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1 Introduction

After being introduced by Hakimi [7] in 1965, the p-median problem has become
foundational in facility location. In graph theoretical terms, the problem is to find
a collection of p positions on a network whose weighted distance to the vertices is
as small as possible. The problem is typically presented in operations research as a
combinatorial problem like

min

{

∑

ij

β(vi)γ(vi, vj)ξij :

∑

j

ξij = 1, ∀ i,
∑

j

ξjj = p, ξjj ≥ ξij, ∀ i, j, ξij ∈ {0, 1}, ∀ i, j

}

(1.1)

where β(vi) and γ(vi, vj) are the node and edge weights and the binary variable ξij is
such that

ξij =

{

1 if vertex vi is allocated to vertex vj

0 otherwise,

see for example [1, 16]. This problem is NP-hard in p and the number of vertices,
see [11], but is polynomial for fixed p, see [3]. Although the p-median problem is often
considered to be discrete, it was at its inception a continuous problem that could be
solved by a discrete counterpart like (1.1). We re-visit this context and present a
discrete version capable of approximating the original continuous problem.

There are several solution heuristics [14], and one of our goals is to show that
under appropriate conditions the Maranzana algorithm can be interpreted as a variant
of Lloyd’s algorithm from the study of vector quantization (VQ). This observation
allows us to reduce the complexity of the algorithm and improve solution time under
appropriate conditions. The link between the p-median problem and VQ design rests
on formally showing that the two problems are identical under appropriate conditions,
a result we establish in Section 3.

The following section introduces our notation and model statements, and Section 3
equates the problems. Section 4 discusses complexity and interprets the Maranzana
Algorithm as a variant of Lloyds Algorithm. Numerical verification of the complexity
analysis is presented in Section 5.

2 Notation and Problem Statements

The p-median problem operates on a (strongly) connected (di)graph (V, E). We
define a position on (V, E) to be either a vertex or a point along an arc, and we write
P ⊆ (V, E) to mean that P is a collection of positions on (V, E). We let β(v) be the
weight assigned to vertex v and γ(ki, kj) be the nonnegative value assigned to each
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ordered pair of positions (ki, kj). We do not generally assume that γ is a metric. The
continuous version of the p-median problem is to find a collection P of p positions on
(V, E) that solves

min

{

∑

k∈P

∑

v∈Vk

γ(k, v)β(v) : P ⊆ (V, E), |P| = p

}

, (2.1)

where
Vk = {v ∈ V : γ(v, k) ≤ γ(v, u) for u ∈ P}. (2.2)

Any collection P that solves this optimization problem is said to be a collection of
medians. We are only concerned with a discrete counterpart, and we assume that P

is selected from a set of positions P′ ⊆ (V, E) with the properties that V ⊆ P′ and
|P′| ≤ |N|, where N is the set of natural numbers. We refer to this discrete version as
the p-median problem on (V, E) restricted to P′ with respect to (γ, β), which is

min

{

∑

k∈P

∑

v∈Vk

γ(v, k)β(v) : P ⊆ P′, |P| = p

}

. (2.3)

The sets Vk are not necessarily unique, and if v is a candidate for multiple Vk’s, then
v is placed uniquely in the one with smallest index k. This condition is allowed due
to the assumption that |P′| ≤ N and, as shown the next section, is important in our
ability of equating the problem to VQ design. As a note on other usages of the term
median, the median subgraph of a graph is the induced subgraph of all 1-medians in
which P′ = V [5].

Vector quantization is a process that codes continuous or discrete signals subject
to a fidelity criterion and is often used to compress images or other data. A vector
quantizer, or simply a quantizer, is a mapping Q from an input set of vectors V onto

a p element subset C of V —i.e. Q : V
onto
→ C ⊆ V, where |C| = p. The image set C is

called the codebook and its elements are called codevectors or codewords. A quantizer
partitions V into p distinct regions called cells, which are defined for every v̂ ∈ C by

Vv̂ = {v ∈ V | Q(v) = v̂}.

Quantizers are typically separated into two processes, known as the encoder, E ,
and the decoder, D. The encoder assigns an input vector to a partition cell, and
hence, E : V → {1, 2, . . . , p}. The decoder selects a vector from each cell to serve as
that cell’s codevector. So, D : {1, 2, . . . , p} → C and Q(v) = D(E(v)). A common
example is found in analog to digital conversion, where a continuous analog signal is
quantized into a finite collection of digital signals. For example, a human’s auditory
range is between 20 and 20,000 Hz. If the digital storage medium only distinguishes
between p different signals, a simple encoder would map the interval [20 + 19980(i−
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1)/p , 20 + 19980i/p] to the integer i, for i = 1, 2, . . . , p. A simple decoder would
map i to the midpoint of the interval, i 7→ 20 + 19980(i − 1/2)/p. Such a quantizer
mimics the rounding process. A discrete example is to let V be a finite set of points
on a city map. Consider an encoder that maps these locations into school districts,
each represented by a district number. The decoder then maps the index number of
a particular district to the location for that district’s school. In this work we only
consider discrete quantizers, and hence |V| ≤ |N|.

A quantizer’s performance is evaluated in terms of distortion, which relies on two
pieces of information. The first of these is a real value that represents the similarity
between any two input vectors, and allowing R+ to be the set of nonnegative real
values, we let ρ : V × V → R+ map the ordered pair (vi, vj) to the nonnegative
similarity ρ(vi, vj), which measures how similar vi is to vj . As with γ, we do not
generally assume that ρ is a metric. That said, two common measures are ρ(vi, vj) =
‖vi − vj‖

2 and ρ(vi, vj) = ‖vi − vj‖, and within information theory these problems
are commonly referred to as the k-means and k-median problems, respectively 1 [10].
The second piece of information is the probability of observing an input vector, and
we assume that α(v) is the probability of observing v.

A quantizer’s expected distortion is

DQ = Eρ(v,Q(v)) =
∑

i

ρ(vi,Q(vi))α(vi),

where i indexes the elements of V, and the design problem is to find a quantizer that
minimizes distortion. The feasible region for the design process is the collection of p
element subsets of V, making the size of the feasible region

(

|V|
p

)

if |V| < |N| or |N|

if |V| = |N| . For any particular p element subset of V, say W, the partition cell for
each w ∈ W that minimize the distortion is

Vw = {v ∈ V : ρ(v, w) ≤ ρ(v, u) for u ∈ W}. (2.4)

As with the definition of Vk, the set Vw is not necessarily unique because some of
the elements of V may be equally similar to several elements of W, and we again
assign such elements to the Vw with the smallest indexed w. With this notation, the
p-element VQ design problem on V with respect to (ρ, α) is

min

{

∑

w∈W

∑

v∈Vw

ρ(v, w)α(v) : W ⊆ V, |W| = p

}

. (2.5)

Some historical notes are warranted to position our work within the current re-
search environment. Hakimi’s original work [6, 7] assumed a (strongly) connected

1The similarity between the titles of the p-median from facility location and the k-median problem
from information theory is awkward, but the problems are generally different. Each problem has a
history in its host discipline. Part of this work provides conditions under which the problems are
the same.
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and non-negatively weighted (di)graph for which γ(ki, kj) was the length of the
shortest path from position ki to position kj. Under the additive condition that
γ(vi, vj) = γ(vi, k) + γ(k, vj) for any position k on edge (vi, vj), Hakimi established
the following result.

Theorem 2.1 (Hakimi [6, 7]) If G is a connected (di)graph with nonnegative ver-
tex and edge weights, then there is a collection of p vertices that are also medians.

This result’s impact lies in the fact that the solution set to the original, continuous p-
median problem contains the solutions to a combinatorial problem like (1.1). However,
the p-median problem is often stated as a combinatorial problem without regards to
it’s continuous underpinning. At issue is the fact that Hakimi’s proof assumed an
additive property that may or may not be appropriate for an application, and hence,
the combinatorial problem might fail to solve the intended continuous problem. In
fact, vertex restrictions of similar continuous problems like the p-center problem are
not generally possible, see [1] and its citations. Although our analysis in the following
section was motivated by improving the efficiency of the Maranzana heuristic to solve
the combinatorial problem, it also, in some way, extends Hakimi’s result since it
removes the assumed additive property. The extension is not exact since the discrete
version of the problem in (2.3) can only approximate the continuous problem since
P′ can at best be a dense subset of the (di)graph.

3 Problem Equivalence

A standard concept of ‘equivalent’ mathematical programs is not widely accepted
within the optimization community. We use an equivalence relation that requires
problems to be invertible transformations of each other. To be precise, we say that
the problems

P1 : min{f(x) : x ∈ X} and P2 : min{g(y) : y ∈ Y } (3.1)

are identical under h if there is a bijection h : X → Y such that f = g ◦ h. This
sense of equivalence is strong and essentially states that we have simply re-labeled
the elements of the feasible region in a way that maintains the objective value. Some
immediate observations are

1. if P1 is identical to P2 under h, then

h(argmin{f(x) : x ∈ X}) = argmin{g(y) : y ∈ Y }) and

2. the equivalence class of P1, denoted [f, X], is

[f, X] = {(g, Y ) : h(X) = Y and f = g ◦ h, for some bijection h : X → Y }.
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The problem statements in (2.3) and (2.5) were modeled to highlight their simi-
larity. Indeed, we purposefully used V to denote both the vertex set of the digraph
and the set of vectors to be quantized to highlight this connection. However, those
studying VQ design typically address a stochastic problem, and those interested in
the p-median problem are generally concerned with a deterministic, combinatorial
problem. In the end, the problems are identical, a statement made rigorous in The-
orem 3.1. Others have noticed a connection; for example, a VQ application in [9]
is said to be “equivalent to a directional p-median problem in multiple dimensions.”
However, to the authors’ knowledge the literature has lacked a rigorous argument
detailing the relationship between the two. Although the proof is straightforward,
the theorem’s conditions and the examples that follow show that the problems are
generally not the same.

Theorem 3.1 Let P′ be a discrete collection of positions on the (strongly) connected
(di)graph (V, E). Let β : P′ → R+ satisfy

∑

v∈V
β(v) = 1 and β(v) = 0 if v ∈ P′\V.

Further assume that γ is any map from P × P into R+. Then the following problems
are identical.

1. The p-element VQ design problem on P′ with respect to (γ, β),

2. The p-median problem on the complete digraph (P′, P′×P′) restricted to P′ with
respect to (γ, β), and

3. The p-median problem on (V, E) restricted to P′ with respect to (γ, β).

Proof: From (2.5) and (2.3) we see that problems 1 and 2 are respectively

min

{

∑

w∈W

∑

v∈Vw

γ(v, w)β(v) : W ⊆ P′, |W| = p

}

(3.2)

and

min

{

∑

k∈P

∑

v∈Vk

γ(v, k)β(v) : P ⊆ P′, |P| = p

}

. (3.3)

We define the bijection from the feasible region of (3.2) onto (3.3) by

h(W) = P if and only if W = P.

This is nothing more than the identity map on the collection of p-element subsets of
P′. So for any feasible W in (3.2) we have h(W) = P is feasible in (3.3). This allows
w and k in the outer summations to be the same, and we subsequently have from
(2.2) and (2.4) that the index sets for the inner summations coincide. We conclude
the problems are identical.
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Consider problems 2 and 3, which have the same feasible region. This allows us to
use the identity map ĥ(P) = P. Unfortunately, the index sets of the inner summations
do not agree since the vertex set for problem 3 is V and the vertex set for problem 2
is P′. This means the index set of the inner summation for problem 3 is

Vk = {v ∈ V : γ(v, k) ≤ γ(v, u) for u ∈ P},

while the index set for problem 2 is

V̂k = {v ∈ P′ : γ(v, k) ≤ γ(v, u) for u ∈ P}.

However, since β(v) = 0 for v ∈ P′\V, we have for any k ∈ P′ that

∑

v∈Vp

γ(v, k)β(v) =
∑

v∈V̂p

γ(v, k)β(v),

and hence, the objective values agree under ĥ. We conclude that problems 2 and 3
are identical. The fact that problems 1 and 3 are identical follows by considering the
composition of h and ĥ, which is again the identity map.

We mention that one choice for P′ is V, which supports problems statements like (1.1).
We further mention that the manner in which (2.3) and (2.5) are stated is important
to the theorem’s conclusion. Typically, both problems are stated in terms of selecting
a subset of vectors or vertices, referred to as selection, and assigning the vectors or
vertices to the selected elements, referred to as assignment. The optimization prob-
lems in (2.3) and (2.5) do not consider assignment in their descriptions of the feasible
regions. Instead, both feasible regions are the p-element subsets of the vertices or
vectors and the assignments are described by the index set of the inner summation.
This is allowed because each p-element subset defines a unique optimal assignment
as defined in (2.2) and (2.4). The fact that some elements may have equal similar-
ity means there may be numerous alternative assignments. However, the discrete
assumption implies the vertices of the digraph and the vectors to be quantized are
at most countable. This is crucial to the proof since it allows us to define a unique
assignment for each feasible subset with the least index rule.

To highlight the importance of the least index rule, let (V, E) be the digraph in
Figure 1 for problem 3 in Theorem 3.1. The corresponding complete digraph for
problem 2 is in Figure 2 (arrows are not shown). The problem on (V, E) only assigns
positions k1, k3 and k4 —i.e. the vertices in V, whereas the problem on (P′, P′ × P′)
assigns k1, k2, . . . , k6 —i.e. the elements of P′. Suppose we are solving the 2-median
problem and that γ and β are such that

• {k1, k4} is the unique solution (notice this is for both problems), and

• for the problem on (V, E) we have Vk1
= {k1} and Vk4

= {k3, k4}.
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Figure 1: A strongly connected
digraph with 3 added positions
to select medians from.
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Figure 2: The corresponding
complete graph of the digraph
in Figure 1, all edges are bi-
directional arcs.

Considering the problem for (P′, P′ × P′), we see k2, k5 and k6 need to be added to
either Vk1

or Vk4
, and our construction says they are assigned to k1 or k4 depending

on to which they are more similar. However, we could have γ(ki, kj) = 0 for i = 2, 5, 6
and j = 1, 3, 5, meaning k2, k5 and k6 are equally similar to each of the elements in
V. Our construction dictates that k2, k5 and k6 are each assigned to the median with
the lowest index, and using the notation from the proof of Theorem 3.1, we have
V̂k1

= {k1, k2, k5, k6} and V̂k4
= {k3, k4}, which is a unique assignment. If the least

index rule was removed, then there would have been 8 possible ways to add k2, k5 and
k6 to Vk1

and Vk4
. If the feasible regions had been stated in terms of both selection

and assignment without regard to some tie braking rule for the assignment decision,
then this would have violated the necessity of the argument minimums having the
same cardinality, and hence, the problems would not have been identical. From
this perspective the simple proof of Theorem 3.1 is a byproduct of modeling, as the
same sense of equality would not have been possible with a combinatorial statement
like (1.1). It is likely that one could address the problem in the continuum by invoking
the axiom of choice.

Theorem 3.1 has two substantive corollaries.

Corollary 3.2 Every discrete p-element VQ design problem corresponds to a discrete
p-median problem on a complete digraph restricted to the vertices.

This follows immediately from the fact that problems 1 and 2 in Theorem 3.1 are iden-
tical. The idea is to start with a p-element VQ design problem and simply construct
the complete digraph whose vertices are the vectors in the quantization problem. This
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p-median problem is restricted to the vertices, which allows the similarity measure ρ
in the quantization problem to fulfill the role of γ in the p-median problem. Simi-
larly, the vertex weights in the k-median problem are the probability measures in the
quantization problem.

The second corollary is similar to Hakimi’s original result since it states that we
only need to consider vertex solutions of an associated graph.

Corollary 3.3 For every discrete p-median problem there is an alternative p-median
problem in which only collections of vertices need to be considered. Moreover, this
alternative p-median problem corresponds to a p-element VQ design problem.

Similar to the previous corollary, this statement follows immediately from the fact
that problems 1, 2 and 3 in Theorem 3.1 are identical. However, a graph description
is warranted. Consider the p-median problem on (V, E) restricted to P′ with respect
to (γ, β). Recall that γ is defined for every pair in P′ × P′. This means we can
consider the complete digraph (P′, P′ × P′) with edge weights defined by γ. This
complete digraph does not have node values for the vertices in P′\V, and we extend
the definition of β to β̂ so that β̂(k) = β(k) if k ∈ V and β̂(k) = 0 if k ∈ P′\V.
This extension satisfies the conditions of Theorem 3.1, and hence, we only need to
consider collections of vertices of the complete digraph to solve the discrete problem
on (V, E) restricted to P′. This argument is similar to Hakimi’s original proof since
he constructs a complete graph with the shortest-path metric. As mentioned earlier
Hakimi’s proof requires an additive property along arcs, which is reasonable in some
settings but inappropriate in others. Our approach does not require this additive
property.

4 Solution Techniques & Complexity

Kariv and Hakimi [11] showed that the problem of finding a p-median on a connected
digraph is NP-hard in p and |V|. Polynomial algorithms exist, however, if p is fixed [3].

Although our discrete version of the p-median problem is different than Hakimi’s
original statement, the following result states the related conclusion that the discrete
p-median problem on (V, E) restricted to P′ with respect to (γ, β) is polynomial as
long as p is fixed.

Theorem 4.1 Assuming |P′| is finite, we have the worst-case complexity of the dis-
crete k-median problem on G = (V, E) restricted to P′ with respect to (γ, β) is
O(|V||P′|p+1).

Proof: The size of the feasible region is
(

|P′|
p

)

= O(|P′|p). We need to compare

each element of a feasible P to the elements of V to form Vk, which is O(|V||P′|).
So, starting with (V, E) and P′, we require no more than O(|V||P′|p+1) iterations to
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define (2.3). The addition in the objective function requires no more than O(p|V|)
multiplications. Hence, the total computation requires no worse than O(|V||P′|p+1 +
p|V|) = O(|V||P′|p+1) iterations.

Notice that since V ⊆ P′, we also have the complexity is no worse than O(|P′|p+2),
which is less impressive for the p-median problem but appropriate for VQ design since
V = P′. This leads to the following corollary.

Corollary 4.2 The worst-case complexity of the p-element VQ design problem on P′

with respect to (γ, β) is O(|P′|p+2).

Proof: From Theorem 3.1 we have that if V = P′, then the problems are identical,
which establishes the result.

Polynomial time does not mean heuristics are unimportant, and the computational
demand in many applications exceeds modern capabilities. Numerous heuristics have
been proposed for both problems, and a benefit of Theorem 3.1 is that it allows us
to model a situation as either median location or VQ design, depending on which is
cognitively simpler, but heuristically solve the problem with techniques from either
realm. The rest of this section compares some of the common heuristics for both
problems, and we show that under certain conditions the Maranzana algorithm for
the p-median problem can be interpreted as a discrete version of Lloyd’s algorithm
for VQ design. We call the blended variant the discrete Lloyd algorithm.

The Maranzana algorithm for the p-median problem was first proposed in 1964 [13],
and Lloyd’s algorithm for VQ design was originally proposed in an unpublished tech-
nical report in 1957 and later published in 1982 [12] (this issue of IEEE Transactions
on Information Theory is particularly good for operation researchers interested in the
k-means and k-median problems). Both techniques iterate between the assignment
and selection parts of the problem in a way that improves the objective function. In
terms of (2.3) and (2.5), both algorithms begin with an initial feasible element, P and
W. The assignment part is the construction of the inner summations’ index sets, Vk

for k ∈ P and Vw for w ∈ W. The selection part of the problem is to update W and
P by respectively calculating for each k ∈ P and w ∈ W

argmin

{

∑

v∈Vk

γ(v, u)β(v) : u ∈ Vk

}

(4.1)

and

argmin

{

∑

v∈Vw

ρ(v, u)α(v) : u ∈ Vw

}

. (4.2)

An element from each argument minimum is selected to form the new feasible sets,
say Ŵ and P̂, which replace W and P. The process continues until Ŵ = W and P̂ = P.
The objective function is non-increasing with every new Ŵ and P̂, see [4] and [13].
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The conditions of Theorem 3.1 together with the assumption that (4.1) and (4.2)
contain a unique element guarantee the two algorithms produce the same iterates if
applied to the same problem and initialized in the same way. However, the Lloyd and
Maranzana algorithms differ in how they calculate an element of (4.1) and (4.2).

The k-means version of VQ design assumes ρ(vi, vj) = ‖vi − vj‖
2, and in the

continuum this means the center-of-mass of each cell minimizes the the cell’s expected
distortion -i.e.

{

∑

v∈Vw
α(v)v

∑

v∈Vw
α(v)

}

= argmin

{

∑

v∈Vw

‖x − v‖2α(v) : x ∈ Rn

}

. (4.3)

Calculating the center-of-mass requires the product α(v)v to be well defined, which is
true if V is a vector space built on a scalar field containing the range of α. Traditional
VQ problems are cast in the continuum with V = Rn and α(V) ⊆ R, and hence the
computation is well-defined. Our discrete version allows the dense approximation
V = Qn with α(V) ⊆ Q, which reduces the problem to rational arithmetic.

A concern in the discrete setting is that we are not guaranteed V contains the
center-of-mass even if the arithmetic is well defined. This is not an issue if V = Q

but is a problem in the common situation of V being finite. However, if we assume
that α(v) is constant, which is the same as assuming the elements of V are uniformly
distributed, then we show that the projection of the center-of-mass onto Vw is an
element of (4.2). We let proj

Vw
(v) be the nearest element of Vw to v, with ties being

decided by the least index rule, and show that this element is in the desired argument
minimum. Similar ideas are found in [2].

Theorem 4.3 Assume W ⊆ V, |V| < ∞, ρ(vi, vj) = ‖vi−vj‖
2 and α(v) is constant.

Then, for each w ∈ W we have

proj
Vw

(

1

|Vw|

∑

u∈Vw

u

)

∈ argmin

{

∑

v∈Vw

‖u − v‖2 : u ∈ Vw

}

.

Proof: Let w ∈ W and M = (1/|Vw|)
∑

w∈Vw
w. Since α(v) is constant, we have

from (4.3) that

min

{

∑

v∈Vw

‖u − v‖2 : u ∈ Vw

}

= min
k≥0

{

∑

v∈Vw

‖M − v‖2 + k :

Vw ∩

{

x ∈ Rn :
∑

v∈Vw

‖x − v‖2 ≤
∑

v∈Vw

‖M − v‖2 + k

}

6= ∅

}

.
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Since
{

x ∈ Rn :
∑

v∈Vw

‖x − v‖2 ≤
∑

v∈Vw

‖M − v‖2 + k

}

=

{

x ∈ Rn :
∑

v∈Vw

(

(x − v)T (x − v) − (M − v)T (M − v)
)

≤ k

}

=

{

x ∈ Rn :
∑

v∈Vw

(

xT x − 2xT v − MT M + 2MT v
)

≤ k

}

=

{

x ∈ Rn :
1

|Vw|

∑

v∈Vw

xT x − 2xT

(

1

|Vw|

∑

v∈Vw

v

)

−

1

|Vw|

∑

v∈Vw

MT M + 2MT

(

1

|Vw|

∑

v∈Vw

v

)

≤
k

|Vw|

}

=
{

x ∈ Rn : xT x − 2xT M − MT M + 2MT M ≤ k/|Vw|
}

=
{

x ∈ Rn : xT x − 2xT M + MT M ≤ k/|Vw|
}

=
{

x ∈ Rn : ‖x − M‖2 ≤ k/|Vw|
}

=
{

x ∈ Rn : ‖x − M‖ ≤
√

k/|Vw|
}

,

the optimal value of

min

{

∑

v∈Vw

‖u − v‖2 : u ∈ Vw

}

(4.4)

is
∑

v∈Vw
‖M − v‖2 + k, where k is the smallest value such that

{

x ∈ Rn : ‖x − M‖ ≤
√

k/|Vw|
}

∩ Vw 6= ∅.

Since the left-hand set is a ball around M of radius
√

k/|Vw|, we have from the def-

inition of projVw
(M) that the smallest value

√

k/|Vw| with this property is ‖(M −
proj

Vw
(M))‖, which shows that proj

Vw
(M) solves (4.4).

From this result we have that in the finite case an element of (4.2) can be calculated
by projecting the center-of-mass onto Vw, provided that α(v) is constant. Both
calculating the center-of-mass and projecting it onto Vw are O(|V|), which means the
complexity of calculating Ŵ is O(k|V|). In contrast the Maranzana heuristic doesn’t
assume any geometric structure of γ and β, and hence, the construction of P̂ requires
pairwise comparisons within each Vp, which is O(k|V|2). So in the finite case when α
is constant and ρ is squared error, Lloyd’s approach of using the center-of-mass has

12



lower complexity. In the rest of the paper we assume that α is constant, ρ is squared
error, β = α, γ = ρ, and P′ = V so that (4.1) and (4.2) are the same. In this case we
can calculate an element of (4.1) with either the pairwise comparisons of the original
Maranzana algorithm or by projecting the the center-of-mass of each Vk onto Vk. We
refer to the latter algorithm as the discrete Lloyd algorithm (DLA). A least indexing
rule is used to ensure that the same element from (4.1) is selected independent of
which technique is used.

A point of note is that Lloyd’s approach only aligns with the Maranzana algorithm
because the projection is onto Vk. If the projection had instead been onto V, which
would have been an alternative discrete counterpart, then the two heuristics would
not generally produce the same sequence of iterates even if (4.1) and (4.2) were
singletons. However, the examples exhibiting the difference are contrived. To compare
the two we ran 1000 instances each in which p = 5, |V| was either 250, 500, or 1000,
and the elements of V were uniformly distributed over [0, 1]2. In all 3000 instances
the projections onto Vk and V were the same, but the technique projecting onto V

increased our run time by a factor of 3.2. For this reason, we only consider projections
onto Vk.

5 Numerical Experiment

In this section we numerically compare the performance of several solution techniques.
In addition to the Maranzana algorithm and DLA, we include comparisons with vertex
substitution (VS) [17, 18, 19], which was originally developed in 1968 by Teitz and
Bart [20]. Each iteration of VS decides whether or not to swap a position in P with
a position not in P. Variations differ in how they select the elements to swap. In
1983, Whitaker [21] developed an implementation known as fast interchange, which
was later implemented in the Variable Neighborhood Search method of Hansen and
Mladenović [8]. Both of these implementations begin by searching through V\P and
testing whether swapping with an element of P would reduce the objective function.
Whitaker’s method performs the swap with the first profitable position found, whereas
the Hansen and Mladenović implementation tests all possible swaps and performs the
one most profitable. Interested readers are directed to [8] and [15] for complete
descriptions.

We assume all examples are complete digraphs for which P′ = V ⊆ R3, |V| < ∞,
β(v) = 1 and γ(v1, v2) = ‖v1 − v2‖

2. Problems are identified by the tuple (|V|, p), so
(1000, 15) is an instance with 1000 nodes and 15 medians, We randomly generated V

with MATLAB 7.0 and considered all instances (|V|, p) in

{100, 250, 500, 1000, 1200, 1500, 2000}× {5, 10, 15, 20, 30},

producing 35 different problems in the unit hypercube of R3. For each problem we
randomly generated 30 different p-element subsets of V to use as starting points for
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Figure 3: The average objective value as a ratio of the global solution versus |V| with
p = 5. Each technique appears to improve its solution quality as |V| increases.

each heuristic. Problems were solved with the network simplex algorithm in CPLEX
9.0 as modeled in (1.1). This provided a global solution for problems with |V| ≤ 1000
(larger instances were beyond this technique). Other CPLEX options were considered,
but the network simplex method consistently outperformed the other possibilities.

The discrete Lloyd algorithm dominates the other techniques with respect to
speed, but as Figure 3 indicates, the solution quality is not as impressive as Hansen’s
approach, which is routinely within 5% of the global optimum. We wondered if the so-
lution from the discrete Lloyd algorithm could seed the vertex substitution techniques
to improve run time. This led to 6 heuristics for each problem and starting point:
Maranzana’s algorithm, the discrete Lloyd algorithm, Hansen’s algorithm, Whitaker’s
algorithm, and both Hansen’s and Whitaker’s technique initialized with the solution
from the discrete Lloyd algorithm. All implementations were written in MATLAB,
and results are reported in terms of the mean and standard deviation of the objective
value, number of iterations, and run times over the 30 solves for each problem.

The results for problem instances of size |V| = 500 are shown in Table 1. Tables for
all cases are found at holderfamily.dot5hosting.com/aholder/research/papers/
MedianTables.pdf. The numbers in parentheses indicate the percentage of the global
solution found by the network simplex algorithm. For example, a value of (1.10) in
the Objective column indicates the heuristic terminated with an objective value that
was 110% of the global optimum and a value of (0.72) in the time column means the
heuristic required 72% of the time needed to find the global solution.
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Our numerical results mirror the complexity analysis of the previous section and
show that the discrete Lloyd algorithm has a computational advantage over the
Maranzana algorithm, see Figures 4 and 5. Figure 5 is the same as Figure 4 except
that it includes the solution time for the network simplex algorithm for |V| ≤ 500,
which appears exponential. The heuristics dominate the global approach with re-
spect to speed, although for a few of the smaller networks the heuristics were slower,
something we attribute to the MATLAB implementation.

Figure 6 shows an odd trend in the solution quality of the discrete Lloyd and
Maranzana algorithms. Allowing |V| to remain constant, the solution quality degrades
as p increases. The ratios of Whitaker and Hansen are nearly constant at 1.02 and
1.3, respectively. This indicates that vertex substitution is less sensitive to a change
in p. Each technique took longer to converge as p increased, although the change for
the discrete Lloyd method was insignificant.

In general, Hansen’s approach obtains excellent solutions but is not as expedi-
ent as the other methods. Whitaker’s approach is faster but produces solutions
of lesser quality. The discrete Lloyd and Maranzana methods are even faster and
produce solutions generally better than Whitaker’s method. However, these tech-
niques are sensitive to p, and it appears as though solution quality approaches that
of Whitaker’s approach as p increases. In many cases initializing Whitaker’s method
with the solution from the Lloyd algorithm improved the solution quality, although
the improved solution was still not as good as that from Hansen’s technique. Initial-
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Objective Iterations Time
|V| p Method µ σ µ σ µ σ

500 5

Global 501407.97 (—) — 114294 — 4282.88 (—) —
MAR 549777.60 (1.10) 26591.23 4.13 1.25 2.15 (0.00) 0.12
DLA 549777.60 (1.10) 26591.23 4.13 1.25 0.03 (0.00) 0.01
HAN 511191.39 (1.02) 7201.95 9.87 2.11 31.22 (0.01) 6.24
WHIT 648306.88 (1.29) 50385.48 4.27 2.42 7.61 (0.00) 2.62
HAN / DLA 511004.83 (1.02) 8521.28 8.00 2.84 26.56 (0.01) 10.64
WHIT / DLA 545965.52 (1.09) 19918.92 1.33 0.61 5.34 (0.00) 1.29

500 10

Global 274236.58 (—) — 30483 — 299.22 (—) —
MAR 311046.20 (1.13) 16103.83 5.20 1.94 3.09 (0.01) 0.74
DLA 311046.20 (1.13) 16103.83 5.20 1.94 0.12 (0.00) 0.07
HAN 278217.88 (1.01) 3492.21 17.87 3.51 216.63 (0.72) 90.27
WHIT 392236.36 (1.43) 19055.32 7.47 3.41 34.08 (0.11) 20.24
HAN / DLA 277250.25 (1.01) 3842.16 13.10 4.17 161.88 (0.54) 79.07
WHIT / DLA 309458.05 (1.13) 14132.92 1.17 0.38 14.61 (0.05) 6.13

500 15

Global 209176.79 (—) — 142286 — 7465.60 (—) —
MAR 241080.60 (1.15) 11371.49 4.57 1.19 2.68 (0.00) 1.01
DLA 241080.60 (1.15) 11371.49 4.57 1.19 0.11 (0.00) 0.07
HAN 213132.48 (1.02) 1963.72 23.47 4.06 329.44 (0.04) 171.43
WHIT 276778.90 (1.32) 13252.56 12.40 3.91 55.78 (0.01) 40.46
HAN / DLA 213871.82 (1.02) 2478.79 15.73 4.60 234.54 (0.03) 157.51
WHIT / DLA 238216.37 (1.14) 9649.00 1.63 0.85 19.59 (0.00) 14.52

500 20

Global 167475.09 (—) — 31609 — 3427.54 (—) —
MAR 198087.25 (1.18) 6001.96 4.77 1.25 3.61 (0.00) 0.81
DLA 198087.25 (1.18) 6001.96 4.77 1.25 0.26 (0.00) 0.11
HAN 171428.21 (1.02) 1849.10 28.63 4.96 939.15 (0.27) 172.05
WHIT 219462.79 (1.31) 8785.06 16.80 5.37 184.54 (0.05) 61.14
HAN / DLA 171983.64 (1.03) 2228.37 20.37 5.01 706.38 (0.21) 186.52
WHIT / DLA 193251.61 (1.15) 4651.41 2.87 1.38 47.11 (0.01) 19.43

500 30

Global 121038.81 (—) — 14912 — 795.63 (—) —
MAR 151675.27 (1.25) 5472.31 5.17 1.23 3.32 (0.00) 0.46
DLA 151675.27 (1.25) 5472.31 5.17 1.23 0.37 (0.00) 0.11
HAN 123840.27 (1.02) 954.77 37.93 3.52 1942.48 (2.44) 249.03
WHIT 157963.85 (1.31) 4979.40 23.60 6.03 331.29 (0.42) 108.69
HAN / DLA 124195.91 (1.03) 1284.02 27.70 5.03 1414.40 (1.78) 307.38
WHIT / DLA 144139.45 (1.19) 3200.81 5.53 2.40 96.13 (0.12) 32.92

Table 1: Data on problem instances with |V| = 500 and varying values of p and
solution methods. The number of runs of each heuristic technique was 30.
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Figure 5: The computation time plotted versus the value of |V|. The solve time for
the network simplex algorithm with |V| = 1000 was 675021.47sec ≈ 8days
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izing Hansen’s technique with the solution from the discrete Lloyd algorithm did not
produce a remarkable change, which is expected since the solutions were generally
close to optimal.

In the future we hope to improve the solution quality of the discrete Lloyd algo-
rithm without sacrificing its favorable speed. In particular, we hope to be able to
initialize the algorithm so that it converges to a near optimal solution.
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