTC for AEB Pedestrian to set the brake warning. 

 

Figure 23. Comparison of TTC from the ADAS Camera and TTC Calculated from the 

Predicted Trajectory. 
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6 CONCLUSION AND FUTURE DEVELOPMENT  

The observation noise of the pedestrian position data was removed by the EKF, and a 

new state was predicted by the previous state. The EKF is a dynamic model capable of fast 

calculations, of removing noise, of self-correction and of predicting a new state from a previous 

state, which does not require saving the data in its history database.  

For behavior classification, the pedestrian’s instant actions were detected based on the 

pedestrian heading angle and acceleration. The heading angle and the acceleration were 

calculated from the new average velocity. The main idea is to calculate the average velocity from 

the position data of the pedestrian by reducing noise due to velocity fluctuation and by taking the 

average of velocities over 30 frames. 

This study proposes an improved method of predicting pedestrian trajectory by 

combining the EKF and behavior classification to predict pedestrian trajectory from raw 

pedestrian position data from the ADAS camera. The EKF was used to smooth the original 

position data to remove the observation noise and to predict a new position. The EKF provides a 

fast calculation of the next state prediction and saves 0.11 seconds over two frames for the TTC 

calculation. The resulting heading angle and acceleration were then calculated and used as inputs 

to the behavior classification process in order to identify each behavior class based on the new 

average velocity estimated from the previous filtering step. Behavior classification provides a 

prediction with more stability and less noise.  
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Future work might entail using more training data and attempting to classify a larger 

variety of pedestrian actions into more detailed classes. Weather conditions and night time 

conditions could be added as variables for the prediction. The location of the Ego Vehicle could 

be provided by GPS and this information might be added to the prediction. Regarding the 

hardware of the ADAS camera, a newer generation of the Mobileye camera will be released in 

2020 [26], which will have a face detection function. With this function, behavior classification 

will be more accurate with respect to heading angle detection.  



53 

 

 

LIST OF REFERENCES 

[1] “ADAS technology,” 2018. [Online]. Available: https://www.mobileye.com/our-

technology/adas/. 

[2] “Euro NCAP | Timeline.” 2017. [Online]. Available: https://www.euroncap.com/en/about-

euro-ncap/timeline/. 

[3] “Pedestrian Safety | NHTSA.” 2017 [Online]. Available: https://www.nhtsa.gov/road-

safety/pedestrian-safety.  

[4] “U.S. DOT and IIHS announce historic commitment of 20 automakers| NHTSA.” 2017 

[Online]. Available: http://www.iihs.org/iihs/news/desktopnews/u-s-dot-and-iihs-

announce-historic-commitment-of-20-automakers-to-make-automatic-emergency-braking-

standard-on-new-vehicles.  

[5] Zhijun Chen, Chaozhong Wu, Nengchao Lyu, Gang Liu, and Yi He, “Pedestrian-vehicular 

collision avoidance based on vision system,” 7th IEEE International Conference 

Intelligent Transportation System, October 3-6, 2004, Washington, WA. 2004. 

[6] “ABOUT MOBILEYE N.V.,” 2018. [Online]. Available: https://www.mobileye.com/en-

us/about-mobileye/. 

[7] Kirsten Korosec, “Mobileye, Why Intel Bought,” 2017. [Online]. Available: 

http://fortune.com/2017/03/13/why-intel-bought-mobileye/. 

[8] “Intel: 2M Nissan, BMW, VW Cars Will Use Mobileye,” 2018. [Online]. Available: 

https://www.investopedia.com/news/intel-2m-nissan-bmw-vw-cars-will-use-mobileye/ 

[9] Pablo Negri and Damian Garayalde, “Concatenating multiple trajectories using Kalman 

filter for pedestrian tracking,” 2014 IEEE Biennial Congress of Argentina, June 11-13, 

2014, Bariloche, Argentina, 2014. 

[10] Fuliang Li, Ronghui Zhang, and Feng You, “Fast pedestrian detection and dynamic 

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6857932


54 

 

tracking for intelligent vehicles within V2V cooperative environment,” IET Image 

Processing, vol. 11, no. 10, pp. 833-840, 2017. 

[11] Kang Chen and Wangchen Ge, “Pedestrian tracking algorithm based on Kalman filter and 

partial mean-shift tracking,” 2nd International Conference System Informatics, November 

15-17, 2014, Shanghai, China, 2014. 

[12] Yanwu Xu, Xiaobin Cao, and Tingxia. Li, “Extended Kalman filter based pedestrian 

localization for collision avoidance,” 2009 International Conference Mechatronics 

Automation, August 9-12, 2009, Changchun, China, 2009. 

[13] David Ellis, Eric Sommerlade, and Ian Reid, “Modelling pedestrian trajectory patterns 

with Gaussian processes,” IEEE 12th International Conference Computer Vision, 

September 27 - October 4, 2009, Kyoto, Japan, 2009. 

[14] Kihwan Kim, Dongryeol Lee, and Iifan Essa, “Gaussian process regression flow for 

analysis of motion trajectories,” 2011 IEEE International Conference Computer Vision, 

November 6-13, Barcelona, Spain, 2011. 

[15] Yufan Chen, Miao Liu, Shih-Yuan Liu, Justin Miller, and Jonathan P. How, “Predictive 

Modeling of Pedestrian Motion Patterns with Bayesian Nonparametrics,” 2016 AIAA 

Guidance Navigation Control Conference, January 4-8, 2016, San Diego, California, 

2016. 

[16] Neil Thacker, Tony Lacey, “Tutorial: The kalman filter,” Imaging Science and Biomedical 

Engineering Division - Tina Memo no. 1006-002. pp. 133–140, 1998. 

[17] Simon. D. Levy, “The Extended Kalman Filter: An Interactive Tutorial.” 2016 [Online], 

Available at: https://home.wlu.edu/~levys/kalman_tutorial/ 

[18] Zhuo. Chen, Daniel Chi Kit Ngai, Nelson Hon Ching Yung “Pedestrian Behavior 

Prediction based on Motion Patterns for Vehicle-to-Pedestrian Collision Avoidance,” 11th 

Intelligent Transportation System International Conference IEEE, October 12-15, 2008, 

Beijing, China, 2008. 

[19] Ying Ni, Yingying Cao, and Keping Li, “Pedestrians’ Safety Perception at Signalized 

Intersections in Shanghai,” Transportation Research Procedia, vol. 25, no. June, pp. 

1960–1968, 2017. 



55 

 

[20] Steven Bennett, Adam Felton, and Rahmi Akçelik, “Pedestrian movement characteristics 

at signalized intersections,” 23rd Conference Australia Institutes Transportation Research, 

December 10-12, 2001, Melbourne, Australia, 2001. 

[21] Mohammed M. Hamed, “Analysis of pedestrians’ behavior at pedestrian crossings,” Safety 

Science, vol. 38, no. 1, pp. 63–82, 2001. 

[22] Daniel V. McGehee, Elizabeth N. Mazzae, and GH Scott Baldwin, “Driver Reaction Time 

in Crash Avoidance Research: Validation of a Driving Simulator Study on a Test Track,” 

Processing Human Factors Ergonomics Society Annual Meeting, vol. 44, no. 20, pp. 3-

320-3–323, 2000. 

[23] Ross Grote Stirling, “Development of a Pedestrian Navigation System Using Shoe 

Mounted Sensors,” University of Alberta Master Thesis of 2004 Canada. 

[24] John C. Hayward, “Near-Miss Determination Through,” Highway Research Board, vol. 

384, no. 385-1972, pp. 24–35, 1971. 

[25] Kristofer D. Kusano, Hamptom Gabler, “Method for Estimating Time to Collision at 

Braking in Real-World, Lead Vehicle Stopped Rear-End Crashes for Use in Pre-Crash 

System Design,” SAE International Journal Passenger Cars - Machines Systems, vol. 4, 

no. 01-0576, pp. 435-443, 2011. 

[26] “The Evolution of EyeQ,” 2018. [Online]. Available: https://www.mobileye.com/our-

technology/evolution-eyeq-chip/. 

 

  



56 

 

 

APPENDICES 

  



57 

 

 

Appendix A. ADAS Camera User Interface Matlab GUI Design 

 

 

 



58 

 

 

Appendix B. Matlab Program of Callback functions with GUI 

function varargout = AHBC(varargin) 

% AHBC MATLAB code for AHBC.fig 

%      AHBC, by itself, creates a new AHBC or raises the existing 

%      singleton*. 

% 

%      H = AHBC returns the handle to a new AHBC or the handle to 

%      the existing singleton*. 

% 

%      AHBC('CALLBACK',hObject,eventData,handles,...) calls the local 

%      function named CALLBACK in AHBC.M with the given input arguments. 

% 

%      AHBC('Property','Value',...) creates a new AHBC or raises the 

%      existing singleton*.  Starting from the left, property value pairs are 

%      applied to the GUI before AHBC_OpeningFcn gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to AHBC_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help AHBC 

  

% Last Modified by GUIDE v2.5 08-Feb-2016 16:01:00 

  

% Begin initialization code - DO NOT EDIT 

  

  gui_Singleton = 1; 

  

  gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @AHBC_OpeningFcn, ... 

                   'gui_OutputFcn',  @AHBC_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 
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                   'gui_Callback',   []); 

  if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

  end 

  

  global v;  

  global p_frame_buf; 

  global p_frame_data; 

  

  % Init value for image buffer 

  v = zeros(1280,960,'uint8');  

  % Pointer to image buffer 

  p_frame_buf = libpointer('uint8Ptr',v); 

  % For sync data 

  struct frame_data ('idx',0,'gid',0,'time',0,'drop',0); 

  loadlibrary('vidsframe',@mHeader); 

  p_frame_data = libpointer('FRAME_DATAPtr'); 

  

  

  if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

  else 

    gui_mainfcn(gui_State, varargin{:}); 

  end 

% End initialization code - DO NOT EDIT 

  

% --- Executes just before AHBC is made visible. 

function AHBC_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to AHBC (see VARARGIN) 

  

% Choose default command line output for AHBC 

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 

  

% --- Outputs from this function are returned to the command line. 

function varargout = AHBC_OutputFcn(hObject, eventdata, handles)  
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% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

  

% --- Executes on button press in OpenButton. open button 

function OpenButton_Callback(hObject, eventdata, handles) 

% hObject    handle to OpenButton (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

  

global filename; 

global pathname; 

global filter; 

global currentFrame; 

  

global avi_path; 

global mudp_path; 

global mudp_data; 

global nFrame; 

global startStopPauseFlag; 

  

currentFrame =1; 

startStopPauseFlag = 0; 

[filename pathname filter] = uigetfile('*.avi','Select AVI File'); 

avi_path = [pathname,filename] 

calllib('vidsframe', 'open', avi_path); 

ind = findstr(avi_path, '.'); 

mudp_path = [avi_path(1:ind),'mudp'] 

  

mudp_data = read_mudp_data(mudp_path, [5]); 

  

  

nFrame = calllib('vidsframe','get_nFrame'); 

set(handles.path,'String',avi_path); 

set(handles.slider1,'Sliderstep',[1/nFrame,1/nFrame]); 

set(handles.slider1,'Max',nFrame); 
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% --- Executes on button press in Start. 

function Start_Callback(hObject, eventdata, handles) 

% hObject    handle to Start (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

  global p_frame_buf; 

  global frame_data; 

  global p_frame_data; 

  global mudp_data; 

  global nFrame; 

  global currentFrame; 

  global startStopPauseFlag; 

  global lastFlag; 

  global Type; 

  

  % Buttom state 

   

  lastFlag = startStopPauseFlag; 

  startStopPauseFlag =0;% start 0; stop 1; pause 2;     

  

  if(lastFlag ~= 2) 

    currentFrame =1; 

    lastFlag=0;  

  end 

  

  if(lastFlag == 2) 

   currentFrame 

  end 

  % Kalman filter initialization 

  pre_ID = 0; 

  MR = 5; % the inital state value 

  MC = 5; 

  r1=0.2; 

  r2=0.02; 

  R=[[r1,0]',[0,r2]']; % Measurement error covariance  

  H=[[1,0]',[0,1]',[0,0]',[0,0]']; 

  Q=0.01*eye(4); % State error covariance  

  dt=1; % Step 

  A=[[1,0,0,0]',[0,1,0,0]',[dt,0,1,0]',[0,dt,0,1]']; % Jacobian matrix 

  Bu = [0,0,0,0]'; % Control Signal is none    
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  xyv=zeros(100,4); 

  count = 1; 

  

  est_lat_vel_ped=zeros(nFrame,1); 

  est_long_vel_ped=zeros(nFrame,1); 

  lat_pos_ped = zeros(nFrame,1); 

  long_pos_ped = zeros(nFrame,1); 

  lat_pos_ped_pre = zeros(nFrame,1); 

  long_pos_ped_pre = zeros(nFrame,1); 

  lat_ped_vel = zeros(nFrame,1); 

  ctrf = 1; 

  nextStepClassifiy =0; 

   

  set(handles.slider1,'Sliderstep',[1/nFrame,1/nFrame]); 

  for i = currentFrame:nFrame 

    set(handles.slider1,'Value',currentFrame); 

    if(startStopPauseFlag ~= 0) 

      break; 

    end 

    ctrf = ctrf + 1; 

  

    axes(handles.Topview); 

    if(i == nFrame) 

      i = nFrame-1; 

    end 

    plainviewplayer(i,handles);    

    

   

    % Pedestrian selection and movement  

    if(mudp_data.vision_obstacles_info.visObs.obstacle_class(i,1) ~= 4) 

      buf = sprintf('ID: %s Type: %s TTC: %s ', '----', '----', '----'); 

      set(handles.spot1,'String', buf);               

    else 

      lat_pos_ped(i) = mudp_data.vision_obstacles_info.visObs.lat_pos(i,1); 

      long_pos_ped(i) = mudp_data.vision_obstacles_info.visObs.long_pos(i,1);  

      lat_ped_vel(i) = mudp_data.vision_obstacles_info.visObs.lat_vel(i,1); 

      % long_ped_vel(i) = mudp_data.vision_obstacles_info.visObs.long_vel(i,1); 

      if(i > 1) 

        lat_pos_ped_pre(i) = mudp_data.vision_obstacles_info.visObs.lat_pos(i-1,1); 

        long_pos_ped_pre(i) = mudp_data.vision_obstacles_info.visObs.long_pos(i-1,1); 

      end 
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      ID =  mudp_data.vision_obstacles_info.visObs.id(i,1); 

      Type =  mudp_data.vision_obstacles_info.visObs.obstacle_class(i,1); 

      ad_ttc(i) = mudp_data.vision_obstacles_info.visObs.ttc_const_vel(i,1); 

      car_vel = mudp_data.vision_vehicle_info.vehicleVelocity(i); 

     

      %EKF 

      x_po = lat_pos_ped(i); 

      y_po = long_pos_ped(i); 

               

      if(ID ~= pre_ID) 

        kfinit=0; 

        m = 1; 

        count = count +1; 

      else 

        m =m +1; 

      end 

       

      x(m) = x_po; % Obervation data 

      y(m) = y_po; % zk = [x[i] y[i]] 

      hold on;     

      % rectangle('Position', [x(m), y(m), 15, 15],'EdgeColor', 'r' ); 

      processFlag=0; 

      % Kalman Predict if kfinit is not 0, otherwise initialize parameters 

      if kfinit==0 

        xp = [MC/2,MR/2,0,0]'; 

        P = 1*eye(4); % Process error covariance   

        PP= P; 

      else 

        xp=A*xyv(m-1,:)' + Bu; 

        PP = A*P*A' + Q; 

      end 

     

      kfinit=1; 

      % Update 

      K = PP*H'*inv(H*PP*H'+R); 

      xyv(m,:) = (xp + K*([x(m),y(m)]' - H*xp))'; 

      P = (eye(4)-K*H)*PP; 

      xyv(m,3) = lat_ped_vel(i); 

      rectangle('Position',[xyv(m,1),xyv(m,2),0.5,0.5],'Curvature',1,'facecolor','yellow');  

      plot(handles.Topview, [xyv(m,1)+0.25 lat_pos_ped(i)+0.25],[xyv(m,2)+0.25 

long_pos_ped(i)+0.25], 'color', 'black'); 

      hold off; 

      pre_ID =ID;           
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      % Classification of theta 

      er_vel = 3; %  

      dd=4; 

      dt = 0.44; 

      if(ctrf > 1 && i > 2 && i< 1086)   

        if( abs(lat_pos_ped(i) - lat_pos_ped(i-1))/0.055 < er_vel ) 

          est_lat_vel_ped(ctrf) = (lat_pos_ped(i) - lat_pos_ped_pre(i))/0.055; 

        else 

          est_lat_vel_ped(ctrf) = est_lat_vel_ped(ctrf-1);  

        end 

       

        if(abs(long_pos_ped(i) - long_pos_ped(i-1))/0.055 < 1) 

          est_long_vel_ped(ctrf) = (long_pos_ped(i) - long_pos_ped_pre(i))/0.055; 

        else 

          est_long_vel_ped(ctrf) = est_long_vel_ped(ctrf-1);  

        end 

       

        if(ctrf > 30) 

          mean_est_long_vel_ped(ctrf) = mean(est_long_vel_ped(ctrf-30:ctrf)); 

          mean_est_lat_vel_ped(ctrf) = mean(est_lat_vel_ped(ctrf-30:ctrf)); 

          mean_est_theta_ped(ctrf) = 

rad2deg(atan(mean_est_long_vel_ped(ctrf)/mean_est_lat_vel_ped(ctrf))); 

          est_lat_acc_ped(ctrf) = (mean_est_lat_vel_ped(ctrf)-mean_est_lat_vel_ped(ctrf-dd))/dt; 

         

          % Check sudden actions based on 30 frames  

          g_arr = zeros(1,30); 

          a_arr = zeros(1,30); 

          d_arr = zeros(1,30);   

          gCheckPre30 = zeros(1,30); 

          aCheckPre30 = zeros(1,30); 

          dCheckPre30 = zeros(1,30); 

         

          for h = 1:30 

            g_arr(h) = mean_est_theta_ped(ctrf+1-h)-mean_est_theta_ped(ctrf-h); 

            a_arr(h) = est_lat_acc_ped(ctrf+1-h) - est_lat_acc_ped(ctrf-h); 

            d_arr(h) = -a_arr(h); 

           

            if(h>1 && g_arr(h) -g_arr(h-1) < 20) 

              gCheckPre30(h) = 1; 

            end 
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            if(h>1 && a_arr(h) -a_arr(h-1) < 0.15 && a_arr(h) ~= 0) 

              aCheckPre30(h) = 1; 

            end 

             

            if(h>1 && d_arr(h) - d_arr(h-1) > -0.15 && a_arr(h) ~= 0) 

              dCheckPre30(h) = 1; 

            end   

          end 

         

          cp = sum(gCheckPre30); 

          ap = sum(aCheckPre30); 

          dp = sum(dCheckPre30); 

          if(cp == 29 && mean_est_theta_ped(ctrf)-mean_est_theta_ped(ctrf-1) >150)% Check Sudden 

back  

            nextStepClassifiy = 1; 

          elseif(cp == 29 && mean_est_theta_ped(ctrf)-mean_est_theta_ped(ctrf-29)> 30 &&  

mean_est_theta_ped(ctrf)>0 && mean_est_theta_ped(ctrf-29)<0)% sudden far 

            nextStepClassifiy = 2; 

          elseif(cp == 29 && abs(mean_est_theta_ped(ctrf)-mean_est_theta_ped(ctrf-29))> 30 &&  

mean_est_theta_ped(ctrf)<0 && mean_est_theta_ped(ctrf-29)>0)% sudden close 

            nextStepClassifiy = 3; 

          end 

          if(ap == 29)% Check acceleration 

            nextStepClassifiy = 4; 

          elseif(dp == 29)% Check dcceleration 

            nextStepClassifiy = 5;   

          end 

         

          if(nextStepClassifiy ==1)% Check Sudden back        

            mean_est_lat_vel_ped(ctrf+1)=mean_est_lat_vel_ped(ctrf-1); 

          elseif (nextStepClassifiy ==2)% sudden far 

            mean_est_long_vel_ped(ctrf) = 1.02*mean_est_long_vel_ped(ctrf); 

          elseif (nextStepClassifiy ==3)% sudden close 

            mean_est_long_vel_ped(ctrf) = 0.98*mean_est_long_vel_ped(ctrf); 

          elseif (nextStepClassifiy ==4) 

            mean_est_lat_vel_ped(ctrf)=1.02*mean_est_lat_vel_ped(ctrf); 

          elseif (nextStepClassifiy ==5) 

            mean_est_lat_vel_ped(ctrf)=0.98*mean_est_lat_vel_ped(ctrf); 

          else 

            % Deflaut: no changes 

          end 

         

          if(mean_est_lat_vel_ped(ctrf) ~= 0) 

            if(processFlag == 0) %ekf pro   
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              t1 = abs(xyv(m,2) / car_vel); 

              t2 = abs((abs(xyv(m,1))-1)/xyv(m,3)); 

              t3 = abs((abs(xyv(m,1))+1)/xyv(m,3)); 

              ttc(ctrf) = abs(xyv(m,2) / (car_vel-xyv(m,3)));   

            else 

              t1 = abs(xyv(m,2) / car_vel); 

              t2 = abs((abs(xyv(m,1))-1)/mean_est_lat_vel_ped(ctrf)); 

              t3 = abs((abs(xyv(m,1))+1)/mean_est_lat_vel_ped(ctrf)); 

              ttc(ctrf) = abs(xyv(m,2) / (car_vel-mean_est_long_vel_ped(ctrf))); 

            end 

             

            if(abs(ttc(ctrf)) > 8) 

              ttc(ctrf) = 7; 

            end 

             

            if(t1 >= t2)  

              if(ttc(ctrf)>10) 

                buf = sprintf('ID:%-4d Type:%-4d TTC:%-4d', ID, Type, ttc(ctrf)); 

              else 

                 buf = sprintf('ID:%-4d Type:%-4d TTC:%-4d EXCEEDED', ID, Type, ttc(ctrf)); 

              end 

              set(handles.spot1,'String', buf);  

            end 

          end 

        end 

    end 

    end 

  

  

    % Call function to play video  

    calllib('vidsframe','seek',i); 

    calllib('vidsframe','get_frame',p_frame_buf); 

    p_frame_data =  calllib('vidsframe', 'get_frame_info'); 

    axes(handles.Image); 

    imshow(get(p_frame_buf,'Value')');      

      

  % In Camera View 

  % Mark the pedetrian position 

%   if( top>0 && bottom>0 && right-left>0 && top-bottom>0) 

%     %axes(handles.Image); 

%     rectangle('Position', [left, (960-top), (right-left), (top-bottom)],'EdgeColor', 'g' ); 

%     text(left, (960-top),txt_str,'color',[1,1,1]); 
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%   end 

   

%   buf = sprintf('ID:%-4d Type:%-4d', ID, Type); 

%   set(handles.spot1,'String', buf); 

%   x_po = (left+right)/2; 

%   y_po = 960-(top+bottom)/2; 

%   rectangle('Position', [x_po, y_po, 15, 15],'EdgeColor', 'r' ); 

   set(handles.slider1,'Value',currentFrame); 

   currentFrame = currentFrame + 1;   

  end 

  nsize = size(mean_est_lat_vel_ped); 

  if(startStopPauseFlag == 0) 

    figure; 

    subplot(4,1,1); 

    plot(mean_est_lat_vel_ped(30:nsize(2)-1)); %nFrame 

    axis([0 nsize(2) -6 6]); 

    subplot(4,1,2); 

    plot(mean_est_long_vel_ped(30:nsize(2)-1)); 

    axis([0 nsize(2) -6 6]); 

    subplot(4,1,3); 

    plot(mean_est_theta_ped(30:nsize(2)-1),'o'); 

    title('theta deg mean'); 

    axis([0 nsize(2) -100 100]); 

    subplot(4,1,4); 

    plot(est_lat_acc_ped(30:nsize(2)-1)); 

    title('Accel lat'); 

    axis([0 nsize(2) -3 3]); 

    grid; 

    figure; 

    plot(ttc,'o'); 

    figure; 

    plot(ad_ttc,'o'); 

  end  

  if(startStopPauseFlag == 1 || startStopPauseFlag == 2) 

    % Call function to play video  

    calllib('vidsframe','seek',i); 

    calllib('vidsframe','get_frame',p_frame_buf); 

    p_frame_data =  calllib('vidsframe', 'get_frame_info'); 

    axes(handles.Image); 

    imshow(get(p_frame_buf,'Value')');      

      

    ID =  mudp_data.vision_obstacles_info.visObs.id(currentFrame,1); 

    Type =  mudp_data.vision_obstacles_info.visObs.obstacle_class(currentFrame,1); 



68 

 

    if(mudp_data.vision_obstacles_info.visObs.obstacle_class(currentFrame,1) ~= 4) 

      buf = sprintf('ID:%-4d Type:%-4d TTC:%-4d', ID, Type, ttc(ctrf)); 

      set(handles.spot1,'String', buf); 

    else 

      axes(handles.Topview); 

      plainviewplayer(currentFrame,handles);    

    end 

  end 

  

unloadlibrary('vidsframe'); 

   

function plainviewplayer(idx,exdls) 

  

global mudp_data; 

global pos_veh; 

global Type; 

  

  

    vox=[0 0]; 

    voy=[-5 45]; 

    hox=[-25 25]; 

    hoy=[0 0];    

    plot(vox,voy,hox,hoy);      

    axis([-25 25 -5 45]); 

    if(Type == 4) 

        lat_ped_pos = mudp_data.vision_obstacles_info.visObs.lat_pos(idx,1); 

        long_ped_pos = mudp_data.vision_obstacles_info.visObs.long_pos(idx,1); 

  

        % Vehicle 

        pos_veh = 0;%pos_veh + lat_vel_veh*0.055; 

        rectangle('Position',[-1,-3.5+pos_veh,1.8,3.5],'facecolor','black'); 

    

        % Ped 

        rectangle('Position',[lat_ped_pos,long_ped_pos+pos_veh,0.5,0.5],'facecolor','red');  

        axis([-25 25 -5 45]); 

        grid;  

    end 

  

% --- Executes on button press in Pause. 

function Pause_Callback(hObject, eventdata, handles) 

% hObject    handle to Pause (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 

global startStopPauseFlag; 

global lastFlag; 

lastFlag = startStopPauseFlag; 

startStopPauseFlag =2; 

  

% --- Executes on button press in Stop. 

function Stop_Callback(hObject, eventdata, handles) 

% hObject    handle to Stop (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

global currentFrame; 

global startStopPauseFlag; 

global lastFlag; 

  

global p_frame_buf; 

global frame_data; 

global p_frame_data; 

  

lastFlag = startStopPauseFlag; 

startStopPauseFlag =1; 

currentFrame =1; 

  

   videoplayer(currentFrame, handles); 

   updateInfo(currentFrame, handles); 

  

% --- Executes on slider movement. 

function slider1_Callback(hObject, eventdata, handles) 

% hObject    handle to slider1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: get(hObject,'Value') returns position of slider 

%        get(hObject,'Min') and get(hObject,'Max') to determine range of slider 

  

  

  

global nFrame; 

global currentFrame; 

global startStopPauseFlag; 

global lastFlag; 
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lastFlag = startStopPauseFlag; 

startStopPauseFlag =2; 

  

  

  

click = get(hObject, 'Value'); 

currentFrame = int16(click); 

    videoplayer(currentFrame, handles); 

     

updateInfo(currentFrame, handles); 

       

function drawLightArea(left,right, top, bottom, objExist) 

    c_x = 684; 

c_y = 340; 

edge_h = 500.0; 

k2=-0.269; 

b2=804; 

k1=0.234; 

b1=460; 

    %imshow(img);  

    hold on; 

  

    y1 = 960-(left*k1+b1); 

    y2 = 960-(right*k2+b2); 

     

if(objExist == 1) 

   if(bottom >c_y) 

       if(left <= c_x && right >= c_x)% in the middle 

            if(y1<bottom && y2<bottom) 

                c = [1 1 left left right right 1279 1279]; 

                r = [959 edge_h y1 bottom bottom y2 edge_h 959]; 

                plot(c,r,'y'); 

            elseif(y1<bottom && y2>bottom) 

                x2 = (960-bottom-b2)/k2; 

                c = [1 1 left left x2 1279 1279]; 

                r = [959 edge_h y1 bottom bottom edge_h 959]; 

                plot(c,r,'y'); 

           elseif(y1>bottom && y2<bottom) 

                x1 = (960-bottom-b1)/k1 

                c = [1 1 x1 right right 1279 1279]; 

                r = [959 edge_h bottom bottom y2 edge_h 959]; 
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                plot(c,r,'y'); 

            elseif(y1>=bottom && y2>=bottom) 

                 x1 = (960-bottom-b1)/k1; 

                 x2 = (960-bottom-b2)/k2; 

                 c = [1 1 x1 x2 1279 1279]; 

                 r = [959 edge_h bottom bottom edge_h 959]; 

                 plot(c,r,'y'); 

            end 

       else  

          if(left>c_x)%on right side 

                y1 = 960-(left*k2+b2); 

                if(y1<=bottom && y2<=bottom) 

                    c = [1 1 c_x left left right right 1279 1279]; 

                    r = [959 edge_h c_y y1 bottom bottom y2 edge_h 959];               

                    plot(c,r,'y'); 

                 elseif(y1<bottom && y2>bottom) 

                    x2 = ((960-bottom)-b2)/k2; 

                    c = [1 1 c_x left left x2 1279 1279]; 

                    r = [959 edge_h c_y y1 bottom bottom edge_h 959]; 

                    plot(c,r,'y'); 

                else 

                    c = [1 1 c_x 1279 1279]; 

                    r = [959 edge_h c_y edge_h 959]; 

                    plot(c,r,'y'); 

                end 

         elseif(right<c_x) 

                y2 = 960-(right*k1+b1); 

                if(y1<=bottom && y2<=bottom) 

                    c = [1 1 left left right right c_x 1279 1279]; 

                    r = [959 edge_h y1 bottom bottom y2 c_y edge_h 959]; 

                    plot(c,r,'y'); 

                elseif(y1>bottom && y2<bottom) 

                    x1 = (960-bottom-b1)/k1; 

                    c = [1 1 x1  right right c_x 1279 1279]; 

                    r = [959 edge_h bottom  bottom y2 c_y edge_h 959]; 

                    plot(c,r,'y'); 

                else 

                    c = [1 1 c_x 1279 1279]; 

                    r = [959 edge_h c_y edge_h 959]; 

                    plot(c,r,'y'); 

                end 

         end     

       end 
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    else 

             c = [1 1 c_x 1279 1279]; 

             r = [959 edge_h c_y edge_h 959]; 

             plot(c,r,'y'); 

    end 

    

else 

     c = [1 1 c_x 1279 1279]; 

             r = [959 edge_h c_y edge_h 959]; 

             plot(c,r,'y'); 

end 

    hold off; 
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Appendix C. EKF Process and Classification Process Program  

function Start_Callback(hObject, eventdata, handles) 

% hObject    handle to Start (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

  global p_frame_buf; 

  global frame_data; 

  global p_frame_data; 

  global mudp_data; 

  global nFrame; 

  global currentFrame; 

  global startStopPauseFlag; 

  global lastFlag; 

  global Type; 

  

  % Buttom state 

   

  lastFlag = startStopPauseFlag; 

  startStopPauseFlag =0;% start 0; stop 1; pause 2;     

  

  if(lastFlag ~= 2) 

    currentFrame =1; 

    lastFlag=0;  

  end 

  

  if(lastFlag == 2) 

   currentFrame 

  end 

  % Kalman filter initialization 

  pre_ID = 0; 

  MR = 5; % the inital state value 

  MC = 5; 

  r1=0.2; 

  r2=0.02; 

  R=[[r1,0]',[0,r2]']; % Measurement error covariance  
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  H=[[1,0]',[0,1]',[0,0]',[0,0]']; 

  Q=0.01*eye(4); % State error covariance  

  dt=1; % Step 

  A=[[1,0,0,0]',[0,1,0,0]',[dt,0,1,0]',[0,dt,0,1]']; % Jacobian matrix 

  Bu = [0,0,0,0]'; % Control Signal is none    

  xyv=zeros(100,4); 

  count = 1; 

  

  est_lat_vel_ped=zeros(nFrame,1); 

  est_long_vel_ped=zeros(nFrame,1); 

  lat_pos_ped = zeros(nFrame,1); 

  long_pos_ped = zeros(nFrame,1); 

  lat_pos_ped_pre = zeros(nFrame,1); 

  long_pos_ped_pre = zeros(nFrame,1); 

  lat_ped_vel = zeros(nFrame,1); 

  ctrf = 1; 

  nextStepClassifiy =0; 

   

  set(handles.slider1,'Sliderstep',[1/nFrame,1/nFrame]); 

  for i = currentFrame:nFrame 

    set(handles.slider1,'Value',currentFrame); 

    if(startStopPauseFlag ~= 0) 

      break; 

    end 

    ctrf = ctrf + 1; 

  

    axes(handles.Topview); 

    if(i == nFrame) 

      i = nFrame-1; 

    end 

    plainviewplayer(i,handles);    

    

   

    % Pedestrian selection and movement  

    if(mudp_data.vision_obstacles_info.visObs.obstacle_class(i,1) ~= 4) 

      buf = sprintf('ID: %s Type: %s TTC: %s ', '----', '----', '----'); 

      set(handles.spot1,'String', buf);               

    else 

      lat_pos_ped(i) = mudp_data.vision_obstacles_info.visObs.lat_pos(i,1); 

      long_pos_ped(i) = mudp_data.vision_obstacles_info.visObs.long_pos(i,1);  

      lat_ped_vel(i) = mudp_data.vision_obstacles_info.visObs.lat_vel(i,1); 

      % long_ped_vel(i) = mudp_data.vision_obstacles_info.visObs.long_vel(i,1); 
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      if(i > 1) 

        lat_pos_ped_pre(i) = mudp_data.vision_obstacles_info.visObs.lat_pos(i-1,1); 

        long_pos_ped_pre(i) = mudp_data.vision_obstacles_info.visObs.long_pos(i-1,1); 

      end 

  

      ID =  mudp_data.vision_obstacles_info.visObs.id(i,1); 

      Type =  mudp_data.vision_obstacles_info.visObs.obstacle_class(i,1); 

      ad_ttc(i) = mudp_data.vision_obstacles_info.visObs.ttc_const_vel(i,1); 

      car_vel = mudp_data.vision_vehicle_info.vehicleVelocity(i); 

     

      %EKF 

      x_po = lat_pos_ped(i); 

      y_po = long_pos_ped(i); 

               

      if(ID ~= pre_ID) 

        kfinit=0; 

        m = 1; 

        count = count +1; 

      else 

        m =m +1; 

      end 

       

      x(m) = x_po; % Obervation data 

      y(m) = y_po; % zk = [x[i] y[i]] 

      hold on;     

      % rectangle('Position', [x(m), y(m), 15, 15],'EdgeColor', 'r' ); 

      processFlag=0; 

      % Kalman Predict if kfinit is not 0, otherwise initialize parameters 

      if kfinit==0 

        xp = [MC/2,MR/2,0,0]'; 

        P = 1*eye(4); % Process error covariance   

        PP= P; 

      else 

        xp=A*xyv(m-1,:)' + Bu; 

        PP = A*P*A' + Q; 

      end 

     

      kfinit=1; 

      % Update 

      K = PP*H'*inv(H*PP*H'+R); 

      xyv(m,:) = (xp + K*([x(m),y(m)]' - H*xp))'; 

      P = (eye(4)-K*H)*PP; 
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      xyv(m,3) = lat_ped_vel(i); 

      rectangle('Position',[xyv(m,1),xyv(m,2),0.5,0.5],'Curvature',1,'facecolor','yellow');  

      plot(handles.Topview, [xyv(m,1)+0.25 lat_pos_ped(i)+0.25],[xyv(m,2)+0.25 

long_pos_ped(i)+0.25], 'color', 'black'); 

      hold off; 

      pre_ID =ID;           

        

      % Classification of theta 

      er_vel = 3; %  

      dd=4; 

      dt = 0.44; 

      if(ctrf > 1 && i > 2 && i< 1086)   

        if( abs(lat_pos_ped(i) - lat_pos_ped(i-1))/0.055 < er_vel ) 

          est_lat_vel_ped(ctrf) = (lat_pos_ped(i) - lat_pos_ped_pre(i))/0.055; 

        else 

          est_lat_vel_ped(ctrf) = est_lat_vel_ped(ctrf-1);  

        end 

       

        if(abs(long_pos_ped(i) - long_pos_ped(i-1))/0.055 < 1) 

          est_long_vel_ped(ctrf) = (long_pos_ped(i) - long_pos_ped_pre(i))/0.055; 

        else 

          est_long_vel_ped(ctrf) = est_long_vel_ped(ctrf-1);  

        end 

       

        if(ctrf > 30) 

          mean_est_long_vel_ped(ctrf) = mean(est_long_vel_ped(ctrf-30:ctrf)); 

          mean_est_lat_vel_ped(ctrf) = mean(est_lat_vel_ped(ctrf-30:ctrf)); 

          mean_est_theta_ped(ctrf) = 

rad2deg(atan(mean_est_long_vel_ped(ctrf)/mean_est_lat_vel_ped(ctrf))); 

          est_lat_acc_ped(ctrf) = (mean_est_lat_vel_ped(ctrf)-mean_est_lat_vel_ped(ctrf-dd))/dt; 

         

          % Check sudden actions based on 30 frames  

          g_arr = zeros(1,30); 

          a_arr = zeros(1,30); 

          d_arr = zeros(1,30);   

          gCheckPre30 = zeros(1,30); 

          aCheckPre30 = zeros(1,30); 

          dCheckPre30 = zeros(1,30); 

         

          for h = 1:30 

            g_arr(h) = mean_est_theta_ped(ctrf+1-h)-mean_est_theta_ped(ctrf-h); 

            a_arr(h) = est_lat_acc_ped(ctrf+1-h) - est_lat_acc_ped(ctrf-h); 

            d_arr(h) = -a_arr(h); 
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            if(h>1 && g_arr(h) -g_arr(h-1) < 20) 

              gCheckPre30(h) = 1; 

            end 

           

            if(h>1 && a_arr(h) -a_arr(h-1) < 0.15 && a_arr(h) ~= 0) 

              aCheckPre30(h) = 1; 

            end 

             

            if(h>1 && d_arr(h) - d_arr(h-1) > -0.15 && a_arr(h) ~= 0) 

              dCheckPre30(h) = 1; 

            end   

          end 

         

          cp = sum(gCheckPre30); 

          ap = sum(aCheckPre30); 

          dp = sum(dCheckPre30); 

          if(cp == 29 && mean_est_theta_ped(ctrf)-mean_est_theta_ped(ctrf-1) >150)% Check Sudden 

back  

            nextStepClassifiy = 1; 

          elseif(cp == 29 && mean_est_theta_ped(ctrf)-mean_est_theta_ped(ctrf-29)> 30 &&  

mean_est_theta_ped(ctrf)>0 && mean_est_theta_ped(ctrf-29)<0)% sudden far 

            nextStepClassifiy = 2; 

          elseif(cp == 29 && abs(mean_est_theta_ped(ctrf)-mean_est_theta_ped(ctrf-29))> 30 &&  

mean_est_theta_ped(ctrf)<0 && mean_est_theta_ped(ctrf-29)>0)% sudden close 

            nextStepClassifiy = 3; 

          end 

          if(ap == 29)% Check acceleration 

            nextStepClassifiy = 4; 

          elseif(dp == 29)% Check dcceleration 

            nextStepClassifiy = 5;   

          end 

         

          if(nextStepClassifiy ==1)% Check Sudden back        

            mean_est_lat_vel_ped(ctrf+1)=mean_est_lat_vel_ped(ctrf-1); 

          elseif (nextStepClassifiy ==2)% sudden far 

            mean_est_long_vel_ped(ctrf) = 1.02*mean_est_long_vel_ped(ctrf); 

          elseif (nextStepClassifiy ==3)% sudden close 

            mean_est_long_vel_ped(ctrf) = 0.98*mean_est_long_vel_ped(ctrf); 

          elseif (nextStepClassifiy ==4) 

            mean_est_lat_vel_ped(ctrf)=1.02*mean_est_lat_vel_ped(ctrf); 

          elseif (nextStepClassifiy ==5) 

            mean_est_lat_vel_ped(ctrf)=0.98*mean_est_lat_vel_ped(ctrf); 
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          else 

            % Deflaut: no changes 

          end 

         

          if(mean_est_lat_vel_ped(ctrf) ~= 0) 

            if(processFlag == 0) %ekf pro   

              t1 = abs(xyv(m,2) / car_vel); 

              t2 = abs((abs(xyv(m,1))-1)/xyv(m,3)); 

              t3 = abs((abs(xyv(m,1))+1)/xyv(m,3)); 

              ttc(ctrf) = abs(xyv(m,2) / (car_vel-xyv(m,3)));   

            else 

              t1 = abs(xyv(m,2) / car_vel); 

              t2 = abs((abs(xyv(m,1))-1)/mean_est_lat_vel_ped(ctrf)); 

              t3 = abs((abs(xyv(m,1))+1)/mean_est_lat_vel_ped(ctrf)); 

              ttc(ctrf) = abs(xyv(m,2) / (car_vel-mean_est_long_vel_ped(ctrf))); 

            end 

             

            if(abs(ttc(ctrf)) > 8) 

              ttc(ctrf) = 7; 

            end 

             

            if(t1 >= t2)  

              if(ttc(ctrf)>10) 

                buf = sprintf('ID:%-4d Type:%-4d TTC:%-4d', ID, Type, ttc(ctrf)); 

              else 

                 buf = sprintf('ID:%-4d Type:%-4d TTC:%-4d EXCEEDED', ID, Type, ttc(ctrf)); 

              end 

              set(handles.spot1,'String', buf);  

            end 

          end 

        end 

    end 

    end 

  

  

    % Call function to play video  

    calllib('vidsframe','seek',i); 

    calllib('vidsframe','get_frame',p_frame_buf); 

    p_frame_data =  calllib('vidsframe', 'get_frame_info'); 

    axes(handles.Image); 

    imshow(get(p_frame_buf,'Value')');      
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  % In Camera View 

  % Mark the pedetrian position 

%   if( top>0 && bottom>0 && right-left>0 && top-bottom>0) 

%     %axes(handles.Image); 

%     rectangle('Position', [left, (960-top), (right-left), (top-bottom)],'EdgeColor', 'g' ); 

%     text(left, (960-top),txt_str,'color',[1,1,1]); 

%   end 

   

%   buf = sprintf('ID:%-4d Type:%-4d', ID, Type); 

%   set(handles.spot1,'String', buf); 

%   x_po = (left+right)/2; 

%   y_po = 960-(top+bottom)/2; 

%   rectangle('Position', [x_po, y_po, 15, 15],'EdgeColor', 'r' ); 

   set(handles.slider1,'Value',currentFrame); 

   currentFrame = currentFrame + 1;   

  end 

  nsize = size(mean_est_lat_vel_ped); 

  if(startStopPauseFlag == 0) 

    figure; 

    subplot(4,1,1); 

    plot(mean_est_lat_vel_ped(30:nsize(2)-1)); %nFrame 

    axis([0 nsize(2) -6 6]); 

    subplot(4,1,2); 

    plot(mean_est_long_vel_ped(30:nsize(2)-1)); 

    axis([0 nsize(2) -6 6]); 

    subplot(4,1,3); 

    plot(mean_est_theta_ped(30:nsize(2)-1),'o'); 

    title('theta deg mean'); 

    axis([0 nsize(2) -100 100]); 

    subplot(4,1,4); 

    plot(est_lat_acc_ped(30:nsize(2)-1)); 

    title('Accel lat'); 

    axis([0 nsize(2) -3 3]); 

    grid; 

    figure; 

    plot(ttc,'o'); 

    figure; 

    plot(ad_ttc,'o'); 

  end  

  if(startStopPauseFlag == 1 || startStopPauseFlag == 2) 

    % Call function to play video  

    calllib('vidsframe','seek',i); 

    calllib('vidsframe','get_frame',p_frame_buf); 
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    p_frame_data =  calllib('vidsframe', 'get_frame_info'); 

    axes(handles.Image); 

    imshow(get(p_frame_buf,'Value')'); 

    ID =  mudp_data.vision_obstacles_info.visObs.id(currentFrame,1); 

    Type =  mudp_data.vision_obstacles_info.visObs.obstacle_class(currentFrame,1); 

    if(mudp_data.vision_obstacles_info.visObs.obstacle_class(currentFrame,1) ~= 4) 

      buf = sprintf('ID:%-4d Type:%-4d TTC:%-4d', ID, Type, ttc(ctrf)); 

      set(handles.spot1,'String', buf); 

else 

      axes(handles.Topview); 

      plainviewplayer(currentFrame,handles);    

    end 

  end 

  

unloadlibrary('vidsframe'); 
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Appendix D. Matlab Program for Data Selection 

[filename pathname filter] = uigetfile('*.avi','Select AVI File'); 

  

avi_path = [pathname,filename] 

ind = findstr(avi_path, '.'); 

mudp_path = [avi_path(1:ind),'mudp'] 

mudp_data = read_mudp_data(mudp_path, [5]); 

  

  

pathname1 = mudp_data.vision_obstacles_info.visObs; 

%% edit here 

st =n1/2;  

en =m1/2; 

num = 1; 

%% 

top1 = pathname1.pixel_top(st:en,num); 

bottom1 = pathname1.pixel_bottom(st:en,num); 

left1 = pathname1.pixel_left(st:en,num); 

right1 = pathname1.pixel_right(st:en,num); 

lat_pos1 = pathname1.lat_pos(st:en,num); 

long_pos1 = pathname1.long_pos(st:en,num); 

lat_vel = pathname1.lat_vel(st:en,num); 

long_vel = pathname1.long_vel(st:en,num); 

veh_vel = mudp_data.vision_vehicle_info.vehicleVelocity(st:en,num); 

veh_yr = mudp_data.vision_vehicle_info.vehicleYawRate(st:en,num); 

  

 x1 = left1+(right1 - left1)/2; 

 y1 = bottom1+(top1 - bottom1)/2; 

  

% x1 = lat_pos1; 

% y1 = long_pos1; 
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c1 = linspace(1,10,length(x1)); 

figure; 

scatter(x1,y1,[],c1); 

axis([0, 1280, 0, 960]); 

data1 = [x1';y1';lat_pos1';long_pos1';lat_vel';long_vel';veh_vel';veh_yr']'; 

%% edit here 

save('sel_s_wst_data1','data1'); 

%save('ccs1','mudp_data'); 

 

  



83 

 

 

Appendix E. Matlab Program for Dynamic Plain View  

csf_data1 = load('sel_s_wst_data1.mat'); 

csf_data2 = load('sel_s_wst_data2.mat'); 

csf_data3 = load('sel_s_wst_data3.mat'); 

x_ped1 = csf_data1.data1(:,3); 

y_ped1 = csf_data1.data1(:,4); 

x_ped2 = csf_data2.data1(:,3); 

y_ped2 = csf_data2.data1(:,4); 

x_ped3 = csf_data3.data1(:,3); 

y_ped3 = csf_data3.data1(:,4); 

  

m1 = size(x_ped1); 

m2 = size(x_ped2); 

m3 = size(x_ped3); 

n1 = min([m1(1) m2(1) m3(1)]); 

p=0; 

vox=[0 0]; 

voy=[-5 25]; 

hox=[-15 15]; 

hoy=[0 0]; 

hold on; 

for i=2:n1    

title(Case A /Case B set 1'); 

    subplot(3,1,1); 

    hold on; 

    plot(vox,voy,hox,hoy,'b'); 

    

rectangle('Position',[x_ped1(i),y_ped1(i)+p,0.02,0.1],'Curvature',1,'facecolo

r','red','edgecolor','red'); 

    axis([-10 10 -5 15]); 

    grid;  

    p=0; 
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   rectangle('Position',[-1,-3.5+p,1.8,3.5],'facecolor','black'); 

   axis([-10 10 -5 15]); 

   title(Case A /Case B set 2');  

    subplot(3,1,2); 

    hold on; 

    plot(vox,voy,hox,hoy,'b'); 

    

rectangle('Position',[x_ped2(i),y_ped2(i)+p,0.02,0.1],'Curvature',1,'facecolo

r','red','edgecolor','red'); 

    axis([-10 10 -5 15]); 

    grid;  

     p=0; 

   rectangle('Position',[-1,-3.5+p,1.8,3.5],'facecolor','black'); 

   axis([-10 10 -5 15]); 

    title('Case A /Case B set 3'); 

    subplot(3,1,3); 

    hold on; 

    plot(vox,voy,hox,hoy,'b'); 

    

rectangle('Position',[x_ped3(i),y_ped3(i)+p,0.02,0.1],'Curvature',1,'facecolo

r','red','edgecolor','red'); 

    axis([-10 10 -5 15]); 

    grid;  

     p=0; 

   rectangle('Position',[-1,-3.5+p,1.8,3.5],'facecolor','black'); 

   axis([-10 10 -5 15]); 

  

    pause(0.055); 

end 

  

    axis([-10 10 -5 15]); 

  

grid 
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