
Rose-Hulman Institute of Technology
Rose-Hulman Scholar

Mathematical Sciences Technical Reports (MSTR) Mathematics

7-29-2011

The Square Discrete Exponentiation Map
A Wood
DePaul University

Follow this and additional works at: http://scholar.rose-hulman.edu/math_mstr
Part of the Algebra Commons, Discrete Mathematics and Combinatorics Commons, and the

Theory and Algorithms Commons

This Article is brought to you for free and open access by the Mathematics at Rose-Hulman Scholar. It has been accepted for inclusion in Mathematical
Sciences Technical Reports (MSTR) by an authorized administrator of Rose-Hulman Scholar. For more information, please contact bernier@rose-
hulman.edu.

Recommended Citation
Wood, A, "The Square Discrete Exponentiation Map" (2011). Mathematical Sciences Technical Reports (MSTR). Paper 9.
http://scholar.rose-hulman.edu/math_mstr/9

http://scholar.rose-hulman.edu?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/math_mstr?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/math?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/math_mstr?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/math_mstr/9?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bernier@rose-hulman.edu
mailto:bernier@rose-hulman.edu

The Square Discrete Exponentiation Map

A. Wood

Adviser: Joshua Holden

Mathematical Sciences Technical Report Series
MSTR 11-05

 July 29, 2011

Department of Mathematics
Rose-Hulman Institute of Technology

http://www.rose-hulman.edu/math

Fax (812)-877-8333 Phone (812)-877-8193

THE SQUARE DISCRETE EXPONENTIATION MAP

A. WOOD
DEPAUL UNIVERSITY

Produced at the Rose-Hulman Institute of Technology Mathematics REU
Sponsored by NSF grant DMS-1003924

Abstract. We will examine the square discrete exponentiation map

x→ gx
2

(mod p)

and its properties. The square discrete exponentiation map is a variation on
a commonly seen problem in crytographic algorithms. This paper focuses on
understanding the underlying structure of the functional graphs generated by
this map. Specifically, this paper focuses on explaining the in-degree of graphs
of safe primes, which are primes of the form p = 2q + 1, where q is also prime.

1. Background and Motivation

Much of modern society is built around keeping information private. Whether
it is access to online bank accounts or credit card information while paying for
online shopping, most of us have information that we trust to be kept safe online.
Various cryptographic algorithms have been developed in an attempt to keep our
information secure. So far, they have been generally successful.

Cryptographic algorithms, more specifically public-key cryptography, generally
work like this: a person, say Alice, has some information that she would like to
get to her friend Bob and only to Bob. However, a common acquaintance of
theirs, Eve, is trying to intercept this information. Alice will have a public key
and a private key, where the private key is known only to her. It is important for
the private key to be kept secret because it is the important information needed
for decryption. For instance, in ElGamal encryption, Bob uses Alice’s public
key information to generate an encrypted message and Alice uses her private key
information to decrypt it. Without the private key, the message is supposed to be
indecipherable. The security of messages depends upon Alice being the only one
to know her private key.

Various maps are used to keep this information private. A map involves taking
elements from one set and relating them onto elements of another set. For instance,
in the square discrete exponentiation map x → gx

2
(mod p), the element x ∈

Date: July 29, 2011.
Faculty Advisor Joshua Holden, Rose-Hulman Institute of Technology.

1

2 A. WOOD DEPAUL UNIVERSITY

{1, · · · , p − 1} is mapped on to gx
2

(mod p). These maps should be easy to
compute when you have the private key, but difficult to compute the inverse of
when you do not have the private key.

However, the troubling truth is that these maps have not been proven to be
secure. For instance, the most widely used map, the discrete exponentiation map
x→ gx (mod p), has not been proven to be secure. It is relatively straightforward
to encrypt information using algorithms based upon this map, but we are unsure
how difficult it is for an outsider to read this information. The discrete logarithim
problem, x ← gx (mod p), is presumed to be computationally hard but has not
been proven as such. If computing the inverse of the map takes a vast amount of
effort, time, and resources, then the algorithm using the map is probably secure.
We do know that, at this point in time, it takes a significant amount of time and
resources to decrypt information that was encrypted with algorithms that use the
discrete exponentiation map. We do not know for certain that this always will be
the case. With this in mind, various attempts have been made at discovering how
secure this map really is [2, 4, 5].

Several variations on the discrete exponentiation map exist and have yet to be
studied in detail. Whether or not these maps are more or less secure than the
discrete exponentiation map has yet to be determined. However, if it could be
shown that one of these variations is more secure than the discrete map then we
know cryptographic algorithms based upon these maps would be more secure.

One such algorithm that uses the square discrete exponentiation map is a group
signature scheme outlined by Camenisch and Stadler [1]. In a group signature
scheme, members of a larger group are able to authenticate information individ-
ually without revealing their individual identities. Their individual identities are
able to be determined only by a group manager, and authentication is unable to be
forged. The algorithm outlined by Camenisch and Stadler uses the map x → gx

e

(mod p) for an integer e; the square discrete exponentiation map corresponds to
the case of e = 2.

With this in mind, in this paper I discuss the square discrete exponentiation
map, x→ gx

2
(mod p). If this map truly is computationally difficult, then it could

be useful in cryptographic algorithms. One clear example of its usefulness is in
the group signature structure discussed above. Previous group signature schemes
had several undesirable properties: for instance, the length of the group’s public
key is determined by the size of the group, and every time a new group member is
added the public key has to be modified. Camenisch and Stadler’s group signature
scheme is the first prosed scheme that avoids these problems, due largely to the
fact that they use the map x→ gx

e
(mod p) [1].

THE SQUARE DISCRETE EXPONENTIATION MAP 3

2. Prior Work

The difficulty now lies in determining if a map is computationally intractable,
or at least computationally extremely difficult. One method of doing this is by
comparing the functional graphs generated by the square discrete map to random
graphs.

Definition 2.1. A functional graph is a directed graph from a set onto itself. It
represents each x as a node and draws an arrow, called an edge, from that x to its
corresponding output. We say that we have an edge from a tail to a head.

For instance, in the functional graph for x→ 3x
2

(mod 5) seen in Figure 1, we
have an edge from 4 to 1, an edge from 2 to 1, an edge from 1 to 3, and an edge
from 3 to 3.

Figure 1. x→ 3x
2

(mod 5)

If the graph appears sufficiently random, then computing the inverse of the
map is probably a difficult feat. In order to determine if the graphs generated by
a map appear random, we have to understand the underlying structure. Underly-
ing structure could mean number of image nodes and terminal nodes, in-degree,
connected components, cycle length, et cetera. In-degree is the number of edges
that each node is the head of. In Figure 1, 1 has in-degree two, 3 has in-degree
one, and 2 and 4 both have in-degree zero. An image node is a node that has
in-degree greater that zero, such as the nodes 1 and 3 in Figure 1, and a terminal
node is a node with in-degree zero, such as nodes 2 and 4. Connected components
refers to the number of subgraphs connected by edges on a functional graph. For
instance, Figure 1 has only one connected component. Cycle length refers to the
number of nodes in a cycle, a cycle being a set of nodes that map to each other
with the last node mapping to the first node. For instance, in Figure 1, the cycle
length is 1, the cycle being from the node 3 to itself. A tree is a section of a
graph that contains no cycles—for instance, in Figure 1, the section of the graph
containing the nodes 1, 2, and 4 is a tree.

These are just a few examples of properties of directed graphs that you can
study. In this paper, I will focus only on in-degree. Cloutier used this method
of comparision to random graphs to study the discrete map x→ gx (mod p) and
had success in characterizing in-degree [2]. In his work, he discovered that the

4 A. WOOD DEPAUL UNIVERSITY

in-degree of the functional graphs for the map x→ gx (mod p) is dependent upon
the value of g and p—namely, he found that all graphs are m-ary [2].

Definition 2.2. We say that a functional graph is m-ary when each node has
in-degree 0 or m.

The reason that in-degree had such strong structure on this graph is the rela-
tionship between g and p − 1. Cloutier found this relationship via a property of
what is called a primitive root. Specifically,

Definition 2.3. We say that g is a primitive root modulo p if x = p − 1 is the
smallest positive integer such that gx ≡ 1 (mod p).

His main theorem states as follows:

Theorem 2.1. [2] Let p be fixed and let m be any positive integer that divides p−1.
Then as g ranges over the integers, there are φ

(
p−1
m

)
different functional graphs

which are m-ary produced by maps of the form f : x 7→ gx (mod p). Furthermore,
if h is any primitive root modulo p, and g ≡ ha (mod p), then the values of g that
produce an m-ary graph are precisely those for which gcd(a, p− 1) = m.

As you can see from his theorem, the structure of the functional graphs produced
by the discrete exponentiation map depend entirely on the relationship between g
and p− 1.

Useful in our understanding of this relationship is the idea that, in modular
arithmetic, we know that for a primitive root r, if rx ≡ ry (mod p), then x ≡ y
(mod p−1). This fact is what much of the structure of the discrete exponentiation
map is based upon. Unsurprisingly due to the similarity between the ways in wich
the two maps are formulated, the structure of the in-degree on the square discrete
exponentiation map is found modulo p− 1 as well.

Another important indicator of the relationship between g and p − 1 is what
power residue g is modulo p. Specifically,

Definition 2.4. We say that g is an nth power residue modulo p if there exists an
h such that hn ≡ g (mod p).

For instance, 11 is a quadratic residue modulo 19 because 72 ≡ 11 (mod 19).

3. Methods

The method for determining the computational intractability of the square dis-
crete exponentiation map involves: determining the underlying structure of the
functional graphs generated by a the map, using exponential generating functions
to determine the behavior of random graphs of the same structure, and perform-
ing statistical analysis to observe the behavior of the actual graphs for comparison
to the random graphs. In this paper, the underlying structure is explored and
exponential generating functions for this structure are outlined.

THE SQUARE DISCRETE EXPONENTIATION MAP 5

3.1. The Underlying Structure. The underlying structure of the functional
graphs must be determined before it is possible to analyze random graph behavior
with exponential generating functions. Without an understanding of the structure
of the map, it would not be possible to analyze the behavior of random maps of a
similar form.

In this paper, I focus on characterizing in-degree due to the success Cloutier
had with finding structure in the in-degree on the discrete exponentiation map
[2]. Furthermore, when studying the graphs generated by lower primes, no clear
pattern seemed to emerge in terms of cycle length or connected components. How-
ever, the in-degree of the graphs clearly had some structure. Therefore, in order
to determine the structure of the functional graphs, I focus on in-degree.

My main result concerns the in-degree of functional graphs modulo a safe prime.
Safe primes are primes of the form 2q + 1, where q is a prime. Safe primes are of
interest in cryptography because they fulfill one criterion of strong primes. To be
a strong prime, p must be large, p− 1 = aq+ 1 where q is prime must have a large
prime factor, q − 1 must have a large prime factor, and p + 1 must have a large
prime factor. Safe primes fit the criterion of p− 1 having a large prime factor.

Safe primes are useful because p − 1 has only four divisors: 1, 2, q, and 2q.
As we will see, the relationship between g and p − 1 determines the in-degree of
the functional graphs for the square discrete exponentiation map, thus it makes
sense that safe primes, with their small number of divisors, will prove key in our
understanding of in-degree.

To determine in-degree, we will go over various patterns found in the maps and
generalize them to find the exact in-degree for maps modulo a safe prime. To
prove these patters, we will use the fact that if ga ≡ gb (mod p) for some integers
a, b and a primitive root g, then a ≡ b (mod p− 1).

3.2. Exponential Generating Functions. A random map is a map that has
been drawn randomly, without any specific pattern. However, on average random
maps will have certain properties, such as average cycle length, average number
of terminal nodes, et cetera.

An exponential generating function is just another way of counting combinato-
rial objects. They can be a useful tool for analyzing random maps [3].

Definition 3.1. The function

f(x) = a0 + a1x+ a2
x2

2!
+ a3

x3

3!
+ · · · =

∞∑
i=0

ai
xi

i!

is called the exponential generating function for the sequence a0, a1, a2, a3,

For instance, the sequence 1, 1, 1, 1, . . . can be represented as the exponential
generating function

6 A. WOOD DEPAUL UNIVERSITY

1 + 1 · x+ 1 · x
2

2!
+ 1 · x

3

3!
+ · · · = ex.

Once some part of the structure of a map is thoroughly understood, it is possible
to derive exponential generating functions that model random graphs of the same
general structure.

Using generating functions we can determine the average expected structure
of a randomly generated graph with the same in-degree structure as seen on the
square discrete exponentiation map using the method was developed by Flajolet
and Odlyzko [3].

3.3. Statistics. After the struture of the maps has been determined and random
graphs sufficiently described, it will be useful to gather statistics on the behavior of
the square discrete exponentiation map. Previous work has been done on writing
code that will generate these results [2, 4, 5].

Once all of the statistical data has been gathered, the information can be used
to compare the square discrete exponentiation map to random maps. We will look
at data such as cycle length, number of terminal nodes, et cetera. If the square
discrete exponentiation map’s data is close enough to that of random maps, then
we say that the graphs seem random. The more random a graph appears, the more
difficult the inverse of the map will be to compute. Therefore, if the functional
graphs appear random, it is reasonable to conclude that cryptographic algorithms
using the square discrete exponentiation map are probably secure.

4. Theoretical Results: In-Degree

Now we will look at some of the properties of the square discrete exponentiation
map. In order to discover the underlying structure of in-degrees, we will first look
at the in-degree of the image node 1.

The next theorems describe certain x values that, for all g, give us a specific
output.

Theorem 4.1. Let p− 1 = pa11 p
a2
2 · · · pann . For all g, gx

2 ≡ 1 (mod p) for

x = k

(
n∏
i=1

p
dai

2
e

i

)
= k

(
p
da1

2
e

1 p
da2

2
e

2 · · · pd
an
2
e

n

)
= k

(
2d

a1
2
ep
da2

2
e

2 · · · pd
an
2
e

n

)
where k ∈ N. We will call these values x̄k.

Proof. First consider x̄1 =
∏n

i=1 p
dai

2
e

i . Then, for any g,

gx̄
2
1 ≡ g

(
p
da12 e
1 ···p

dan2 e
n

)2

≡ gp
2da12 e
1 ···p

2dan2 e
n ≡

(
gp

2da12 e−x1
1 ···p

2dan2 e−xn
n

)px11 ···pxnn
(mod p)

THE SQUARE DISCRETE EXPONENTIATION MAP 7

where xi = 2dai
2
e−ai. Note that xi = 0 if ai is even, and xi = 1 if ai is odd. Then,(

gp
2da12 e−x1
1 ···p

2dan2 e−xn
n

)px11 ···pxnn
≡
(
gp−1

)px11 ···pxnn ≡ 1p
x1
1 ···p

xn
n ≡ 1 (mod p)

Finally, note that gx
2 ≡ g(kx̄1)2 ≡ (gx̄

2
1)k

2 ≡ 1k
2 ≡ 1 (mod p). �

For instance, observe the chart for p = 13 in Figure 2 1. The areas shaded brown
are the x values that, for all g, give us 1 as an output.

The next theorem tells for what x we will get ±1 as an output for all g.

Theorem 4.2. Let p− 1 = pa11 p
a2
2 · · · pann . For all g, gx

2 ≡ ±1 (mod p) for

x = l

(
2b

a1
2
c

n∏
i=2

p
dai

2
e

i

)
= l
(

2b
a1
2
cp
da2

2
e

2 · · · pd
an
2
e

n

)
where l ∈ N. We will call these values ¯̄xl.

Proof. First consider ¯̄x1 = 2b
a1
2
c∏n

i=2 p
dai

2
e

i . Then, for any g,

g
¯̄x21 ≡ g

(
2b
a1
2 cp

da22 e
2 ···p

dan2 e
n

)2

≡ g22b
a1
2 cp

2da22 e
2 ···p

2dan2 e
n

≡
(
g22b

a1
2 c−x1p

2da22 e−x2
2 ···p

2dan2 e−xn
n

)px11 ···pxnn
(mod p)

where xi = 2dai
2
e − ai. Note that for 2 ≤ xi ≤ n, xi = 0 if ai is even, and xi = 1

if ai is odd. In the case of i = 1, note that x1 is 0 if a1 is even and is −1 if a1 is
odd. Then,(
g22b

a1
2 c−x1p

2da22 e−x2
2 ···p

2dan2 e−xn
n

)px11 ···pxnn
≡
(
gp−1

)2x1p
x2
2 ···p

xn
n ≡ 12x1p

x2
2 ···p

xn
n ≡ 12x1 (mod p)

If x1 = 0, then 12x1 ≡ 1 (mod p). If x1 = −1, then 12x1 ≡ 11/2 ≡ ±1 (mod p).

Finally, note that gx
2 ≡ g(l¯̄x1)2 ≡ (g ¯̄x21)l

2 ≡ (±1)l
2 ≡ ±1 (mod p). �

However, also note sometimes the solutions for x̄k and ¯̄xl will be exactly the
same, as seen in Figure 4.

Now we will take things a step further and attempt to generally characterize
the output for a specific g and p. Let qi = {q1, · · · , qs} be all divisors of p− 1, in

ascending order. If g is a qi
th power residue modulo p, then the map for gx

2
has qi

repetitions. For example, consider g = 8, a 3rd power residue modulo 19, as seen
in Figure 5. Notice that the outputs have three repetitions, as expected.

In terms of a formula,

1All remaining figures can be found at the end of the document.

8 A. WOOD DEPAUL UNIVERSITY

Theorem 4.3. Let q1, · · · , qj be all divisors of p − 1. Assume g is a qi
th root

modulo p. Then, for 1 ≤ ξ ≤ qi, 0 ≤ z ≤
⌈(

p−1
qi

)
2

⌉
,

gz
2 ≡ g

(
ξ
(
p−1
qi

)
±z
)2

(mod p). (1)

Proof. Consider g

(
ξ
(
p−1
qi

)
±z
)2
≡ gξ

2(p−1
2)

2
±2ξz(p−1

2)+z2 (mod p).
Since g is a qith residue modulo p, g ≡ rqi (mod p) for some r.
Observe that

g
ξ2
(
p−1
qi

)2
≡
(
g

1
qi

)ξ2 (p−1)2

qi ≡ r
ξ2(p−1)2

qi ≡
(
r(p−1)

)ξ2(p−1
qi

)
(mod p)

Fermat’s Little Theorem tells us that rp−1 ≡ 1 (mod p), thus(
r(p−1)

)ξ2(p−1
qi

)
≡ 1

ξ2
(
p−1
qi

)
≡ 1 (mod p)

and

g
±2ξz p−1

qi ≡
(
g

1
qi

)±2ξz(p−1)

≡ r±2ξz(p−1) ≡ 1±2ξz ≡ 1 (mod p).

Thus

g

(
ξ
(
p−1
qi

)
±z
)2
≡ gz

2

(mod p).

Notice that although this is true for all z, ξ, considering only 0 ≤ ξ ≤ qi and

0 ≤ z ≤
⌈(

p−1
qi

)
2

⌉
helps get rid of redundant cases. �

In Figure 6, the g=2, 3, 10, 13, 14, and 15 are primitive roots modulo 19,
therefore we see that the outputs of x 7→ gx

2
(mod p) for these g cycle through

once. In other words, qi = 1 and ξ = 1. Note that g=4, 5, 6, 16, and 17 are
quadratic residues modulo 19 and their outputs run through two cycles, where
qi = 2 and ξ = 2. Meanwhile, g=8 and g=12 are cubic residues modulo 19 and
their outputs run through 3 cycles, where qi = 3 and thus ξ = 3. Also note
that g=18 is a 9th power residue modulo 19 and its outputs run through 9 cycles
(qi = 9, ξ = 9), while g=1 is an 18th power residue modulo 19 and its outputs run
through 18 cycles (qi = 18, ξ = 18).

This corollary follows quite easily, but is important in determining the in-degree
of 1:

Corollary 4.1. Let q1, · · · , qj be all divisors of p − 1. Assume g is a qith power
residue modulo p. Then, for all ξ,

g

(
ξ
(
p−1
qi

))2
≡ 1 (mod p).

Proof. Note that this equation is a case of (1), when z = 0. Thus, g02 ≡

g

(
ξ
(
p−1
qi

)
±0
)2
≡ 1 (mod p). �

THE SQUARE DISCRETE EXPONENTIATION MAP 9

With the previous theorems, it is possible to draw conclusions about the in-
degree of the functional graphs, because we know that the in-degree is strongly
related to what power residue g is modulo p.

Theorem 4.4. Let q1, · · · , qj be all divisors of p−1. Let g be a qith power residue

modulo p. Then, the in-degree for image nodes on the directed graph for x→ gx
2

(mod p) will have three cases. Let

a∗ ≡ g

(
(p−1
qi)
2

)2

(mod p)

where a∗ exists only when p−1
qi

is even.

(1) If a∗ ≡ 1 (mod p) then the in-degree on the node 1 is 2qi + 2qis1, for some
s1 ∈ N≥0.

(2) If a∗ 6≡ 1 (mod p) or a∗ does not exist, then the in-degree on the node 1 is
qi+2qis2, for some s2 ∈ N≥0, and when a∗ exists it has in-degree qi+2qis3,
for some s3 ∈ N≥0.

(3) All other non-terminal nodes have in-degree 2qis4 for some s4 ∈ N≥0

Proof. First, note that by Corollary 4.1, if x is a multiple of p−1
qi

, then gx
2 ≡ 1

(mod p). Therefore, the node for 1 has in-degree of at least qi.
If a∗ exists, note that a∗ is the image of at least qi numbers as well. This is

because a∗ occurs when x =

(
p−1
qi

)
2

. For every ξ we know that g

(
ξ
(
p−1
qi

))2
≡ 1

(mod p), and it is straightforward to see that

g

(
ξ
(
p−1
qi

)
−
p−1
qi
2

)2

≡ a∗ (mod p).

With this and by observing that ξ
(
p−1
qi

)
−

(
p−1
qi

)
2

= (ξ − 1)
(
p−1
qi

)
+

(
p−1
qi

)
2

,

we see that a∗ occurs halfway in between each occurence of 1 that is gotten by

x = ξ
(
p−1
qi

)
. Thus for every time x = ξ

(
p−1
qi

)
gives us 1 as an output, we will

have x = ξ
(
p−1
qi

)
−
(
p−1
qi

)
2

giving us a∗ as an output.

We know by Theorem 4.3 that the images for gx
2

(mod p) repeat themselves qi
times, and that inside of each repetition each output is repeated twice, except for
the the following two cases: where x is a multiple of p−1

qi
, because then z = 0 and

+0 = −0; or, when x is a multiple of
p−1
qi

2
when p−1

qi
is even, because it corresponds

to the case in Theorem 4.3 where z is such that (ξ − 1)(p−1
qi

) + z = ξ(p−1
qi

) − z.

The second case happens under the same conditions that give us a∗.
Because the outputs are repeated a certain number of times as seen in Theorem

4.3, the in-degree on the nodes for those outputs will correspond to the number of

10 A. WOOD DEPAUL UNIVERSITY

times the outputs are repeated. Thus, if a∗ ≡ 1 (mod p), then the node for 1 has
in-degree qi + qi + 2qis1 = 2qi + 2qis1 for some s1 ∈ N≥0. If a∗ does not exist or
a∗ 6≡ 1 (mod p) then the node 1 has in-degree qi + 2qis2 for some s2 ∈ N≥0, while
a∗ has in-degree qi + 2qis3 for some s3 ∈ N≥0. All other non-terminal nodes in all
cases have in-degree 2qis4 for some s4 ∈ N≥0. �

With this theorem, we have some general knowledge about the in-degree of
the square discrete exponentiation map. The structure of the map is fairly com-
plicated, but by examining specific cases we can gain a deeper understanding of
it.

We will consider the case where p−1 is a product of two distinct primes. Notice
that one of these primes must always be two, because otherwise p would be even
and thus not prime. Therefore, p− 1 = 2r for some odd prime r. This is the same
as letting p be a safe prime, excluding the case of p = 5 = 2 · 2 + 1. However,
before we can prove the in-degree, there is one more property we must discuss.

Lemma 1. Let g be a primitive root modulo p. Then x = p − 1 is the smallest
positive integer such that gx

2 ≡ 1 (mod p) if and only if p − 1 = p1p2 · · · pn for
distinct pi.

Proof. “⇒” Let g be a primitive root mod p. Then, gp−1 ≡ 1 (mod p). Also,

note that g(p−1)2 ≡ 1 (mod p). Assume to the contrary that p−1 is not a product
of distinct primes.

Then, p− 1 = pa11 p
a2
2 · · · p

ai
i · · · pann such that ai 6= 1 for some integer i. Then,

g(p
a1
1 ···p

ai
i ···p

an
n)2 ≡ 1 (mod p).

However, note also that when ai is even,

g(p
a1
1 ···p

ai
2
i ···p

an
n)2 ≡ (gp

a1
1 ···p

ai
i ···p

an
n)

p
a1
1 ···p

ai−1
i−1 p

ai+1
i+1 ···p

an
n ≡ 1p

a1
1 ···p

ai−1
i−1 p

ai+1
i+1 ···p

an
n ≡ 1 (mod p).

And when ai is an odd number greater than one,

g(p
a1
1 ···p

ai+1
2

i ···pann)2 ≡ (gp
a1
1 ···p

ai
i ···p

an
n)

p
a1
1 ···pi···p

an
n ≡ 1p

a1
1 ···pi···p

an
n ≡ 1 (mod p).

where

pa11 · · · p
ai
2
i · · · pann < pa11 · · · p

ai
i · · · pann

and

pa11 · · · p
ai+1

2
i · · · pann < pa11 · · · p

ai
i · · · pann

implying x = p− 1 is not the smallest positive integer such that gx
2 ≡ 1 (mod p).

“⇐” To prove “if,” let g be a primitive root and assume p − 1 = p1p2 · · · pn.
Then, gp−1 ≡ 1 (mod p). Note that g(p−1)2 ≡ 1 (mod p), thus there exists x ∈ N
such that gx

2 ≡ 1 (mod p). Together this implies that gp−1 ≡ gx
2

(mod p), thus
x2 ≡ p− 1 (mod p− 1), thus x2 ≡ 0 (mod p− 1).

THE SQUARE DISCRETE EXPONENTIATION MAP 11

Then, x2 = (p − 1)m = (p1p2 · · · pn)m for some m ∈ N. Note m must be of
the form m = (p1p2 · · · pn)l2 for some l ∈ N, because otherwise x /∈ N. Thus,
x2 = (p1p2 · · · pn)2l2, therefore x = (p1p2 · · · pn)l = (p− 1)l for some l.

Thus, x = p− 1 is the smallest positive integer such that gx
2 ≡ 1 (mod p). �

Now we can describe the structure of in-degree on maps modulo a prime p,
where p− 1 = 2r for an odd prime r.

Theorem 4.5. Let p = 2r + 1, where r is an odd prime. Note that 1, 2, r, and
2r are all divisors of p − 1, thus let qi = 1, 2, r, or 2r and let g be a qith power
residue modulo p, such that if g is also a qjth power residue then qj < qi.

(1) The in-degree on the node corresponding to 1 is qi.
(2) If qi is odd, then the node corresponding to p− 1 has in-degree qi.
(3) All other non-terminal nodes have in-degree 2qi.

Proof. We will prove each condition separately.

(1) First, we will prove that the in-degree on the node corresponding to 1 is qi.

To do this, we will show that gx
2 ≡ 1 (mod p) if and only if x = ξ

(
p−1
qi

)
.

Note that the “if” was proven in Corollary 4.1, so all that remains to be
proven is “only if.”

Assume g is a qith power residue modulo p = 2r + 1, where r is an odd
prime. We want to find all solutions to the equation gx

2 ≡ 1 (mod p).
Since g is a qith power residue modulo p, there is a primitive root h such

that hqi ≡ g (mod p). Thus,

gx
2 ≡ 1 (mod p)

can be written as

hqix
2 ≡ h0 (mod 2r + 1).

Since h is a primitive root, we know that

qix
2 ≡ 0 (mod 2r).

Furthermore, qi is a factor of 2r, thus

x2 ≡ 0

(
mod

2r

qi

)
.

Therefore, x2 = 2r
qi
k for some integer k. Thus, x is a multiple of 2r

qi
.

(2) Next, we will prove that if qi is odd, then the node corresponding to p− 1
has in-degree qi. The only cases where qi is odd are qi = 1 or qi = r.

Theorem 4.2 tells us that if x = r then gx
2 ≡ ±1 (mod p). If g is a

primitive root, in other words if qi = 1, then we know by Lemma 1 that
gr

2 6≡ 1 (mod p). Therefore, gr
2 ≡ −1 ≡ p− 1 (mod p). Now, we want to

prove that x = r is the only x for which gx
2 ≡ −1 (mod p).

12 A. WOOD DEPAUL UNIVERSITY

Consider gx
2 ≡ −1 (mod 2r + 1), where g is a primitive root. We know

gr ≡ −1 (mod p), because gp−1 ≡ 1 (mod p) implies that gr ≡ g
p−1
2 ≡

1
1
2 ≡ ±1 (mod p), and since g is primitive we know gr 6≡ 1 (mod p).

This implies that x2 ≡ r (mod 2r). Then, gx
2 ≡ gr (mod 2r + 1). Then,

x2 − r2 = 2rk for some integer k. Then, x =
√
r(2k + 1). Since x is

an integer and r is prime, we know that 2k + 1 = rl2 for some integer l,
implying that x = rl, or that x is a multiple of r. We know that x 6= 2r
because x2r ≡ 1 (mod 2r + 1).

Therefore, we know that when g is a primitive root, gx
2 ≡ −1 (mod 2r+

1) if and only if x = r.
Now we need to prove that if g is an rth power residue then the in-degree

is r on the node corresponding to p − 1. Note that, as seen above in the

equation g
p−1
2 ≡ ±1 (mod p), the only rth power residues modulo p are 1

and p− 1. However, g = 1 is also a 2rth power residue, thus the only rth
power residue modulo p we consider is g = p− 1.

Note that (p−1)x
2 ≡ (−1)x

2
(mod p). Thus, for all even x, (p−1)x

2 ≡ 1

(mod p) and for all odd x, (p − 1)x
2 ≡ −1 (mod p). Therefore the node

for p− 1 has in-degree r.

(3) By Theorem 4.3, We know that gz
2 ≡ g

(
ξ
(

2r
qi

)
±z
)2

(mod 2r + 1). Here, we

see that the values for z are unique only for 0 ≤ z ≤
⌈

2r
qi

2

⌉
. Therefore, to

prove part (3), it is sufficient to prove that gz
2
1 ≡ gz

2
2 (mod 2r + 1) if and

only if z1 = z2, where 0 ≤ z1, z2 ≤
⌈

2r
qi

2

⌉
. We know that if z1 = z2 then

z2
1 ≡ z2

2 (mod 2r), thus gz
2
1 ≡ gz

2
2 (mod 2r + 1).

All that we must show now is that if gz
2
1 ≡ gz

2
2 (mod 2r+1) then z1 = z2,

where 0 ≤ z1, z2 ≤
⌈

2r
qi

2

⌉
.

If g is a qith power residue modulo p, then there exists a primitive root
h such that hqi ≡ g (mod 2r+1). This is clearly true when g is a primitive
root, or when qi = 1. This also is fairly obvious for the case of g = 1, a
2rth power residue, due to Fermat’s Little Theorem. Furthermore, we saw
in (2) that the only rth power residue to consider is g = p − 1 and that

for all primitive roots h, h(p−1
2)

2

≡ h(2r
2)

2

≡ hr
2 ≡ −1 (mod p). The only

case left is when qi = 2. Consider quadratic residue g and a primitive root
k. We know that g ≡ x2 (mod p) for some x. Then,

logk g ≡ logk x
2 (mod p− 1)

THE SQUARE DISCRETE EXPONENTIATION MAP 13

which implies that

logk g ≡ 2 logk x (mod p− 1).

We now want to find the gcd(logk x, p − 1). Because p − 1 = 2r, possible
choices are gcd(logk x, p − 1) = 1, 2, r or 2r. If 2r| logk x, then logkx ≡ 0
(mod p − 1), implying that x ≡ 1 (mod p), so g ≡ 1 (mod p), a contra-
diction. Similarly, if r| logk x, then logk x ≡ 0 (mod p−1

2
), implying that

x ≡ ±1 (mod p), so g ≡ 1 (mod p), a contradiction. If 2| logk x then note
that 2 6 |(r+logk x), so gcd(r+logk x, p−1) = 1. Therefore, k(r+logk x) = −x
is a primitive root modulo p. Therefore, we know that if g is a qith power
residue modulo p, then there exists a primitive root h such that hqi ≡ g
(mod 2r + 1).

Therefore, if gz
2
1 ≡ gz

2
2 (mod 2r+ 1) then hqi(z1

2) ≡ hqi(z2
2) (mod 2r+ 1)

for a primitive root h. Therefore, qiz1
2 ≡ qiz2

2 (mod 2r), implying that

z1
2 ≡ z2

2
(

mod 2r
qi

)
. Therefore,

z1
2 − z2

2 ≡ 0

(
mod

2r

qi

)
thus

(z1 + z2)(z1 − z2) ≡ 0

(
mod

2r

qi

)
.

Thus, when 2r
qi

is prime, either z1 + z2 ≡ 0
(

mod 2r
qi

)
or z1 − z2 ≡

0
(

mod 2r
qi

)
. Therefore, either z1 ≡ −z2

(
mod 2r

qi

)
or z1 ≡ z2

(
mod 2r

qi

)
.

Since 0 ≤ z1, z2 <

⌈
2r
qi

2

⌉
, z1 = −z2 or z1 = z2. However, z1, z2 ≥ 0, thus

z1 = z2.
The only case where 2r

qi
is not prime is when qi = 1, or when g is a

primitive root. In this case, z1
2 − z2

2 ≡ 0
(

mod 2r
qi

)
when qi = 1 implies

that

z1
2 − z2

2 ≡ 0 (mod 2r)

thus

(z1 − z2)(z1 + z2) ≡ 0 (mod 2r)

Since 2r is composite, z1 + z2 ≡ 0
(

mod 2r
qi

)
and z1 − z2 ≡ 0

(
mod 2r

qi

)
are not the only two cases. We also have the case where (z1 − z2) is a
multiple of 2 while (z1 + z2) is a multiple of r, or vice versa, but neither is

a multiple of 2r. Also, 0 ≤ z1, z2 ≤
⌈

2r
qi

2

⌉
= r. Furthermore, we know that

if z1−z2 is even then z1 +z2 is also even. However, we know z1 +z2 cannot

14 A. WOOD DEPAUL UNIVERSITY

exceed 2r because z1, z2 ≤ r. Thus z1 + z2 is even, thus not a multiple of
r. Also note that if z1 − z2 = r then z1 > r, a contradiction.

Therefore, either z1 ≡ −z2

(
mod 2r

qi

)
or z1 ≡ z2

(
mod 2r

qi

)
. Since

0 ≤ z1, z2 <
2r
qi

, z1 = z2.

�

5. Theoretical Results: Generating Functions

In this section, we will outline the exponential generating functions for the
funtional graphs generated by the square discrete exponention map over a safe
prime modulus p and a primitive root g.

To do this, we will begin with the description of a functional graph given by
Flajolet and Odlyzko [3]. It defined functional graphs in a computer science-
minded way as follows:

FunctionalGraph = set(Components)

Components = cycle(Tree)

Tree = node · set(Tree)
(2)

Here, we have a recursive formula for the trees of a functional graph, while
the rest of the graph is built out of the trees. A random graph with no specific
in-degree structure would be represented as the following exponential generating
functions, with z representing a node [3]:

f(z) = ec(z)

c(z) = log 1
1−t(z)

t(z) = zet(z)
(3)

The square discrete exponentiation map has known in-degree structure, so the
above equations will need to be modified to take that structure into account.

Consider first the equation for the trees. Because trees on the discrete exponen-
tiation map have to have a specific structure, the exponential generating function
for trees must reflect that structure. To review, maps for the square discrete expo-
nentiation map over a safe prime modulus p and a primitive root g have in-degree
1 on the nodes for 1 and p− 1, and in-degree 2 on all other image nodes. We will
consider a model that does not keep track of which nodes have in-degree one and
which have in-degree two. All that matters is that, since there will always be an
edge from p− 1 to 1, the two nodes with in-degree 1 are connected by an edge.

The tree function is built as follows: we have a node, or we have a node with
two trees, or we have two nodes with one tree. This is represented as t(z) =

z+z t(z)
2

2
+z2t(z), where the middle term is divided by two to remove redundancies.

A similar method of constructing a tree function was also used by Cloutier, who

THE SQUARE DISCRETE EXPONENTIATION MAP 15

constructed a generating functions for binary trees, trees with in-degree 0 or 2, as

b(z) = z + z b
2(z)
2

[2].
From this function we are able to build the rest of our functions. We know that

part of a cycle on our graphs will either be one node and a tree, or three nodes

with one tree. We represent this as c(z) = log
(

1
1−(zt(z)+z3t(z))

)
.

The functions are as follows:
f(z) = ec(z)

c(z) = log
(

1
1−(zt(z)+z3t(z))

)
t(z) = z + z t(z)

2

2
+ z2t(z)

(4)

However, while these models count all graphs with in-degrees as we have modelled,
they do not keep track of the two nodes with in-degree one. Therefore, we will
stick a counting variable, u, into each equation. The revised equations read as
follows: 

f(z, u) = ec(z,u)

c(z, u) = log
(

1
1−(zt(z,u)+uz3t(z,u))

)
t(z, u) = z + z t(z,u)2

2
+ uz2t(z, u)

(5)

To really count the graphs with only two nodes of in-degree one, after expanding
them as generating functions, we must differentiate with respect to u and solve
for u = 0. By doing this, we get an exponential generating function that counts
graphs with only two nodes of in-degree one. We will call this function g(z). Using
Maple, we see that

g(z) =
2z4

(1− 2z2)3/2
.

Basic testing on Maple to see if the graphs are counting the graphs correctly
make the above characterization seem successful.

6. Conclusion and Future Work

This paper has focused on determining the general structure of the in-degree
on maps for the square discrete exponentiation map. It has fully characterized
the in-degree for safe primes. Safe primes are a useful case to have characterized
because of how widely they are used in cryptographic algorithms.

This paper has also focused on maps with a prime modulus. This is seen in the
group signature scheme created by Camenisch and Stadler [1]. Future work could
include exploring the non-prime modulus case.

If the square discrete exponentiation map were to fall into a predictable pattern,
it would not be useful for cryptographic algorithms. With this in mind, in the
future it will be important to run statistical analysis on the structure of the graph

16 A. WOOD DEPAUL UNIVERSITY

and to continue work with exponential generating functions. Further work analyz-
ing the generating functions will give us information pertaining to the behavior of
random graphs of the same in-degree structure. Statistical analysis will give us the
actual structure of things like cycle length and connected components, while the
generating functions give us the structure of the same things on random graphs.
Comparing the two to see how far the actual values differ from random values
will give us an idea of the predictability of the behavior of the square discrete
exponentiation map.

7. Acknowledgements

Many thanks to my advisor, Joshua Holden of Rose-Hulman Institute of Tech-
nology, for his guidance, to Rose-Hulman Institute of Technology for hosting the
REU, and to the NSF for funding the research.

THE SQUARE DISCRETE EXPONENTIATION MAP 17

8. Figures

x\g 1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12
2 1 3 3 9 1 9 9 1 9 3 3 1
3 1 5 1 12 5 5 8 8 1 12 8 12
4 1 3 3 9 1 9 9 1 9 3 3 1
5 1 2 3 4 5 6 7 8 9 10 11 12
6 1 1 1 1 1 1 1 1 1 1 1 1
7 1 2 3 4 5 6 7 8 9 10 11 12
8 1 3 3 9 1 9 9 1 9 3 3 1
9 1 5 1 12 5 5 8 8 1 12 8 12
10 1 3 3 9 1 9 9 1 9 3 3 1
11 1 2 3 4 5 6 7 8 9 10 11 12
12 1 1 1 1 1 1 1 1 1 1 1 1

Figure 2. x→ gx
2

(mod 13), x̄k = 6, 12

x\g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2 1 16 5 9 17 4 7 11 6 6 11 7 4 17 9 5 16 1
3 1 18 18 1 1 1 1 18 1 18 1 18 18 18 18 1 1 18
4 1 5 17 6 16 9 7 11 4 4 11 7 9 16 6 17 5 1
5 1 14 2 6 16 9 7 8 4 15 11 12 10 3 13 17 5 18
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 3 14 9 17 4 7 8 6 13 11 12 15 2 10 5 16 18
8 1 17 16 4 5 6 7 11 9 9 11 7 6 5 4 16 17 1
9 1 18 18 1 1 1 1 18 1 18 1 18 18 18 18 1 1 18
10 1 17 16 4 5 6 7 11 9 9 11 7 6 5 4 16 17 1
11 1 3 14 9 17 4 7 8 6 13 11 12 15 2 10 5 16 18
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 1 14 2 6 16 9 7 8 4 15 11 12 10 3 13 17 5 18
14 1 5 17 6 16 9 7 11 4 4 11 7 9 16 6 17 5 1
15 1 18 18 1 1 1 1 18 1 18 1 18 18 18 18 1 1 18
16 1 16 5 9 17 4 7 11 6 6 11 7 4 17 9 5 16 1
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3. x→ gx
2

(mod 19), x̄k = 6, 12, 18, ¯̄xl = 3, 6, 9, 12, 15, 18

x\g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 1 16 13 1 13 4 4 16 16 4 4 13 1 13 16 1
3 1 2 14 4 12 11 10 8 9 7 6 5 13 3 15 16
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 2 14 4 12 11 10 8 9 7 6 5 13 3 15 16
6 1 16 13 1 13 4 4 16 16 4 4 13 1 13 16 1
7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10 1 16 13 1 13 4 4 16 16 4 4 13 1 13 16 1
11 1 2 14 4 12 11 10 8 9 7 6 5 13 3 15 16
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 1 2 14 4 12 11 10 8 9 7 6 5 13 3 15 16
14 1 16 13 1 13 4 4 16 16 4 4 13 1 13 16 1
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4. x→ gx
2

(mod 19), x̄k = 6, 12, 18, ¯̄xl = 3, 6, 9, 12, 15, 18

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
8^(x^2) mod19 8 11 18 11 8 1 8 11 18 11 8 1 8 11 18 11 8 1

Figure 5. x→ 8x
2

(mod 19)

18 A. WOOD DEPAUL UNIVERSITY

x\g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2 1 16 5 9 17 4 7 11 6 6 11 7 4 17 9 5 16 1
3 1 18 18 1 1 1 1 18 1 18 1 18 18 18 18 1 1 18
4 1 5 17 6 16 9 7 11 4 4 11 7 9 16 6 17 5 1
5 1 14 2 6 16 9 7 8 4 15 11 12 10 3 13 17 5 18
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 3 14 9 17 4 7 8 6 13 11 12 15 2 10 5 16 18
8 1 17 16 4 5 6 7 11 9 9 11 7 6 5 4 16 17 1
9 1 18 18 1 1 1 1 18 1 18 1 18 18 18 18 1 1 18
10 1 17 16 4 5 6 7 11 9 9 11 7 6 5 4 16 17 1
11 1 3 14 9 17 4 7 8 6 13 11 12 15 2 10 5 16 18
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 1 14 2 6 16 9 7 8 4 15 11 12 10 3 13 17 5 18
14 1 5 17 6 16 9 7 11 4 4 11 7 9 16 6 17 5 1
15 1 18 18 1 1 1 1 18 1 18 1 18 18 18 18 1 1 18
16 1 16 5 9 17 4 7 11 6 6 11 7 4 17 9 5 16 1
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 6. x→ gx
2

(mod 19)

References

[1] Jan Camenisch and Markus Stadler. Efficient Group Signiture Schemes for Large
Groups. Lecture Notes in Computer Science, 1997, Volume 1294/1997, 410-424, DOI:
10.1007/BFb0052252

[2] Daniel R. Cloutier. Mapping the discrete logarithm. Senior thesis, Rose-Hulman Institute of
Technology, 2005.

[3] Philippe Flajolet and Andrew Odlyzko. Random Mapping Statistics. Advances in Cryptology,
Proc. Eurocrypt’89, J-J. Quisquater Ed., Lect. Notes in Comp. Sc. vol 434, 1990, pp. 329-354.

[4] Andrew Hoffman. Statistical Investigation of Structure in the Discrete Logarithm, Rose-
Hulman Undergraduate Mathematics Journal, Vol. 10, Issue 2, 2009.

[5] Nathan W. Lindle. A Statistical Look at Maps of the Discrete Logarithm. Senior thesis,
Rose-Hulman Institute of Technology, 2008.

	Rose-Hulman Institute of Technology
	Rose-Hulman Scholar
	7-29-2011

	The Square Discrete Exponentiation Map
	A Wood
	Recommended Citation

	11-05cover.pdf
	11-05direct.pdf

