
Rose-Hulman Institute of Technology
Rose-Hulman Scholar
Graduate Theses - Electrical and Computer
Engineering Graduate Theses

Spring 5-2016

NEUROSim: Naturally Extensible, Unique RISC
Operation Simulator
David Eric McNeil
Rose-Hulman Institute of Technology, mcneilde@rose-hulman.edu

Follow this and additional works at: http://scholar.rose-hulman.edu/electrical_grad_theses

Part of the Other Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Graduate Theses at Rose-Hulman Scholar. It has been accepted for inclusion in Graduate
Theses - Electrical and Computer Engineering by an authorized administrator of Rose-Hulman Scholar. For more information, please contact
weir1@rose-hulman.edu.

Recommended Citation
McNeil, David Eric, "NEUROSim: Naturally Extensible, Unique RISC Operation Simulator" (2016). Graduate Theses - Electrical and
Computer Engineering. Paper 8.

http://scholar.rose-hulman.edu?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/electrical_grad_theses?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/electrical_grad_theses?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/grad_theses?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/electrical_grad_theses?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/electrical_grad_theses/8?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:weir1@rose-hulman.edu

NEUROSim:

Naturally Extensible, Unique RISC Operation Simulator

A Thesis

Submitted to the Faculty

of

Rose-Hulman Institute of Technology

by

David Eric McNeil

In Partial Fulfillment of the Requirements for the Degree

of

Master of Science in Electrical Engineering

May 2016

c©2016 David Eric McNeil

Final Examination Report

ROSE-HULMAN INSTITUTE OF TECHNOLOGY

 Name Graduate Major

Thesis Title __

Thesis Advisory Committee Department

Thesis Advisor:

__

 EXAMINATION COMMITTEE:

 DATE OF EXAM:

 PASSED ___________ FAILED ___________

David E. McNeil Electrical Engineering

Daniel Chang ECE

Yong Jin Kim ECE

Mario Simoni ECE

Claude Anderson CSSE

NEUROSim: Naturally Extensible, Unique RISC Operation Simulator

April 22, 2016

 X

ABSTRACT

McNeil, David Eric

M.S.E.E

Rose-Hulman Institute of Technology

May 2016

NEUROSim: Naturally Extensible, Unique RISC Operation Simulator

Thesis Advisor: Dr. Daniel Chang

The NEUROSim framework consists of a compiler, assembler, and cycle-accurate processor

simulator to facilitate computer architecture research. This framework provides a core in-

struction set common to many applications and a simulated datapath capable of executing

these instructions. However, the core contribution of NEUROSim is its flexible and extensi-

ble design allowing for the addition of instructions and architecture changes which target a

specific application. The NEUROSim framework is presented through the analysis of many

system design decisions including execution forwarding, control change detection, FPU con-

figuration, loop unrolling, recursive functions, self modifying code, branch predictors, and

cache architectures. To demonstrate its flexible nature, the NEUROSim framework is applied

to specific domains including a modulo instruction intended for use in encryption applica-

tions, a multiply accumulate instruction analyzed in the context of digital signal processing,

Taylor series expansion and lookup table instructions applied to mathematical expression

approximation, and an atomic compare and swap instruction used for sorting.

Keywords: electrical engineering, computer architecture, RISC, compiler, assembler,

simulator

DEDICATION

To my wife, Meg, for her constant encouragement and love. I am truly blessed to have you

in my life. And to my parents, David and Dorothy, for their support, love, and wonderful

examples.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor, Dr. Daniel Chang, for his time, expertise,

and dedication. I appreciate the many hours you spent meeting with me, reviewing this

document, and practicing with me for the defense. I would also like to thank the members

of my defense committee Dr. Claude Anderson, Dr. Yong Jin Daniel Kim, and Dr. Mario

Simoni for their time and valuable suggestions.

TABLE OF CONTENTS

LIST OF FIGURES iv

LIST OF TABLES vi

LIST OF CODE EXCERPTS viii

LIST OF ABBREVIATIONS x

1 Introduction 1

1.1 Background Knowledge . 1

1.2 NEUROSim Implementation . 2

2 Related Work 3

3 Motivation 4

4 Axon (Compiler) 5

4.1 Supported Syntax . 6

5 Synapse (Assembler) 7

5.1 Register Sets . 7

5.2 Instruction Set Architecture . 9

5.3 Sample Compiled Code . 14

6 Neurosim (Simulator) 14

6.1 The Datapath . 15

7 Hardware Design Decisions 17

7.1 Execute Forwarding . 17

7.2 Control Change Detection . 19

7.3 FPU Configuration . 20

7.4 Conclusion . 21

8 Software Design Decisions 21

ii

8.1 Loop Unrolling . 22

8.2 Recursive Function Calls . 23

8.3 Self Modifying Code . 24

9 Branch Prediction 25

9.1 Static Branch Predictors . 26

9.2 Dynamic Branch Predictors . 27

10 Cache Architecture 29

11 Setup and Configuration of Examples 31

12 Modulo Instruction 32

13 Digital Signal Processing Example 35

13.1 Lowpass Filter . 35

13.2 Multiply Accumulate (MAC) Instruction . 37

13.3 Lowpass Filter Implementation . 38

14 Mathematical Expression Approximation 40

14.1 Lookup Table Approximation . 40

14.2 Taylor Series Expansion Approximation . 42

14.3 Artificial Neural Network Example . 43

15 Array Sorting Example 47

15.1 Compare and Swap (CAS) Instruction . 47

15.2 Bubble Sort vs Merge Sort . 49

16 Conclusion 51

17 Future Work 52

APPENDIX 69

iii

LIST OF FIGURES

1 The NEUROSim technology stack. 3

2 Compiler architecture [1]. 6

3 LLVM retargetable architecture [1]. 6

4 RISC datapath [2]. 16

5 Data hazard [2]. 18

6 Loop unrolling statistics graph. 23

7 2-bit saturating counter state diagram. 27

8 Branch predictor statistics graph. 28

9 Basic cache structure. 29

10 Cache hit rates graph. 31

11 Modulo test program statistics graph. 34

12 Lowpass filter magnitude and frequency response. 36

13 Flowgraph representation of filter. 37

14 Original signal time domain. 38

15 Original signal frequency domain. 38

16 Filtered signal time domain. 38

17 Filtered signal frequency domain. 38

18 Low pass filter statistics graph. 39

19 Exponential function with lookup table approximation. 41

20 Exponential function with Taylor series approximation. 42

21 Single artificial neuron. 44

22 Artificial neural network [3]. 44

23 XOR neural network. 44

iv

24 Neural network statistics graph. 46

25 Bubble sort statistics graph. 48

26 Bubble sort run time. 50

27 Merge sort run time. 50

28 Bubble Sort vs Merge Sort. 50

v

LIST OF TABLES

1 Single precision floating point format. 8

2 Integer registers. 9

3 Floating point registers. 9

4 Instruction formats. 10

5 R type instructions. 11

6 I type instructions. 12

7 M type instructions. 12

8 B type instructions. 12

9 J type instructions. 12

10 FR type instructions. 13

11 FI type instructions. 13

12 FM type instructions. 13

13 FB type instructions. 13

14 Assembly directives. 14

15 Execute forwarding statistics. 19

16 Control change detection statistics. 20

17 FPU configuration statistics. 21

18 Loop unrolling statistics. 22

19 Factorial algorithm statistics. 24

20 Self modifying code statistics. 25

21 Static branch predictor statistics. 26

22 Dynamic branch predictor statistics. 28

23 Cache example configuration: Size=64, Associativity=2, LineSize=4. 30

vi

24 Cache hit rates. 31

25 MOD instruction. 33

26 Modulo test program statistics. 34

27 MAC instruction. 37

28 Lowpass filter statistics. 39

29 Lookup table approximation instruction. 41

30 Taylor series exponential approximation instruction. 42

31 XOR logic table. 44

32 XOR neural network output. 45

33 Neural network statistics. 45

35 CAS instruction. 47

36 Bubble sort statistics. 48

37 Bubble Sort vs Merge Sort statistics. 50

vii

LIST OF CODE EXCERPTS

1 Axon supported syntax. 55

2 Addition in C. 56

3 Addition in assembly. 56

4 For loop in C. 57

5 For loop in assembly. 57

6 Function call in C. 57

7 Function call in assembly. 57

8 Execute forwarding example. 58

9 Control change detection example. 58

10 FPU configuration example. 58

11 Loop unrolling. 59

12 Recursive implementation of factorial. 59

13 Loop implementation of factorial. 60

14 Self modifying code. 60

15 Branch prediction test. 61

16 Random cache access. 62

17 Few random cache access. 62

18 Linear cache access. 63

19 Inlined function example. 63

20 Modulo test program . 64

21 Mac Instruction . 65

22 Lookup table exponential approximation. 66

23 Taylor series exponential approximation. 67

viii

24 Bubble sort. 68

25 Merge sort. 68

ix

LIST OF ABBREVIATIONS

ALUArithmetic Logic Unit

CAS.Compare And Swap

CISCComplex Instruction Set Computer

CPUCentral Processing Unit

DSP.Digital Signal Processing

EXExecute Stage

FPUFloating Point Unit

ID. Instructions Decode Stage

IF Instructions Fetch Stage

IPC Instructions Per Cycle

IR Intermediate Representation

ISA Instructions Set Architecture

L1.Level 1 Cache

MACMultiply Accumulate

MEM.Memory Stage

MOD.Modulo

NOPNo Operation

RISCReduced Instruction Set Computer

SPU. Special Purpose Unit

WBWrite Back Stage

XORExclusive Or

x

1 Introduction

Computers are everywhere and range in complexity from multi-core supercomputers to

simple microprocessors. Behind each of these computers is a processor which has undergone

a series of design decisions intended to optimize the computer for a specific purpose or a

target domain. These design decisions are intended to strike a balance between a variety

of factors including speed, power, area, and cost. During the design process, a simulator

capable of quantifying the consequences of a given design decision becomes invaluable. They

provide a method to quickly determine the merits of a design without requiring the resources

of an actual implementation.

The NEUROSim framework provides a cycle-accurate simulator targeting a reduced in-

struction set computer (RISC) architecture and the surrounding resources for targeting this

architecture including an assembler and compiler. The simulator is capable of executing a

core instruction set common to many applications, but the primary contribution of NEU-

ROSim is its flexible and extensible design allowing this core instruction set to be augmented

by instructions optimized for a specific domain.

1.1 Background Knowledge

The NEUROSim framework is intended to encompass the design process from imple-

menting an algorithm in software to executing that software on a hardware platform. The

interaction of software with hardware has multiple layers of abstraction intended to ease

human computer interaction as well as generalize this interaction over a variety of platforms.

A look at the various components in this stack is necessary in order to fully understand the

breadth of NEUROSim.

At a high level, a computer program is written in a programming language. In general

this program is intended to be capable of running on multiple hardware platforms. Assuming

this language is a compiled language, this program will be passed through an architecture

specific compiler which converts the high level language into assembly code for the targeted

1

platform. The assembly code describes the program in terms of instructions in the hardware’s

instruction set architecture (ISA). After being compiled, the resulting assembly program is

passed through an assembler which converts the assembly program into machine code. The

machine code is a binary representation of the assembly program. This binary representation

can then be loaded into the memory of a processor and executed on hardware or passed to

a simulator capable of simulating the execution. Executing a program in a simulator has

the advantage of allowing one to easily record statistics on the underlying hardware beyond

what the program has been programmed to output. Simulators allow one to easily change the

configuration of the underlying hardware and quickly obtain statistics on the corresponding

performance changes. This tight feedback loop of being able to make a design decision and

quickly view its results is what makes simulators an indispensable tool in the design process.

This is in contrast to requiring design decisions be implemented in actual hardware before

their merits can be determined.

1.2 NEUROSim Implementation

The NEUROSim framework includes specific implementations of each of the components

in the aforementioned stack as seen in Figure 1. The components of NEUROSim are named

after components of a neuron because NEUROSim was originally developed with the intent

of optimizing an architecture for simulating neurons. The programming language used by

the NEUROSim framework is a subset of C. The NEUROSim compiler is named Axon, the

assembler is named Synapse, and the simulator is named Neurosim (not to be confused with

NEUROSim which represents the entire framework).

This document begins by examining related work in computer architecture simulators,

motivates the contribution of NEUROSim, and analyzes the individual components of NEU-

ROSim. Then this document inspects system design decisions in the context of NERUOSim

including execute forwarding, control change detection, floating point unit (FPU) configu-

ration, loop unrolling, recursive functions, self modifying code, branch predictors, and cache

2

Figure 1: The NEUROSim technology stack.

architectures. To demonstrate its flexible nature, the NEUROSim framework is applied to

specific domains namely implementing a modulo instruction intended for use in encryption

applications, a multiply accumulate instruction analyzed in the context of digital signal

processing, Taylor series expansion and lookup table instructions applied to mathematical

expression approximation, and an atomic compare swap instruction used for sorting. Finally,

this document concludes by proposing potential future work. The relevant code excerpts can

be found at the end of this document in the appendix.

2 Related Work

There exists a plethora of computer architecture simulators, SimpleScalar [4], gem5 [5],

and MARSSx86 (Micro-ARchitectural and System Simulator for x86-based Systems) [6], to

name a few. These simulators are primarily concerned with supporting cutting edge research

in computer architecture. As such they focus on supporting existing ISAs and platforms.

For example, gem5 focuses on supporting interchangeable CPU (central processing unit)

models for the Alpha, ARM, SPARC, MIPS, POWER, and x86 ISAs [5], and the MARSSx86

3

provides full system simulation of the x86-64 architecture [6]. These simulators use existing

tool chains for handling the compiling and assembling of the programs they run. The ability

to use existing tools is excellent for comparing the impact of computer architecture research

as it provides a common benchmark by which to compare changes. However, because these

simulators use existing tools and implement existing ISAs, these simulators are somewhat

limited to analyzing changes which advance existing technologies. For instance, it would be

difficult to develop a custom ISA for a target application or optimize a compiler for a specific

algorithm using these simulators. These simulators are intended to be used for computer

architecture design and analysis, but are not intended to be used as full system design and

analysis tools. NEUROSim aims to differentiate itself from these other simulators because it

is intended to be used as a design tool from compiler optimizations to ISA design to hardware

configuration.

3 Motivation

NEUROSim aims to provide the design tools for custom RISC architectures, ISAs, and

software development tools. NEUROSim’s target use case is as follows. There is a given

domain which could potentially see a performance increase by using a custom instruction.

NEUROSim provides a way to quickly add this instruction and evaluate its benefit. First,

the logic to execute the instruction is added to the simulator. Then, the ability to translate

the instruction is added to the assembler. Finally, the compiler is edited to generate the

new instruction. The properties of the new instruction can now be configured to strike a

balance between the performance of the algorithm given the new instruction and design

parameters from other sources such as cost, area, and power. The results of the simulation

can potentially follow two paths. It could be deemed that adding the new instruction is not

worth the resources. In which case, the simulator was still successful because it avoided the

need to implement the proposed change to come to this conclusion. The other outcome is

4

that a good balance of the relevant parameters was determined and the designer now has a

set of target specifications and an approximation of the corresponding performance benefits.

Essentially, NEUROSim is a tool intended to aid in striking a balance between hardware

and software components of a system. Hardware represents the spatial component of the

design and consumes space and power. Whereas, software represents the temporal portion of

design taking a given amount of time to run. Software layers abstract away components of the

hardware layer easing software development. However, the price of these abstractions is a loss

of control over the underlying hardware. The purpose of NEUROSim is to give direct control

over these abstractions allowing the user to determine what portion of the algorithm should

be handled by hardware and what portion should be handled by software. NEUROSim is

intended to provide exactly what the standard computer architecture simulators provide,

a tight feedback loop between design and results, but with a broader scope. The ability

to simulate all components of a system during the design process significantly reduces the

resources needed to try a new design. Simulation allows the design process to be easily

modeled as an optimization problem where the optimization parameters are the various

parameters of the simulator. These parameters are adjusted to find an optimal configuration

in regard to a specific output parameter such as latency, area, or power. Simulation even

allows for the automation of this optimization process where an algorithm is used to fine-tune

parameters until a desired outcome is reached.

4 Axon (Compiler)

Axon is responsible for converting a program written in the supported subset of C to the

NEUROSim ISA. Axon is implemented using the LLVM toolchain. “The LLVM Project is

a collection of modular and reusable compiler and toolchain technologies [7].”

Basic compiler architecture is composed of a front end, an optimizer, and a back end as

seen in Figure 2. The front end converts the source code of a programming language into an

5

intermediate representation (IR). This intermediate representation is then used to perform

optimizations. Finally, this intermediate language is converted to the target assembly. This

architecture segments the development of the front end, optimizer, and back end allowing

for individuals to tap into any layer of this stack without having to reinvent the other com-

ponents. Figure 3 illustrates how this architecture can support multiple front end languages

which all compile down to the common IR code. This IR code can then undergo a set of

common optimizations and finally be converted by the back end to the desired hardware

platform.

Figure 2: Compiler architecture [1].

Figure 3: LLVM retargetable architecture [1].

The segmented design of LLVM allows Axon to use an existing C front end known as

Clang [8] and a common set of optimizations. However, a new back end was written capable

of converting the LLVM IR code to the NEUROSim ISA.

4.1 Supported Syntax

Currently, the Axon compiler supports a subset of C. The available syntax constructs are

illustrated in Code 1. The next section will examine NEUROSim’s instruction set and how

the compiler converts C code into equivalent assembly language expressions.

6

5 Synapse (Assembler)

Synapse is responsible for converting the assembly program output of Axon to machine

code. The tools Flex [9] and Bison [10] were used to construct the assembler. Flex is a

lexical analysis generator and Bison is a parser generator. The lexical analyzer produces a

token stream given an input file and a specified grammar. Bison generates a parser which

given a token stream and grammar applies meaning, or semantics, to the lexical structure.

In the case of an assembler, the tokens are instructions, labels, and assembler directives, and

the meaning is the corresponding machine code. Intrinsic to the assembler’s function are the

ISA and register set used by the underlying hardware.

5.1 Register Sets

NEUROSim’s ISA works on two sets of thirty-two element 32-bit register files. One

register file holds integer values while the other holds single precision floating point values.

It is important to realize that the registers in both register files are simply 32-bit values. It

is the way these values are interpreted which dictates the type. The integer registers are

interpreted as two’s complement while the floating point registers are interpreted according

to the IEEE floating point standards, shown in Table 1 and Equation 1. The range of

integer values is calculated with Equation 2 and the floating point max value is calculated

with Equation 3. Floating point values guarantee six digits of precision. The register files

were split, instead of using a single sixty-four register register file, because it has been found

that partitioning the register file decreases access latency as well as providing the possibility

to read from both register files simultaneously [11].

7

Table 1: Single precision floating point format.

sign{32} exponent{30-23} fraction{22-0}

FPvalue = (−1)sign ∗ (1 +
23∑
i=1

fraction23−i2
−i) ∗ 2exponent−127 (1)

min = −1× 232−1 = −2, 147, 483, 648

max = 232−1 − 1 = 2, 147, 483, 647

(2)

(1− 2−24) ∗ 2128 ≈ 3.402823466× 1038 (3)

Table 2 lists the integer registers and Table 3 lists the floating point registers. The

first column indicates the unique token by which the register is identified in the assembly

language. The assembler converts this token to the index of the register in the register file. In

the third column, the table indicates whether or not the register is preserved following a call

to a function. Common to both register files is a hardwired zero register, a reserved register

for use by the assembler and compiler, and sets of both temporary and saved registers. The

integer register file also contains special registers which could potentially be used by an

operating system kernel as well as registers to track the global data pointer, stack pointer,

frame pointer, and return address from a function call.

8

Table 2: Integer registers.

Register Description Preserved

r0 Hardwired to zero. NA

at Reserved for assembler and compiler. NA

v0, v1 Return values from functions. N

a0 - a3 Arguments to functions. N

t0 - t9 Temporary registers. N

s0 - s7 Saved registers. Y

k0, k1 Reserved for kernel. NA

gp Global data pointer. NA

sp Stack pointer. NA

fp Frame pointer. NA

ra Return address. N

Table 3: Floating point registers.

Register Description Preserved

fr0 Hardwired to zero. NA

fat Reserved for assembler and compiler. NA

fv0, fv1 Return values from functions. N

fa0 - fa3 Arguments to functions. N

ft0 - ft11 Temporary registers. N

fs0 - fs11 Saved registers. Y

5.2 Instruction Set Architecture

The instruction set provides the programmer a set of commands which can be used to

modify the underlying hardware, specifically the registers and memory, to produce meaning-

ful and useful results. Table 4 shows the three instruction formats present in the ISA. “op”

9

denotes the opcode of the instruction. An opcode is a unique identifier that the hardware

can use to determine the type of the instruction. The opcode is six bits allowing for a total

of sixty-four unique instructions. “reg” denotes a register identifier. “imm” indicates an im-

mediate and “address” is an immediate which should be treated as an address to a location

in instruction memory.

Table 4: Instruction formats.

Register Format

op{31:26} reg0{25:21} reg1{20:16} reg2{15:11} unused{10:0}

Immediate Format

op{31:26} reg0{25:21} reg1{20:16} imm{15:0}

Address Format

op{31:26} address{25:0}

Tables 5 – 13 represent the various types of instructions included in the ISA. The as-

sembler assumes the instructions are written with the opcode preceding the operands. For

example, “addi s6 t7 -6” would add -6 to the value of register “t7” and then store the result

in register “s6”. In the instruction type tables, lowercase register names represent the unique

register identifier while capitalized register names represent the value of a register. An “f ”

preceding the identifier or value of a register indicates that it is a floating point register.

For some instructions, a register is explicitly defined. For example, the “no operation” in-

struction (nop) uses implied argument “r0”. The use of explicit registers like this indicates

that when writing the instruction, specifying the operand is optional. If the register is not

included the assembler will assume the indicated operand. All immediate values are sign

extended before being used as operands. “MEM” represents a byte addressable memory

block. and “PC” represents the program counter which is used to store the address of the

current instruction.

Tables 5 – 9 display the integer instructions. These are divided into five instruction

types. “R” type instructions are mathematical or logical operations. They also include the

10

special “brk” and “halt” instructions which indicate to the simulator either a breakpoint

or the end of simulation. “I” type instructions are arithmetic and logic operators which

take an immediate as the last operand. This type also includes instructions for loading an

immediate into the lower and upper sixteen bits of a register. “M” type instructions deal

with memory and can either be used to load memory data to a register or store register

data to a memory address. “B” type instructions are used to handle conditional jumps to

addresses in program memory. It is important to note that these jumps are relative to the

current PC and not to an absolute address. This allows the branch instructions to handle

a larger range of addresses. The “J” type instructions perform absolute jumps and provide

the option to link. A jump and link stores the address of what would have been the next

instruction in the return address register. This allows the called function to return to the

calling location in program memory after it has completed execution.

Table 5: R type instructions.

Opcode Operands Result

nop r0 r0 r0

add rd rs rt RD := RS + RT

sub rd rs rt RD := RS −RT

mul rd rs rt RD := RS ∗RT

div rd rs rt RD := RS ÷RT

and rd rs rt RD := RS & RT

or rd rs rt RD := RS | RT

xor rd rs rt RD := RS ⊕RT

shl rd rs rt RD := RS << RT

shr rd rs rt RD := RS >> RT

slt rd rs rt RD := RS < RT

brk r0 r0 r0 Indicates breakpoint

halt r0 r0 r0 Indicates end of program

11

Table 6: I type instructions.

Opcode Operands Result

addi rd rs im RD := RS + im

andi rd rs im RD := RS & im

ori rd rs im RD := RS | im

slti rd rs im RD := RS < im

loi rd r0 im RD := 0x0000ffff & im

hii rd r0 im RD := (im << 16) | RD

Table 7: M type instructions.

Opcode Operands Result

lw rd rs im RD := MEM [RS + im]

sw rd rs im MEM [RS + im] := RD

Table 8: B type instructions.

Opcode Operands Result

beq rs rt im IF (RS = RT) : PC := PC + im

bne rs rt im IF (RS 6= RT) : PC := PC + im

Table 9: J type instructions.

Opcode Operands Result

j address PC := address

jal address RA := PC + 4; PC := address

jr r0 rs r0 PC := RS

jrl r0 rs r0 RA := PC + 4;PC := RS

Tables 10 – 13 display the floating point instructions. These are divided into four in-

struction types. “FR” type instructions are general mathematical or logical operations. “FI”

12

type instructions are used to load an immediate floating point value into a register. “FM”

type instructions deal with memory and can either be used to load memory data to a register

or store register data to a memory address. It is important to note that these instructions

require an integer register and not a floating point register to represent the address. “FB”

type instructions are used to handle conditional jumps in program memory.

Table 10: FR type instructions.

Opcode Operands Result

addf frd frs frt fRD := fRS + fRT

subf frd frs frt fRD := fRS − fRT

mulf frd frs frt fRD := fRS ∗ fRT

divf frd frs frt fRD := fRS ÷ fRT

sltf frd frs frt fRD := fRS < fRT

Table 11: FI type instructions.

Opcode Operands Result

lof frd fr0 im fRD := 0x0000ffff & im

hif frd fr0 im fRD := (im << 16) | fRD

Table 12: FM type instructions.

Opcode Operands Result

lwf frd rs im fRD := MEM [RS + im]

swf frd rs im MEM [RS + im] := fRD

Table 13: FB type instructions.

Opcode Operands Result

beqf frs frt im IF (fRS = fRT) : PC := PC + im

bnef frs frt im IF (fRS 6= fRT) : PC := PC + im

13

Synapse is also capable of handling three assembly directives listed in Table 14 as well

as labels which end in a colon. Labels provide a simple way for one instruction to refer to

the memory address of a specific instruction or datum.

Table 14: Assembly directives.

Directive Meaning

.text Start of the text segment (program instructions)

.data Start of the static data segment

.datum 32 bits of data in the data segment

5.3 Sample Compiled Code

Code 2 – 6 are three simple examples of C code and the corresponding compiled assembly

instructions. Comments have been included in the resulting assembly code to make it explicit

what lines of assembly correspond to which C constructs.

6 Neurosim (Simulator)

The Neurosim simulator is the core of the NEUROSim framework. Neurosim provides

cycle-accurate execution of a program on a RISC datapath. Cycle-accurate indicates that

the simulator is executing the program cycle-by-cycle, as opposed to simply using heuristics

to determine the run time of the program. This is significant because in general the results

of a cycle-accurate simulator will better represent the results of actual hardware.

The general idea behind a simulator is that the user can specify and change settings of

the target datapath, run the program, and then see the resulting statistics. In Neurosim, the

simulator settings are specified using a config file and the resulting statistics written to an

output file. Some example settings would be the number of cycles an instruction takes in each

stage of the datapath, memory size, cache configuration, and branch predictor algorithm.

Examples of some of the statistics Neurosim reports are the count of retired instructions of

14

a given type, the total number of cycles executed, the accuracy of the branch predictor, the

hit rate of the cache, and the size of different memory segments.

6.1 The Datapath

Processor design has two competing design philosophies RISC (reduced instruction set

computer) versus CISC (complex instruction set computer) [12]. The tenants of a RISC

architecture involve using a relatively small instruction set, consistent instruction length

and format, register mapped operands, and relatively shallow pipelines. A CISC architecture

generally embraces the converse of these philosophies having many instructions with different

lengths and formats which make use of memory mapped operands. The pipeline of CISC

architectures are often very deep and complex to facilitate the fetching and decoding of these

complex instructions. In fact, one can think of CISC architectures as converting the complex

instructions into a sequence of RISC like instructions which are then executed further along

in the pipeline.

Neurosim simulates a pipeline very similar to the classic RISC pipeline illustrated in Fig-

ure 4. A RISC pipeline was chosen because it simplifies the primary purpose of NEUROSim,

which is to provide for the addition of domain specific instructions. RISC processors are

also more common in embedded systems, and embedded systems often involve developing

a system optimized for a specific task. As such a RISC datapath was a natural choice for

Neurosim. The software representations of the datapath was constructed with the intent

of representing the hardware equivalent as faithfully possible. This is important because

it allows users to make changes which are more likely to reflect the capabilities of actual

hardware.

The simulated datapath is broken up into five distinct stages. The first stage is instruction

fetch (IF) which simply retrieves the instruction at the address of the PC from instruction

memory. The next stage, instruction decode (ID), decodes the instruction, determining the

opcode of the instruction and producing the correct operands for subsequent stages. The

15

Figure 4: RISC datapath [2].

register file in Figure 4 is a black box representation of the two register files Neurosim uses.

The datapath chooses the correct register file to read from either integer registers or floating

point registers. After the instruction has been decoded, the operands enter into the execute

stage (EX). Here the arithmetic logic unit (ALU) performs the correct operation on the

operands. In the case of the Neurosim pipeline there are actually three potential logic units:

the ALU, floating point unit (FPU), and the special purpose unit (SPU). The ALU is used

for integer operations, the FPU operates on floating point values, and the SPU is used for

special instructions which have been added to the ISA. The next stage is the memory stage

(MEM) where the instruction can read from or write to data memory. Finally, the instruction

enters the write back (WB) stage where the value computed by the instruction is written

back to the appropriate register.

Neurosim implements a pipelined datapath meaning that the datapath does not wait to

finish execution of an instruction to begin executing the next instruction. Instead, after one

instruction leaves the IF stage the next instruction is fetched and execution begun. This

significantly increases the instruction throughput of the datapath.

This concludes an overview of the three components of NEUROSim. To summarize,

16

Axon converts a source code file written in C to the supported assembly language. Synapse

converts this textual assembly language to its binary equivalent. This binary file can then

be passed to Neurosim for simulation.

7 Hardware Design Decisions

Neurosim has been structured in such a way as to allow for modifications to the base

datapath. This allows users to analyze the value of datapath enhancements in the context of

a specific algorithm. Three such modifications are built into Neurosim. These optimizations

will be analyzed with very simple examples, but these examples could easily be extrapolated

to larger more complex algorithms.

7.1 Execute Forwarding

A data hazard is one of the most common hazards in a standard RISC pipeline. This

situation arises when an instruction requires the data of a previous instruction which has not

written the data back to the register file. Figure 5 illustrates this scenario. The simple fix is

to simply stall the pipeline until the instruction has had a chance to write the necessary data.

A more efficient method is to implement an execute forwarding unit. The unit is responsible

for looking at the register operands of the incoming instruction and determining if the data

should be retrieved from the register file or the output of the execute stage. Code 8 presents

a very simple example program used to demonstrate the merits of execute forwarding.

An abbreviated version of the statistics from running the program in Neuosim are pre-

sented in Table 15. Each column represents a unique run of the simulator given different

settings. In this case without and with execute forwarding. Statistic tables such as these are

very common throughout this document and are the means by which various algorithms or

hardware configurations are analyzed. In this case the first four rows represent the count of

total retired instructions of the indicated type. Clearly, using execute forwarding results in a

17

Figure 5: Data hazard [2].

decrease in the number of no operations, “nops.” The “NonNop Instructions” entry povides a

count of the total number of retired instructions without counting “nops.” This a measure of

the amount of useful work done by the processor. In this case the datapath executed one ad-

dition instruction, one subtraction instruction, and two load immediate instructions, but the

simulator reports five “NonNop Instructions” this is because the “halt” instruction, which

is used to indicate the end of execution to the simulator, is also counted. The “Cycles” row

is simply a count of the total number of cycles, including cycles spent on “nops,” executed

by the simulator before the simulator encountered the halt instruction. In this example, the

“Cycles” row clearly illustrates the merits of using execute forwarding decreasing the total

number of cycles from 13 to 9. The instructions per cycle (IPC) row provides a measure of

the throughput of the datapath. Ideally this number would be one, indicating that every

cycle an instruction is retired. There are many more statistics Neurosim reports which will

be discussed as they arise.

18

Table 15: Execute forwarding statistics.

No Forwarding With Forwarding
nop 8 4
add 1 1
sub 1 1
loi 2 2

NonNop
Instructions

5 5

Cycles 13 9
IPC 0.384615 0.555556

7.2 Control Change Detection

The pipelined structure of a RISC datapath works well until it encounters an instruction

which changes the PC. Such instructions include jumps and taken branches. The datapath

must now flush all of the previous instructions it has begun executing and fetch the correct

instruction. This can severely reduce the IPC of the processor. The solution to this problem

is to try and detect a control change as soon as possible. The traditional pipeline handles

control change in the execute stage. However, hardware can be added to detect a jump or

branch instruction in the decode stage or even as early as the fetch stage. Code 9 presents

an example program used to demonstrate the merits of early control change detection with

the statistics summarized in Table 16. The “Cycles” row can again be used to clearly

demonstrate that early control change detection can improve pipeline performance.

19

Table 16: Control change detection statistics.

EX Detection ID Detection IF Detection
nop 1,014 913 812
slt 101 101 101

addi 102 102 102
loi 3 3 3
lw 201 201 201
sw 102 102 102
bne 101 101 101

j 102 102 102
NonNop
Instructions

713 713 713

Cycles 1,727 1,626 1,525
IPC 0.41285 0.43849 0.46754

7.3 FPU Configuration

A fundamental detail of an instruction in a RISC style processor is how many cycles it

takes to complete a given stage. For most instructions, it is assumed that it only takes one

cycle. However, it is typical that floating point instructions can take orders of magnitude

longer in the execute stage than integer instructions. Neurosim provides for the easy cus-

tomization of instruction cycle counts. A potential use case for this would be determining

how fast to make the FPU. Neurosim quickly allows one to see the performance increase of

a floating point unit with various cycle times. Code 10 presents an example program used

to analyze different FPU execute cycle counts with the statistics summarized in Table 17.

These statistics clearly demonstrate what one would expect. Increasing the cycle count of a

stage significantly decreases the IPC slowing down the entire pipeline. The manual config-

uration of stage cycle counts will be used extensively as instructions are added to the core

ISA.

20

Table 17: FPU configuration statistics.

1 Cycle 10 Cycles 40 Cycles
nop 10 55 205
addf 1 1 1
subf 1 1 1
mulf 1 1 1
divf 1 1 1
sltf 1 1 1
lof 2 2 2
hif 2 2 2

NonNop
Instructions

10 10 10

Cycles 20 65 215
IPC 0.50000 0.15384 0.046512

7.4 Conclusion

These examples clearly demonstrate that implementing an execute forwarding unit, early

control change detection, or decreasing the number of cycles an FPU needs to execute in-

creases performance. However, the fact that these design decisions improve performance

is not the point. Instead it is to show that these design decisions can be implemented in

NEUROSim allowing users to determine if the benefits of implementing a datapath enhance-

ment are worth the increase in other potential variables, such as area and power, for a given

algorithm.

8 Software Design Decisions

Neurosim also provides a testbed for quickly analyzing different algorithm implementa-

tions and software design techniques. The following sections analyzes three design decisions

which are particularly relevant in developing algorithms for embedded applications with

limited resources.

21

8.1 Loop Unrolling

Loop unrolling is a technique used to optimize the execution time of a loop by attempting

to decrease the number of instructions spent on loop overhead. Code 11 presents a simple

program which adds all of the elements in an array together. The code also provides a macro

“LOOP” which allows the number of times the loop is unrolled to be changed. The statistics

from running the program given different settings of “LOOP” are presented in Table 18 and

in Figure 6.

Table 18: Loop unrolling statistics.

LOOP=1 LOOP=5 LOOP=10
nop 18,014 13,214 12,614
add 2,000 2,000 2,000
shl 1,000 1,000 1,000
slt 1,001 201 101

addi 1,002 1,002 1,002
loi 4 4 4
hii 1 1 1
lw 5,002 2,602 2,302
sw 2,004 1,204 1,104
beq 0 0 0
bne 1,001 201 101

j 1,002 202 102
NonNop
Instructions

14,018 8,418 7,718

Cycles 32,032 21,632 20,332
IPC 0.43763 0.38915 0.37960

TextSize 29 57 92

Clearly unrolling the loop decreases the number of cycles needed to execute the program.

The statistics reported by Neurosim clearly illustrate where this performance increase is

coming from. Fewer “j” and “bne” instructions are executed because the loop is iterated

fewer times. However, the unrolling produces diminishing returns and comes at the cost of

substantially increasing the number of instructions stored in instruction memory. This is

expressed in the “TextSize” row of the statistics. This statistic represents the number of

words stored in the text, or instruction, portion of memory. Because each instruction is one

22

Figure 6: Loop unrolling statistics graph.

word, this statistic provides a count of the total number of instructions. This illustrates an

example where Neurosim provides the user the ability to strike a balance between the loop

unrolling performance improvements and the increased memory needed for the text segment.

8.2 Recursive Function Calls

The factorial function is a canonical example of a function which can be more intuitive

when implemented recursively as seen in Code 12. This implementation will be compared

with a loop version of the algorithm as seen in Code 13. The statistics from running the

program given the factorial implementations are presented in Table 19.

Given the NEUROSim environment the loop implementation runs in approximately 40%

fewer cycles compared to the recursive implementation. This is primarily due to the overhead

required to call a function illustrated by the considerable decrease in the number of “jr” and

“jrl” instructions. The simulator statistics also provide information on the stack size and

shows a potential danger of recursive functions. The used stack space for the recursive

implementation is significantly greater than that of the loop implementation as with each

new function call more memory is allocated on the stack. As such there is a potential

23

danger of encountering a stack overflow especially in embedded applications where stack

space is limited. It should be noted that this problem can be easily reconciled with tail call

optimization and in general is not a reason to avoid recursive functions.

Table 19: Factorial algorithm statistics.

Recursive Loop
nop 453 265
add 20 1
mul 19 19
slt 21 21

addi 44 25
loi 65 6
hii 39 1
lw 83 104
sw 68 49
bne 21 21

j 22 22
jr 21 2
jrl 21 2

NonNop
Instructions

445 274

Cycles 898 539
IPC 0.49555 0.50835

TextSize 43 40
StackSize 44 8

8.3 Self Modifying Code

Self modifying code is one of the lowest level manifestations of the concept that code

is simply data and as such can be manipulated by a program like other data. This is a

very common concept in higher level languages that implement powerful macro systems. At

the assembly language level, self modifying code involves writing a value to an address in

instruction memory. Now when the processor reads this address the new instruction will be

executed. This is potentially a very dangerous tool because the instruction could potentially

be invalid. However, this technique can often be used to pack considerable functionality into

a few number of instructions.

24

RISC datapaths are often implemented as Harvard architectures, where the instruction

and data memory are separated. This allows the datapath to access both blocks of memory

in a single clock cycle. However, this makes writing self modifying code more difficult

because the instructions and data are not in the same address space. The converse is a

Von Neumann architecture which uses a single memory block and a unified address space.

Neurosim allows for either architecture allowing algorithms which use self modifying code

to be easily implemented. Code 14 shows an example of a self modifying code algorithm

and Table 20 shows the corresponding statistics proving that Neurosim actually executes the

modified instructions.

Table 20: Self modifying code statistics.

nop add sub mul div addi loi lw sw bne j
30 1 1 1 1 4 5 5 4 4 1

9 Branch Prediction

It is estimated that in an average program, one in three instructions are branch instruc-

tions. Therefore, being able to correctly predict which branches will be taken is of extreme

importance. If the datapath is unable to successfully predict the correct outcome of the

branch valuable cycles will be wasted fetching and decoding instructions that will not be

used.

Code 15 presents an example test case for evaluating the performance of various branch

predictors. This program takes an array of 1,000 values which have a range from 0 to 100

and counts how many values are less than 10, less than 15, less than 20, and so on up to

less than 100. The intuition behind how this tests branch predictors is that the tests against

smaller values will generally not be taken whereas tests against greater values are more likely

to be taken. A good branch predictor should be able to pick up on this pattern. The last

line of the main test loop repeatedly divides the current value by two until the value reaches

zero; this is to test the branch predictor’s ability to find patterns in loops.

25

9.1 Static Branch Predictors

The predictions of static branch predictors can be deterministically resolved before run

time and will always select the same prediction for a given branch instruction. Four examples

of static predictors are always taken, always not taken, forwards taken, and backwards taken.

What each of these predictors do is fairly evident from their names. Always taken predicts

the branch is always taken. Always not taken always predicts the branch is not taken. This

is essentially the same as having no branch predictor. Forward taken predicts taken if the

branch offset is greater than the address of the current branch instruction and not taken

otherwise. Backwards taken predicts taken if the branch offset is less than the address of

the current branch instruction and not taken otherwise. Forward and backward taken are

particularly well suited for loops in which the majority of the time the program will simply

branch back to the beginning of the loop. Which one is more effective depends on whether a

branch is used to go back to the start of the loop or a branch is used to break out of the loop.

The results of using each static branch predictor while running the test code is presented in

Table 21. This table shows that Neurosim is capable of presenting a complete breakdown of

what branches were taken and the predictions of the predictor.

Table 21: Static branch predictor statistics.

Always
Taken

Always
Not Taken

Forward
Taken

Backward
Taken

nop 108,182 111,870 98,684 121,368
beq 6,749 6,749 6,749 6,749
bne 10,565 10,565 10,565 10,565
NonNop Instructions 85,302 85,302 85,302 85,302
Cycles 193,484 197,172 183,986 206,670
IPC 0.44087 0.43263 0.46363 0.41275
Correct Taken 9,579 0 8,579 1,000
Predicted Taken 17,314 0 10,565 6,749
Actual Taken 9,579 9,579 9,579 9,579
Correct Not Taken 0 7,735 5,749 1,986
Predicted Not Taken 0 17,314 6,749 10,565
Actual Not Taken 7,735 7,735 7,735 7,735
Accuracy 0.55325 0.44675 0.82754 0.17246

26

9.2 Dynamic Branch Predictors

The predictions of dynamic branch predictors are unknown until runtime and have the

potential to predict differently for the same branch instruction at different times in the

execution of the program. A simple dynamic branch predictor randomly chooses taken or

not taken. A more complex branch predictor is a local 2-bit saturating counter, Figure 7. In

this type of branch predictor, the datapath keeps a history, represented by 2-bits, for each

unique branch in the program. The prediction is made based on the current state of the

history and the state is updated after the actual branch address is known.

Figure 7: 2-bit saturating counter state diagram.

Another dynamic predictor is the global predictor which uses one 2-bit saturating counter

history for all branches in the program. This predictor has the benefit of using less hardware

because only one table is needed, but the branch history will be corrupted by different

branches. The results of using each dynamic branch predictor while running the test code

is presented in Table 22. Figure 8 shows the accuracy and normalized cycle counts of both

the static and dynamic branch predictors.

27

Table 22: Dynamic branch predictor statistics.

Random Local
History

Global
History

nop 110,170 96,814 101,572
beq 6,749 6,749 6,749
bne 10,565 10,565 10,565
NonNop Instructions 85,302 85,302 85,302
Cycles 195,472 182,116 186,874
IPC 0.43639 0.46839 0.45647
Correct Taken 4,781 8,436 6,813
Predicted Taken 8,712 9,344 8,477
Actual Taken 9,579 9,579 9,579
Correct Not Taken 3,804 6,827 6,071
Predicted Not Taken 8,602 7,970 8,837
Actual Not Taken 7,735 7,735 7,735
Accuracy 0.49584 0.88154 0.74414

Figure 8: Branch predictor statistics graph.

The statistics from the the branch predictor test program follows intuition. As branch

predictor accuracy increases, the total number of cycles needed to run the program decreases.

This is because the pipeline wastes fewer cycles fetching and then flushing the wrong instruc-

tions. Choosing a branch predictor presents a design decision with distinct trade-offs. A local

branch predictor certainly has the best performance with an accuracy of 88%. However, this

comes with the cost of expensive hardware. Whereas a simple static forward taken predictor

performed almost as well with an accuracy of 82%. Obviously, these performance numbers

28

are heavily dependent on the algorithm. NEUROSim provides a framework to implement

an algorithm and compare the performance given different branch predictors. This prevents

overengineering at the microarchitecture level when developing an application, for example

implementing a complex local predictor when a simple static predictor would have worked

comparably well.

10 Cache Architecture

Memory operations can easily take several orders of magnitude longer than normal data-

path operations, necessitating the ability to cache results from memory. The general theory

behind memory architecture is that ideally memory would be large and fast. However, mem-

ory is slow and large, but caches are fast and small. By using the two in tandem and having

effective cache maintenance a memory module that appears to be large and fast can be

achieved as seen in Figure 9.

Figure 9: Basic cache structure.

Neurosim is currently equipped with a level 1 (L1) cache and allows for the custom setting

of cache hit latency and cache miss latency. Neurosim allows for the custom configuration of

the L1 cache size, associativity, and cache line size. An example configuration is illustrated

in Table 23. The cache is 64 words in size with an associativity of two and line size of four.

An incoming memory address is broken into an index used to select a set, a tag used to

verify it is the correct line of data, and an offset used to select the correct data block from

the line. All cache lines have a valid bit which confirms that the cache line is up to date.

29

Table 23: Cache example configuration: Size=64, Associativity=2, LineSize=4.

Way 0 Way 1
set 0 v tag [block0 block1 block2 block3] v tag [block0 block1 block2 block3]
set 1 v tag [block0 block1 block2 block3] v tag [block0 block1 block2 block3]
set 2 v tag [block0 block1 block2 block3] v tag [block0 block1 block2 block3]
set 3 v tag [block0 block1 block2 block3] v tag [block0 block1 block2 block3]
set 4 v tag [block0 block1 block2 block3] v tag [block0 block1 block2 block3]
set 5 v tag [block0 block1 block2 block3] v tag [block0 block1 block2 block3]
set 6 v tag [block0 block1 block2 block3] v tag [block0 block1 block2 block3]
set 7 v tag [block0 block1 block2 block3] v tag [block0 block1 block2 block3]

Six different 64 word cache configurations are analyzed under three different access condi-

tions: random indices, a randomized few indices, and linear indices. All tests involve indexing

into a 2,048 element array. The random test simply uses 1,024 random values between 0

and 2,047 as indices. Because the size of the array is so much larger than the cache, it is

nearly impossible for the cache to perform well. The randomized few indices uses 122 indices

randomly selected 1,024 times. Caches with a higher associativity will perform better on

this test because the ability to map multiple pieces of data to different cache lines prevents

the eviction of data which still needs to be used. The linear test selects 512 random indices

and then reads a random number, from 1 to 100, of elements from the array. Caches with a

larger line size should perform well under these test conditions as the subsequent pieces of

data in the array are prefetched.

Table 24 and Figure 10 summarize the results of running these tests. What should be

evident from these tests is that there is no absolute correct cache configuration; it largely

depends on the type of memory accesses. This illustrates the value of NEUROSim; it provides

a quick testing environment to compare different configurations for a specific application.

30

Table 24: Cache hit rates.

Associtivity x Line Size
Access Type 1x1 1x4 2x1 2x4 4x1 4x4
Random 0.0501 0.0501 0.058116 0.046092 0.056112 0.0501
Random Few 0.527132 0.251938 0.589147 0.27907 0.600775 0.275194
Linear 0.051736 0.749587 0.048595 0.748512 0.044463 0.74719
Average 0.20966 0.35054 0.23195 0.35789 0.23378 0.35749

Figure 10: Cache hit rates graph.

11 Setup and Configuration of Examples

In the following sections, instructions will be added to the core ISA and the impact of

those instructions evaluated. This is where NEUROSim begins to truly differentiate itself

from other computer architecture simulators because it was designed with the purpose of

allowing for the addition of new instructions and provides the surrounding tooling to easily

accomplish this.

A question presents itself: how to compare the benefits of adding an instruction. The

following sections all use the same basic testing environment. First, the desired functionality

of the instruction is factored out from the program into a separate function. Then the

31

algorithm is run with the function called normally and with the function inlined in the

program. The inlining of the function removes the overhead associated with the function

call giving a more accurate representation of the potential benefits of adding an instruction.

Code 19 gives a simple example of factoring out the “add” functionality and then calling

the normal and inlined version of the function. After these two tests are run, the inlined

portion of the code is then removed and replaced with the new instruction. The program

is then executed with different cycle counts for the instruction to evaluate how efficient the

hardware would need to be to get the desired performance increase.

The configuration of the simulator, barring the experimentation with the new instruc-

tion’s cycle counts, is the same for all trials: local branch predictor with control change

detection handled in the fetch stage, a zero cycle cache miss penalty, and an FPU execute

stage latency of 10 cycles. This configuration was chosen to try and represent a basic system

while preventing the statistics from being skewed in favor of the implementation with the

custom instruction. The software implementation of the functionality intrinsically executes

more instructions providing the possibility for a greater number of branch mispredictions and

more cache miss penalties to be incurred. By using the best branch predictor and no cache

miss penalties this inequality is mitigated. This configuration can be thought of providing

a nearly ideal run of the program, allowing for the sole analysis of the new instruction’s

performance.

12 Modulo Instruction

Several basic design decisions have been examined in the context of NEUROSim. How-

ever, NEUROSim’s true strength is seen in the context of adding new instructions to its core

ISA. The simplest type of instructions to add are ones that follow the R type format. An

example of such an instruction would be adding hardware support for the modulo operator.

“Modular reduction, also known as the modulo or mod operation, is a value within Y, such

32

that it is the remainder after Euclidean division of X by Y. This operation is heavily used

in encryption algorithms, since it can ‘hide’ values within large prime numbers, often called

keys [13].” Due to the computational needs of encryption algorithms, the mod operation

is often optimized to improve performance. Table 25 presents the proposed instruction.

Code 20 provides an example program to test the performance benefits of using a hardware

optimized mod instruction. Essentially, this program computes the mod between every el-

ement in array “X”. It should be noted that the software implementation of mod is very

inefficient and better algorithms exist. However, for the sake of showing an example design

process in NEUROSim it is sufficient.

Table 25: MOD instruction.

Opcode Operands Result

mod rd rs rt RD := RS mod RT

Table 26 and Figure 11 show the statistics of running the program with five different

configurations. The first trial is with the modulo functionality called as a function, then the

functionality is inlined, and finally three different runs with the new “mod” instruction are

run with a 1 cycle, 10 cycle, and 100 cycle execute stage latencies. Clearly, adding a “mod”

instruction can significantly improve performance. Even if the instruction takes ten cycles

to compute, the program still undergoes a 55% decrease in the number of cycles taken to

execute in comparison to the inlined version.

33

Table 26: Modulo test program statistics.

Function
Call

Inlined
Function

mod
1 cycle EX

mod
10 cycle EX

mod
100 cycle EX

nop 2,308,686 2,268,682 962,818 1,322,818 4,922,818
add 80,000 80,000 80,000 80,000 80,000
sub 134,766 134,766 0 0 0
shl 80,000 80,000 80,000 80,000 80,000
slt 215,167 215,167 40,401 40,401 40,401

addi 120,202 40,202 40,202 40,202 40,202
lw 939,671 939,665 240,601 240,601 240,601
sw 335,174 335,168 80,402 80,402 80,402
bne 215,167 215,167 40,401 40,401 40,401

j 214,968 174,968 40,202 40,202 40,202
jr 40,000 0 0 0 0
jrl 40,000 0 0 0 0

mod 0 0 40,000 40,000 40,000
NonNop
Instructions

2,415,124 2,215,110 682,216 682,216 682,216

Cycles 4,723,810 4,483,792 1,645,034 2,005,034 5,605,034
IPC 0.51127 0.49403 0.41471 0.34025 0.12172

Figure 11: Modulo test program statistics graph.

The statistics from Neurosim explicitly indicate the source of the performance improve-

ments. First, it can be seen that by inlining the function call, the program goes from

34

executing 40, 000 “jr” and “jrl” instructions down to zero. There is also some savings in the

number of “addi” and memory operations which are used for maintaining the stack. How-

ever, the true performance benefits come when the new “mod” instruction is used, which

cuts the number of executed instructions in almost every category. As one would expect,

the only instruction count that goes up is for the “mod” instruction itself. The statistics

also demonstrate the considerable decrease in IPC as the “mod” instruction execute stage

latency is increased. Overall, these statistics provide exactly the information needed for a

systems designer to determine which portions of an algorithm should be handled in hardware

and which should be handled in software.

13 Digital Signal Processing Example

Digital signal processing (DSP) algorithms involve the manipulation of signals in the

digital domain and are commonly done using dedicated embedded systems. With the great

popularity of cellphones, DSP specific hardware has become ubiquitous. The following sec-

tion looks at implementing a dedicated multiply accumulate instruction intended to improve

the performance of DSP filter implementations.

13.1 Lowpass Filter

One of the most common algorithms in DSP is low pass filtering. Filtering in general

involves shaping an input signal x[n] to produce an output signal y[n]. This is accomplished

by scaling previous inputs with coefficients, bk, and scaling previous outputs with coefficients,

ak. Equation 4 presents the the formula for computing the output signal given an input signal

and filter coefficients. M and N represent the number of coefficients and the greater of the

two is equal to the filter order.

y[n] = −
M∑
k=1

aky[n− k] +
N∑
k=0

bkx[n− k] (4)

35

For this example, a sixth order elliptic filter will be used. The filter has a passband ripple

of 5dB and a stopband attenuation of 40dB. The passband edge frequency is set to be one

eighth the sampling frequency of the original signal. The magnitude and phase responses of

the filter are illustrated in Figure 12.

Figure 12: Lowpass filter magnitude and frequency response.

In DSP there are different flow graph representations of the general filter formula. Fig-

ure 13 shows one such flow graph, the direct-form-one flow graph, of a sixth order filter. In

the flowgraph z−1 represents a one sample delay The filter coefficients are listed in Equa-

tion 5.

ak = [1.000000, −4.544816, 9.579983, −11.695033, 8.686814, −3.721021, 0.727505]

bk = [0.018789, −0.047933, 0.085798, −0.094508, 0.085798, −0.047933, 0.018789]

(5)

36

Figure 13: Flowgraph representation of filter.

13.2 Multiply Accumulate (MAC) Instruction

As demonstrated by Equation 4, a filter implementation essentially involves repeatedly

multiplying two numbers together and then adding the product to an accumulated result.

This has given rise to a special multiply accumulate (MAC) instruction, Table 27.

Table 27: MAC instruction.

Opcode Operands Result

mac rd rs rt RD := RD + (RS ∗RT)

The need to introduce such an instruction perfectly illustrates the power of a NEUROSim.

This is actually a somewhat complicated instruction to implement in hardware because it

requires being able to read three operands from the register file. This is a substantial change

and presents a series of design problems. The simulator will allow the user to determine if

the performance benefits warrant adding the instruction.

37

Figure 14: Original signal time domain. Figure 15: Original signal frequency domain.

Figure 16: Filtered signal time domain. Figure 17: Filtered signal frequency domain.

13.3 Lowpass Filter Implementation

Code 21 shows the implementation of the lowpass filter in software. The implementation

uses a fixed-point number system allowing for the use of integers despite the fact that the

algorithm deals with floating point values. The fixed point base was chosen to be a power

of two allowing for the downscaling and upscaling to be accomplished by a simple shift.

The input signal, Figure 14 and Figure 15, to our filter is 2048 samples of a speech signal

sampled at 8 kHz. As such the output signal, Figure 16 and Figure 17, should have a cutoff

frequency of approximately 1 kHz. The output plots are plots of the actual output data

from running the algorithm on the simulator. The data points were acquired by performing

a memory dump of the “Y” array. This demonstrates another potential use of the simulator

to confirm that an algorithm actually performs correctly given hardware constraints. It is

very common for fixed point DSP algorithms to be susceptible to catastrophic quantization.

The simulator proves that the algorithm is possible under the given constraints.

Table 28 and Figure 18 show the statistics of implementing a dedicated MAC instruction.

If the MAC instruction could be implemented in a single cycle, the algorithm would be

38

capable of running in 5.8% fewer cycles than the inline version of the algorithm.

Table 28: Lowpass filter statistics.

Function
Call

Inline
Function

mac
1 cycle EX

mac
2 cycle EX

mac
4 cycle EX

nop 833,266 776,078 718,902 747,490 804,666
add 91,896 91,896 63,308 63,308 63,308
sub 42,882 42,882 42,882 42,882 42,882
mul 28,588 28,588 0 0 0
shl 59,224 59,224 59,224 59,224 59,224
shr 6,126 6,126 6,126 6,126 6,126
slt 18,386 18,386 18,386 18,386 18,386

addi 73,520 16,344 16,344 16,344 16,344
loi 14 13 13 13 13
hii 5 4 4 4 4
lw 249,154 240,976 240,976 240,976 240,976
sw 138,888 138,875 138,875 138,875 138,875
bne 18,386 18,386 18,386 18,386 18,386

j 16,345 16,345 16,345 16,345 16,345
jr 28,588 0 0 0 0
jrl 28,588 0 0 0 0

mac 0 0 28,588 28,588 28,588
NonNop
Instructions

800,591 678,046 649,458 649,458 649,458

Cycles 1,633,857 1,454,124 1,368,360 1,396,948 1,454,124
IPC 0.49000 0.46629 0.47463 0.46491 0.44663

Figure 18: Low pass filter statistics graph.

39

The increase in performance due to adding a dedicated instruction seems minimal and

for this example it is probably not worth the trouble. However, in general a DSP algorithm

will be run on much longer data samples than the approximately quarter second sample used

in this example. This 5.8% increase in performance will add up as longer samples are run.

DSP systems are often real-time systems and as such any performance benefit possible is

often needed. For a system dedicated to doing this type of computation, the performance

increase could be worth the extra hardware overhead. This demonstrates the primary intent

of NEUROSim. To provide the necessary information on performance change to allow the

designer to make informed decisions.

14 Mathematical Expression Approximation

Due to its digital nature, a standard processor does a poor job of representing and com-

puting complex, continuous mathematical functions. If these functions use a large dynamic

range, floating point becomes a necessity, and the algorithms used to estimate these func-

tions are often computationally intensive. As a result, computing complex mathematical

functions often become bottlenecks in a program. Bottlenecks often present a point where

hardware optimizations can be used to improve performance. As an example, two methods

for approximating the exponential function will be examined in the following section. These

methods can easily be extended to other mathematical functions.

14.1 Lookup Table Approximation

A common method of approximating a mathematical function is to use a lookup table

to store input values and the corresponding output value of the function over a given range.

For example, this is commonly done in DSP processors to represent sinusoidal functions.

Neurosim supports a curve lookup instruction as shown in Table 29 for the express purpose

of lookup table approximation. This instruction takes an x value in as operand frs and a

40

curve selection value in as operand rt. The “crv” instruction can potentially support many

curves. The curve selection value determines which curve to use. Once the curve is selected,

the instruction will perform linear interpolation as shown in Equation 6 to determine the

approximated output where x lies on the interval x0 < x < x1. Figure 19 shows a lookup table

approximation of the exponential function on the interval −1.5 to 1.5. Eight equally spaced

points were used to form the lookup table. More complex algorithms exist for obtaining a

better estimate of the curve by changing the spacing of the points. However, for this example

this configuration adequately approximates the curve.

y = y0 + (y1 − y0)
x− x0

x1 − x0

(6)

Figure 19: Exponential function with lookup table approximation.
.

Table 29: Lookup table approximation instruction.

Opcode Operands Result

crv frd frs rt fRD := curves[RT](fRS)

41

14.2 Taylor Series Expansion Approximation

A Taylor series is a common method for approximating an arbitrary mathematical func-

tion with a polynomial. Equation 7 provides the general equation where n! represents the

factorial of n, f (n)(a) represents the nth derivative of f computed at a. As M increases the

approximation better matches the original function. The Taylor series expansion for an ex-

ponential is given in Equation 8 where a = 0 and M = 10. Figure 20 shows the exponential

function and the Taylor series approximation for M = 5 and M = 10. Table 30 shows a

new instruction which can be used to approximate the exponential function using the Taylor

series expansion with M = 10.

f(x) ≈
M∑
n=0

f (n)(a)

n!
(x− a)n (7) ex ≈

10∑
n=0

xn

n!
(8)

Figure 20: Exponential function with Taylor series approximation.
.

Table 30: Taylor series exponential approximation instruction.

Opcode Operands Result

exp frd frs fRD :=
∑M

n=0

fRSn

n!

42

14.3 Artificial Neural Network Example

Machine learning is a general term for an algorithm capable of categorizing data or making

predictions from data in ways that it was not explicitly programmed to do. Machine learning

is becoming more and more prominent because vast amounts of data are gathered and robust

methods for finding patterns in the data is needed. A common method for learning complex

patterns is to use artificial neural networks. “Neural networks are one of the most beautiful

programming paradigms ever invented. In the conventional approach to programming, we

tell the computer what to do, breaking big problems up into many small, precisely defined

tasks that the computer can easily perform. By contrast, in a neural network we don’t tell

the computer how to solve our problem. Instead, it learns from observational data, figuring

out its own solution to the problem at hand [3].” Because of machine learning’s tendency to

deal with extremely large datasets, hardware optimizations are often employed to improve

performance. This example will examine how using the “crv” and “exp” instructions can

improve performance in application to neural networks.

The structure of a single artificial neuron is shown in Figure 21. A neuron is composed

of n inputs, xi, and an equal number of weights, wi, and a bias b. From these parameters

the network computes a value z according to Equation 9. The value of z is then given

to an activation function A which is used to simulate the firing of a neuron. For this

example, the sigmoid activation function will be used as shown in Equation 10. It is in this

activation function that hardware optimizations will be introduced by using the “crv” and

“exp” instructions to compute the exponential. The basic idea is that by chaining many

of these neurons into a network any function can be estimated [3]. Figure 22 presents an

example network of artificial neurons.

z = (
n∑

i=0

wi ∗ xi) + b (9) A(z) =
1

1 + e−z
(10)

This example will look at using a network for the most trivial non-linear classification

problem, exclusive or (XOR) Table 31. Generally a network undergoes a training phase where

the weights and biases are modified in order to minimize the error given a training set. For

43

Figure 21: Single artificial neuron. Figure 22: Artificial neural network [3].

Input 0 Input 1 Output
0 0 0
1 0 1
0 1 1
1 1 0

Table 31: XOR logic table. Figure 23: XOR neural network.

this example, predetermined weights and biases are used [14]. As such, this example focuses

on the forward propagation step of a network where a given input “propagates” through the

network to produce an output. Figure 23 displays the network which implements XOR and

Code 22 and Code 23 present implementations of this network using the lookup table and

the Taylor series approximation of the exponential function. These are software implemen-

tations of computing the exponential. The “expLookupTable” and “expTaylorSeries” will

be replaced by the “crv” and “exp” instructions respectively.

Table 32 shows the network output using an ideal exponential function (using the C math

library to compute the exponential), the lookup table approximation, and the Taylor series

expansion approximation. It should be noted that in order to produce the correct binary

output, the output of the network must be rounded. This is because neural networks can

only approximate functions and in the case of discrete classification this rounding step is

necessary. The simulator provides valuable information on which implementation produces

44

a result closest to the ideal value. For this specific example, the Taylor series approximation

more closely matched the ideal value.

Table 32: XOR neural network output.

Input 0 Input 1 Ideal
Output

Lookup
Table

Taylor
Series

0 0 0.498779 0.491996 0.498779
1 0 0.511228 0.505496 0.511228
0 1 0.511228 0.505496 0.511228
1 1 0.498779 0.494335 0.498778

Table 33 and Figure 24 present the statistics of running the algorithm under different

circumstances. The lookup table approximation soundly outperforms the Taylor series ap-

proximation by almost ten times. However, as was demonstrated this comes at the cost of

decreased accuracy in comparison to the ideal value. Clearly, this is an area for dramatic

performance increase because a 10 cycle implementation of the “crv” or “exp” instructions

provides a 72% reduction in the number of executed cycles compared to the lookup table

implementation.

Table 33: Neural network statistics.

Lookup
Table

Taylor
Series

crv/exp
1 cycle EX

crv/exp
10 cycle EX

crv/exp
100 cycles EX

nop 4,271 41,362 1,246 1,354 2,434
add 94 0 0 0 0
mul 11 0 0 0 0
shl 71 0 0 0 0
slt 59 0 0 0 0

addi 105 58 34 34 34
loi 124 54 18 18 18
hii 76 53 17 17 17
lw 223 58 22 22 22
sw 81 58 22 22 22
beq 12 0 0 0 0
bne 12 0 0 0 0

j 61 565 1 1 1
jr 28 160 16 16 16

45

jrl 28 160 16 16 16
addf 71 1,848 60 60 60
subf 45 24 12 12 12
mulf 35 588 24 24 24
divf 23 144 12 12 12
sltf 59 696 0 0 0
lof 14 302 14 14 14
hif 14 302 14 14 14
lwf 221 238 46 46 46
swf 47 83 23 23 23
beqf 59 828 0 0 0

crv/exp 0 0 12 12 12
NonNop
Instructions

1,574 6,220 364 364 364

Cycles 5,845 47,582 1,610 1,718 2,798
IPC 0.26929 0.13072 0.22609 0.21187 0.13009

Figure 24: Neural network statistics graph.

While this specific example dealt with approximating the exponential function, NEU-

ROSim is intended to easily allow the addition of new curves for the “crv” function and

to develop new instructions which use a Taylor series approximation similar to that of the

“exp” instruction.

46

15 Array Sorting Example

A common application of computers is sorting. A simple sorting algorithm is bubble sort,

see Code 24. Bubble sort involves making a pass over each element of the array to be sorted.

During the pass each element is compared to the next element and if they are in the wrong

relative location the two elements are swapped. Bubble sort makes a number of passes equal

to the length of the array ensuring that the resulting array will be sorted. The algorithm is

so named because large values tend to ”bubble” to the top of the array

15.1 Compare and Swap (CAS) Instruction

Intrinsic to bubble sort is the compare and swap (CAS) step. This is a very expensive

operation because it requires two reads from memory, a comparison, and then potentially

two writes to memory. If this computation could be done atomically there could be potential

for substantial performance increase. The benefit of using a simulator is again displayed as

adding the hardware to support such an instruction is non trivial whereas the logic can be

quickly added to the simulator. The proposed CAS instruction is presented in Table 35.

Table 35: CAS instruction.

Opcode Operands Result
cas r0 rs rt IF (MEM [RS] > MEM [RT]) :

AT := MEM [RS];
MEM [RS] := MEM [RT];
MEM [RT] := AT ;

Table 36 and Figure 25 show the results of implementing the CAS instruction. The six

cycle CAS instruction cuts the total number of instructions by over 40% in comparison to

the inlined version. Six cycles for the instruction is fairly reasonable because it allows two

cycles for reading in the memory data, two cycles for performing the comparison, and finally

two cycles for saving the results. Implementing this functionality in hardware would require

a complex design. The simulator allows the designer to first confirm that the performance

benefit is worth the effort.

47

Table 36: Bubble sort statistics.

Function
Call

Inline
Function

cas
1 cycle MEM

cas
6 cycle MEM

cas
20 cycle MEM

nop 38,483,166 33,245,404 16,775,186 22,012,946 36,678,674
add 3,132,748 3,132,748 1,047,552 1,047,552 1,047,552
shl 3,132,748 3,132,748 1,047,552 1,047,552 1,047,552
slt 2,097,153 2,097,153 1,049,601 1,049,601 1,049,601

addi 4,191,234 2,096,130 2,096,130 2,096,130 2,096,130
loi 2,095,109 6 6 6 6
hii 1,047,553 1 1 1 1
lw 8,104,267 8,104,262 3,145,729 3,145,729 3,145,729
sw 3,922,944 3,922,939 1,049,602 1,049,602 1,049,602
beq 1,047,552 1,047,552 0 0 0
bne 1,049,601 1,049,601 1,049,601 1,049,601 1,049,601

j 1,048,578 260,437 1,048,578 1,048,578 1,048,578
jr 1,047,552 0 0 0 0
jrl 1,047,552 0 0 0 0
cas 0 0 1,047,552 1,047,552 1,047,552

NonNop
Instructions

32,964,592 24,843,578 12,581,905 12,581,905 12,581,905

Cycles 71,447,758 58,088,982 29,357,091 34,594,851 49,260,579
IPC 0.46138 0.42768 0.42858 0.36369 0.25542

Figure 25: Bubble sort statistics graph.

The statistics Neurosim reports on the performance improvements match what one might

expect by looking at the logic that was replaced with the CAS dedicated instruction. The

48

greatest decrease in the number of instructions is in memory operations, “lw” and “sw.”

Recall that the test assumed a zero cycle cache miss penalty. In reality the performance

improvements of the CAS instruction could be much larger when cache miss penalties are

introduced.

15.2 Bubble Sort vs Merge Sort

Neurosim can not only be used to evaluate hardware design decision but can also be

used to compare different implementations of an algorithm. This has already been demon-

strated in the context of loop unrolling and recursive functions, but a comparison of sorting

algorithms provides a more complete example.

Often, sorting algorithms are analyzed by their run times and memory usage. For exam-

ple, bubble sort is an O(n2) algorithm. This means that the runtime scales quadratically with

the number of inputs. Another sorting algorithm, merge sort, has a runtime of O(n∗ log(n))

which scales much more favorably with array size. An implementation of merge sort is pre-

sented in Code 25. This is a fairly complex program and shows the power of NEUROSim.

Merge sort works by dividing the array into two subarrays. The subarrays are then divided

again and this is continued recursively until there are only two elements in each subarray.

These two element arrays are sorted and then the subarrays are repeatedly “merged” back

together resulting in a full sorted array. It should be noted that this algorithm requires an

extra array to be used as working space, doubling the space needs of that of bubble sort.

Table 37 and Figures 26–28 illustrate the results of running the two algorithms on arrays

sized from 2 to 1024. Some interesting conclusions can be drawn from this data. The two

sorting algorithms follow their predicted curves and clearly merge sort is superior for sorting

arrays larger than 8 elements. Bubble sort wins on small arrays because it has less overhead

than mergesort. These results provide a way to optimize a general sorting algorithm by

combining mergesort and bubble sort. Essentially, merge sort should only subdivide arrays

until they are eight elements in size. Then bubble sort should be run on these arrays and

49

Figure 26: Bubble sort run time. Figure 27: Merge sort run time.

merge sort used to merge the arrays back together.

Table 37: Bubble Sort vs Merge Sort statistics.

Number
of

Elements

Bubble
Sort

Cycles

Merge
Sort

Cycles
2 215 404
4 768 1,338
8 3,237 3,586
16 13,965 9,010
32 56,869 21,410
64 222,105 49,900
128 942,787 113,510
256 4,670,708 261,254
512 14,876,572 56,3758
1024 59,367,696 1,237,892

Figure 28: Bubble Sort vs Merge Sort.

The use of a simulator to analyze these sorting algorithms has the key advantage of using

50

cycle count information opposed to timing information. This is in general a much more

accurate and repeatable method of comparison. For example, determining the threshold at

which to use merge sort over bubble sort would be very difficult if only timing information was

available. The ability to directly configure the hardware also allows the user to experiment

with how hardware changes such as cache configuration or branch predictor algorithm impact

the details of the algorithms general runtime curve. For example, maybe due to the linear

nature of accesses in the bubble sort algorithm it incurs less penalties due to cache misses

and actually performs better on array sizes much larger than eight.

16 Conclusion

NEUROSim provides a framework similar to that of a traditional computer architecture

simulator allowing for a tight feedback loop in the evaluation of design. However, NEUROSim

is also intended to be used as a systems design tool because it provides a straightforward

method by which hardware and software components of a system can be analyzed. Numerous

examples of how performance can be increased using various design decisions have been

examined including execution forwarding, control change detection, FPU configuration, loop

unrolling, recursive functions, and self modifying code. It was also demonstrated how two

key components of a datapath, branch predictors and cache architectures, can be configured

and evaluated. NEUROSim demonstrated its true differentiation from classic simulators as

five instructions (“mod”, “mac”, “crv”, “exp”, and “cas”) were easily added to supplement

the core ISA. However, this is by no means an exhaustive list of the domains or problems

to which NEUROSim can be applied. NEUROSim aims to be a design tool in any domain

which involves optimization or specialization which crosses the hardware, software divide.

51

17 Future Work

The NEUROSim framework is intended to be constantly improved and extended as

unique design decisions or algorithms arise providing for the possibility of nearly endless

future work and use. However, there are a few areas in particular which need improvement.

NEUROSim is currently focused on hardware design decisions. However, there are also

incredible benefits to tailoring an assembler and compiler to a target domain. Axon began

to do this. For instance, the compiler will automatically recognize when a “mac” instruction

can be used to gain performance benefits. Support for recognizing arbitrary instructions

needs to be added. Axon also needs to provide full support for floating point data. Cur-

rently, some of the resulting assembly from the “Mathematical Expression Approximation”

section must be curated. It would also be of incredible benefit to develop an implementation

of the datapath Neurosim simulates on an FPGA (field programmable gata array) board.

This would expand the scope of NEUROSim to right before an ASIC (application specific

integrated circuit) is fabricated because a typical hardware design process involves simula-

tion, FPGA implementation, and then ASIC design and fabrication. On the software side,

it would be of value to develop a light weight real time operating system (RTOS) to run on

top of the simulator. This would provide the designer of a new embedded system a starting

point.

52

LIST OF REFERENCES

[1] “The architecture of open source applications.” http://aosabook.org/en/index.

html, 2011.

[2] D. A. Patterson and J. L. Hennessy, Computer Organization and Design, Fourth Edi-

tion, Fourth Edition: The Hardware/Software Interface (The Morgan Kaufmann Series

in Computer Architecture and Design). San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 4th ed., 2008.

[3] M. Nielsen, Neural Networks and Deep Learning. 2016.

[4] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,” SIGARCH Com-

put. Archit. News, vol. 25, pp. 13–25, June 1997.

[5] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,

D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.

Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39,

pp. 1–7, Aug. 2011.

[6] A. Patel, F. Afram, S. Chen, and K. Ghose, “Marss: A full system simulator for mul-

ticore x86 cpus,” in Proceedings of the 48th Design Automation Conference, DAC ’11,

(New York, NY, USA), pp. 1050–1055, ACM, 2011.

[7] “The llvm compiler infrastructure.” http://llvm.org/.

[8] “clang: a c language family frontend for llvm.” http://clang.llvm.org/.

[9] “flex: The fast lexical analyzer.” http://flex.sourceforge.net/.

[10] “Gnu bison.” https://www.gnu.org/software/bison/.

53

http://aosabook.org/en/index.html
http://aosabook.org/en/index.html
http://llvm.org/
http://clang.llvm.org/
http://flex.sourceforge.net/
https://www.gnu.org/software/bison/

[11] H.-Y. Kim, J. Rosser, K. Bryson, and S. Majumder, “Partitioning register file to reduce

access time.” http://www.owlnet.rice.edu/~elec525/projects/prf_report.pdf.

[12] D. Bhandarkar, “Risc versus cisc: A tale of two chips,” SIGARCH Comput. Archit.

News, vol. 25, pp. 1–12, Mar. 1997.

[13] M. A. Will and R. K. L. Ko, “Computing mod without mod,” IACR Cryptology ePrint

Archive, vol. 2014, p. 755, 2014.

[14] T. Kocak, “Sigmoid functions and their usage in artificial neural networks.” https:

//excel.ucf.edu/classes/2007/Spring/appsII/Chapter1.pdf.

54

http://www.owlnet.rice.edu/~elec525/projects/prf_report.pdf
https://excel.ucf.edu/classes/2007/Spring/appsII/Chapter1.pdf
https://excel.ucf.edu/classes/2007/Spring/appsII/Chapter1.pdf

APPENDIX

Code 1: Axon supported syntax.

1 /* Macro. */

2 #define LENGTH_X (10)

3

4 /* Global array and variable. */

5 int X[LENGTH_X] = {1, 2, 3, 4, 5, 5, 4, 3, 2, 1};

6 int G = 12;

7

8 /* Enumeration type. */

9 typedef enum Test {

10 Test_a ,

11 Test_b ,

12 Test_c ,

13 } Test_t;

14

15 /* Function declaration . */

16 int f(int a, int b) {

17 return a + b;

18 }

19

20 int main() {

21 /* Integer variables . */

22 int x = 32;

23 int y = 8;

24 int z = 5;

25 int i = 0;

26 /* Pointer to global variables . */

27 int* g = &G;

28 Test_t t = Test_a;

29 /* Arithmetic and logic operators. */

30 z = x + y;

31 z = x - y;

32 z = x * y;

33 z = x / y;

34 z = x | y;

35 z = x & y;

36 z = x ^ y;

37 /* Compound expressions . */

38 z = z * (x + 10) - y;

39 /* While loop. */

40 while (i < z) {

41 i++;

42 }

43 /* For loop. */

44 for (i = 0; i < (LENGTH_X - 2); i++) {

45 /* Function call and array indexing. */

46 z = z + f(X[i], X[i + 1]);

47 }

48 /* If else statement . */

49 if (z > 100) {

50 z = z * 2;

51 } else {

52 z = z + 2;

53 }

54 /* Switch statement . */

55 switch(t) {

55

56 case Test_a:

57 z = z + 21;

58 break;

59 case Test_b:

60 z = f(z, x);

61 break;

62 case Test_c:

63 default:

64 break;

65 }

66 /* Dereferencing global pointers. */

67 z = *g + z;

68 return z; // Z = 3487

69 }

Code 2: Addition in C.

1 int main() {

2 int x = 64;

3 int y = 27;

4 int z = x + y;

5 return z;

6 }

7

8

9

10

11

12

13

14

Code 3: Addition in assembly.

1 .text

2 j main:

3 main:

4 # Allocate 3 words on stack

5 addi sp sp -12

6 loi t0 64 # x

7 sw t0 sp 8

8 loi t0 27 # y

9 sw t0 sp 4

10 lw t1 sp 8 # Reload x

11 add v0 t1 t0 # z in return register

12 sw v0 sp 0

13 addi sp sp 12 # Restore stack

14 halt

56

Code 4: For loop in C.

1 int main() {

2 int i ;

3 for(i = 0; i < 10; i++);

4 return i;

5 }

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Code 5: For loop in assembly.

1 .text

2 j main:

3 main:

4 # Allocate 1 word on stack

5 addi sp sp -4

6 loi t0 0 # i

7 sw t0 sp 0

8 loi t0 9 # Loop upper bound

9 j LBB0_1:

10 LBB0_2:

11 lw t1 sp 0 # Load i

12 addi t1 t1 1 # Increment i

13 sw t1 sp 0 # Save i

14 LBB0_1:

15 lw t1 sp 0 # Load i

16 slt at t0 t1 # Check loop condition

17 bne at r0 LBB0_3: # Break out of loop

18 j LBB0_2: # Continue loop

19 LBB0_3:

20 lw v0 sp 0 # Load i as return value

21 addi sp sp 4 # Restore stack

22 halt

Code 6: Function call in C.

1 int X[2] = {42,-89};

2

3 int f(int x, int y) {

4 return x + y;

5 }

6

7 int main() {

8 int r = f(X[0], X[1]);

9 return r;

10 }

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Code 7: Function call in assembly.

1 .text

2 j main:

3 f:

4 # Allocate 2 words on stack

5 addi sp sp -8

6 sw a0 sp 4

7 sw a1 sp 0

8 lw t0 sp 4

9 add v0 t0 a1

10 addi sp sp 8 # Restore stack

11 jr ra

12 main:

13 # Allocate 3 words on stack

14 addi sp sp -12

15 sw ra sp 8 # Save return address

16 loi t0 0

17 sw t0 sp 4

18 loi t0 X:

19 hii t0 X:

20 lw a0 t0 0 # Load X[0]

21 addi t0 t0 4

22 lw a1 t0 0 # Load X[1]

23 loi t0 f:

24 hii t0 f:

25 jrl t0 # Call f

26 sw v0 sp 0

27 lw ra sp 8 # Load return address

28 addi sp sp 12 # Restore stack

29 halt

30

31 .data

32 X:

33 .datum 42

34 .datum 4294967207

57

Code 8: Execute forwarding example.

1 .text

2 main:

3 loi t0 17

4 loi t1 31

5 add t2 t1 t0

6 sub t3 t2 t1

7 halt

Code 9: Control change detection example.

1 int main() {

2 int i;

3 for (i = 0; i < 100; i++);

4 return 0;

5 }

Code 10: FPU configuration example.

1 .text

2 main:

3 lof ft0 0x1eb8

4 hif ft0 0x41db # 27 .39

5 lof ft1 0x0000

6 hif ft1 0xc18c # -17.5

7 addf fs0 ft0 ft1

8 subf fs1 ft0 ft1

9 mulf fs2 ft0 ft1

10 divf fs3 ft0 ft1

11 sltf fs4 ft0 ft1

12 halt

58

Code 11: Loop unrolling.

1 #define LENGTH_X (1000)

2 #define LOOP_1 (1)

3 #define LOOP_5 (5)

4 #define LOOP_10 (10)

5 #define LOOP LOOP_10

6

7 int X[LENGTH_X] = { -36,-12,2,-84,-16,95,75,90,-92,-25,

...

69 -90,65,-59,52,-44,1,27,15,-72,-13,51,43,76,20 };

70

71 int main() {

72 int i = 0;

73 int x = 0;

74 for (i = 0; i < LENGTH_X; i = i + LOOP) {

75 x = x + X[i];

76 #if (LOOP >= LOOP_5)

77 x = x + X[i + 1];

78 x = x + X[i + 2];

79 x = x + X[i + 3];

80 x = x + X[i + 4];

81 #if (LOOP >= LOOP_10)

82 x = x + X[i + 5];

83 x = x + X[i + 6];

84 x = x + X[i + 7];

85 x = x + X[i + 8];

86 x = x + X[i + 9];

87 #endif

88 #endif

89 }

90 return x;

91 }

Code 12: Recursive implementation of factorial.

1 /* Recursive function to compute n! */

2 int factorial(int n) {

3 if (n < 1) {

4 return 1;

5 } else {

6 return factorial(n - 1) * n;

7 }

8 }

9

10 int main() {

11 int x = factorial (7);

12 int y = factorial (12);

13 return x + y;

14 }

59

Code 13: Loop implementation of factorial.

1 /* Loop implementation of n! */

2 int factorial(int n) {

3 int i;

4 int fact = 1;

5 for (i = 1; i <= n; i++) {

6 fact = fact * i;

7 }

8 return fact;

9 }

10

11 int main() {

12 int x = factorial (7);

13 int y = factorial (12);

14 return x + y;

15 }

Code 14: Self modifying code.

1 .text

2 j main:

3

4 main:

5 # The registers to perform operations on

6 loi t0 786

7 loi t1 512

8 # Get the starting address of the

9 # instructions held in data

10 loi t2 INSTRUCTIONS:

11 # Get instruction address to change

12 loi t3 InstructionToChange:

13 loi t4 END:

14 lw t4 t4 0

15 Loop:

16 lw t5 t2 0

17 sw t5 t3 0

18 nop # Delay till the memory is saved

19 nop

20 InstructionToChange:

21 nop # Instruction that gets modified

22 addi t2 t2 4 # Address of next instruction

23 bne t5 t4 Loop: # Check if we have reached the end

24 halt

25

26 .data

27 INSTRUCTIONS:

28 .datum 0x5091000 # add v0 t0 t1

29 .datum 0x9091000 # sub v0 t0 t1

30 .datum 0xD091000 # mul v0 t0 t1

31 END:

32 .datum 0x11091000 # div v0 t0 t1

60

Code 15: Branch prediction test.

1 #define LENGTH_X (1000)

2

3 int X[LENGTH_X] = {

4 36,12,2,84,16,95,75,90,92,25,99,74,0,16,4,40,

...

65 90,65,59,52,44,1,27,15,72,13,51,43,76,20 };

66

67 int main() {

68 int x = 0;

69 int two = 2;

70 for (int i = 0; i < LENGTH_X; i++) {

71 x = X[i];

72 if (x < 10) { }

73 else if (x < 15) { }

74 else if (x < 20) { }

75 else if (x < 25) { }

76 else if (x < 30) { }

77 else if (x < 35) { }

78 else if (x < 40) { }

79 else if (x < 45) { }

80 else if (x < 50) { }

81 else if (x < 55) { }

82 else if (x < 60) { }

83 else if (x < 65) { }

84 else if (x < 70) { }

85 else if (x < 75) { }

86 else if (x < 80) { }

87 else if (x < 85) { }

88 else if (x < 90) { }

89 else if (x < 95) { }

90 else if (x < 100) { }

91 while (x != 0) { x = x / two; }

92 }

93 return 0;

94 }

61

Code 16: Random cache access.

1 #define LENGTH_I (1024)

2 #define LENGTH_X (2048)

3

4 /* The block of memory on which to test the cache */

5 int X[LENGTH_X] = {1};

6 /* The random indexes into X */

7 int I[LENGTH_I] = { 14 ,1463 ,694 ,106 ,361 ,1719 ,181 ,2034 ,

...

24 1290 ,1247 ,110 ,1776 ,1911 ,1490 ,1332 ,1022 ,1328 ,802 };

25

26 int main() {

27 int i = 0;

28 int x = 0;

29 for(i = 0; i < LENGTH_I; i++) {

30 x = X[I[i]];

31 }

32 return i;

33 }

Code 17: Few random cache access.

1 #define LENGTH_I (1024)

2 #define LENGTH_X (2048)

3

4 /* The block of memory on which to test the cache */

5 int X[LENGTH_X] = {1};

6 /* 128 indexes randomly placed. */

7 int I[LENGTH_I] = { 1932 ,1333 ,1177 ,87 ,872 ,1016 ,1743 ,

...

22 1863 ,1490 ,927 ,1529 ,549 ,622 ,692 ,199 ,1288 ,1579 };

23

24 int main() {

25 int i = 0;

26 int j = 0;

27 int x = 0;

28 for(i = 0; i < LENGTH_I; i = i + 2) {

29 x = X[I[i]];

30 }

31 return i;

32 }

62

Code 18: Linear cache access.

1 #define LENGTH_I (1024)

2 #define LENGTH_X (2048)

3

4 /* The block of memory on which to test the cache */

5 int X[LENGTH_X] = {1};

6 /* The indexes and linear ranges into X */

7 int I[LENGTH_I] = { 506 ,51 ,1530 ,100 ,1362 ,22 ,1365 ,76 ,

...

36 int main() {

37 int i = 0;

38 int j = 0;

39 int x = 0;

40 for(i = 0; i < LENGTH_I; i = i + 2) {

41 for (j = 0; j < I[i + 1]; j++) {

42 x = x + X[I[i] + j];

43 }

44 }

45 return i;

46 }

Code 19: Inlined function example.

1 #define INLINE __attribute__ ((always_inline)) inline

2

3 int add(int x, int y) {

4 return x + y;

5 }

6

7 INLINE int addInlined(int x, int y) {

8 return x + y;

9 }

10

11 int main() {

12 int x = 17;

13 int y = 31;

14 int z = add(x, y);

15 int z = addInlined(x, y);

16 return z;

17 }

63

Code 20: Modulo test program

1 #define INLINE __attribute__ ((always_inline)) inline

2 #define LENGTH_X (200)

3

4 int X[LENGTH_X] = {

5 442 ,144 ,943 ,14 ,943 ,326 ,833 ,386 ,546 ,652 ,319 ,516 ,783 ,13 ,

...

19 373 ,837 ,950 ,654 ,567 ,588 ,455};

20

21 /* Compute r = x % y */

22 INLINE int mod(int x, int y) {

23 int r = x;

24 while(r >= y) {

25 r = r - y;

26 }

27 return r;

28 }

29

30 int main() {

31 int i;

32 int k;

33 int r;

34 /* Compute the modulo between each pair of numbers in X */

35 for (i = 0; i < LENGTH_X; i++) {

36 for (k = 0; k < LENGTH_X; k++) {

37 r = mod(X[i], X[k]);

38 }

39 }

40 return 0;

41 }

64

Code 21: Mac Instruction

1 #define INLINE __attribute__ ((always_inline)) inline

2 #define SCALING_FACTOR (32768)

3 #define LENGTH_X (2048)

4 #define ORDER (6)

5 #define NUM_COEFFICIENTS (ORDER + 1)

6

7 /* The input array */

8 int X[LENGTH_X] = {144 ,544 ,1312 ,1600 ,1120 ,576 ,256 ,0 ,

...

10 -175,-113,-64,-32,32,81,95,160,224,256,321,351,368 };

11 /* The output array */

12 int Y[LENGTH_X] = {1};

13 /* Reverse coefficients */

14 int A[NUM_COEFFICIENTS] = {32768 , -148924 ,313916 , -383222 ,

15 284649 , -121930 ,23838};

16 /* Forward coefficients */

17 int B[NUM_COEFFICIENTS] = {615 , -1570 ,2811 , -3096 ,2811 , -1570 ,615};

18

19 /* Multiply accumulate */

20 INLINE int mac(int a, int b, int c) {

21 return a + (b * c);

22 }

23

24 int main() {

25 int n = 0; /* Index into X */

26 int k = 0; /* Index into A or B */

27 int sumA = 0;

28 int sumB = 0;

29 /* Fill the delay lines */

30 for (n = 0; n < ORDER; n++) {

31 Y[n] = 0;

32 }

33 for (n = ORDER; n < LENGTH_X; n++) {

34 sumA = 0;

35 sumB = 0;

36 for (k = 0; k < NUM_COEFFICIENTS; k++) {

37 sumA = mac(sumA , -A[k], Y[n - k]);

38 sumB = mac(sumB , B[k], X[n - k]);

39 }

40 /* Scale Y[n] back down by one scaling factor */

41 Y[n] = (sumA + sumB) / SCALING_FACTOR;

42 }

43 return 0;

44 }

65

Code 22: Lookup table exponential approximation.

1 #define LOOKUP_LENGTH (8u)

2

3 /* Hidden neurons 0 and 1 [weight1 , weight2 , bias]. */

4 float H0[3] = {1.0, 1.0, -0.5};

5 float H1[3] = {1.0, 1.0, -1.5};

6 /* Output neuron [weight1 , weight2 , bias]. */

7 float O[3] = {1.0, -1.0, -0.2};

8 /* x values of exponential lookup table. */

9 float X[LOOKUP_LENGTH] = { -1.5, -1.07142, -0.64285 , -0.21428,

10 0.214285 , 0.642857 , 1.071428 , 1.500000 };

11 /* y values of exponential lookup table. */

12 float Y[LOOKUP_LENGTH] = { 0.223130 , 0.342518 , 0.525788 , 0.807117 ,

13 1.238976 , 1.901907 , 2.919547 , 4.481689 };

14

15 /* Lookup table aproximation of exponential . */

16 float expLookupTable(float x) {

17 int i;

18 for (i = 0; i < LOOKUP_LENGTH; i++) {

19 if (x <= X[i]) {

20 break;

21 }

22 }

23 i--;

24 if (i == 0 || i == (LOOKUP_LENGTH - 1)) {

25 return Y[i];

26 } else {

27 return Y[i] + (x - X[i]) * ((Y[i + 1] - Y[i]) / (X[i + 1] - X[i]));

28 }

29 }

30

31 /* The sigmoid activation function. */

32 float activation(float x) {

33 return 1 / (1 + expLookupTable(-x));

34 }

35

36 /* Forward propagation of the inputs through the network. */

37 float forwardPropagation(float In0 , float In1) {

38 float aH0 = activation ((In0 * H0[0]) + (In1 * H0[1]) + H0[2]);

39 float aH1 = activation ((In0 * H1[0]) + (In1 * H1[1]) + H1[2]);

40 float aOutput = activation ((aH0 * O[0]) + (aH1 * O[1]) + O[2]);

41 return aOutput;

42 }

43

44 int main() {

45 forwardPropagation (0, 0);

46 forwardPropagation (1.0, 0);

47 forwardPropagation (0, 1.0);

48 forwardPropagation (1.0, 1.0);

49 return 0;

50 }

66

Code 23: Taylor series exponential approximation.

1 /* Hidden neurons 0 and 1 [weight1 , weight2 , bias]. */

2 float H0[3] = {1.0, 1.0, -0.5};

3 float H1[3] = {1.0, 1.0, -1.5};

4 /* Output neuron [weight1 , weight2 , bias]. */

5 float O[3] = {1.0, -1.0, -0.2};

6 /* Precomputed factorial values. */

7 float FACTORIAL [11] = {1, 1, 2, 6, 24, 120, 720,

8 5040, 40320, 362880 , 3628800};

9

10 /* Compute x^n */

11 float power(float x, int n) {

12 int i;

13 float result = x;

14 if (n == 0) {

15 return 1;

16 }

17 for (i = 1; i < n; i++) {

18 result = result * x;

19 }

20 return result;

21 }

22

23 /* Taylor series aproximation of exponential . */

24 float expTaylorSeries(float x) {

25 int i;

26 float result = 0;

27 for (i = 0; i <= 10; i++) {

28 result = result + power(x, i) / FACTORIAL[i];

29 }

30 return result;

31 }

32

33 /* The sigmoid activation function. */

34 float activation(float x) {

35 return 1 / (1 + expTaylorSeries(-x));

36 }

37

38 /* Forward propagation of the inputs through the network. */

39 float forwardPropagation(float In0 , float In1) {

40 float aH0 = activation ((In0 * H0[0]) + (In1 * H0[1]) + H0[2]);

41 float aH1 = activation ((In0 * H1[0]) + (In1 * H1[1]) + H1[2]);

42 float aOutput = activation ((aH0 * O[0]) + (aH1 * O[1]) + O[2]);

43 return aOutput;

44 }

45

46 int main() {

47 forwardPropagation (0, 0);

48 forwardPropagation (1.0, 0);

49 forwardPropagation (0, 1.0);

50 forwardPropagation (1.0, 1.0);

51 return 0;

52 }

67

Code 24: Bubble sort.

1 #define INLINE __attribute__ ((always_inline)) inline

2 #define LENGTH_X (1024)

3

4 /* The array to sort. */

5 int X[LENGTH_X] = { 4219 ,2029 ,3501 ,7547 ,6025 ,1505 ,9131 ,

...

33 3973 ,1869 ,7253 ,4063 ,8731 ,8147 ,8018 ,9794 ,8569 ,4502 ,4315 };

34

35 /* Compare and swap */

36 INLINE void cas(int idx1 , int idx2) {

37 int temp;

38 if (X[idx1] > X[idx2]) {

39 temp = X[idx2];

40 X[idx2] = X[idx1];

41 X[idx1] = temp;

42 }

43 }

44

45 int main() {

46 int i;

47 int j;

48 /* Bubble sort X */

49 for (i = 0; i < LENGTH_X; i++) {

50 for (j = 0; j < (LENGTH_X - 1); j++) {

51 cas(j, j + 1);

52 }

53 }

54 return 0;

55 }

Code 25: Merge sort.

1 #define LENGTH_X (128)

2

3 /* The array to sort. */

4 int X[LENGTH_X] = {4219 ,2029 ,3501 ,7547 ,6025 ,1505 ,9131 ,

...

32 3973 ,1869 ,7253 ,4063 ,8731 ,8147 ,8018 ,9794 ,8569 ,4502 ,4315 };

33

34 /* The working area used when sorting X. */

35 int Y[LENGTH_X] = {1};

36

37 void merge(int low , int mid , int high) {

38 int k;

39 int l = low;

40 int i = low;

41 int m = mid + 1;

42 /* Copy elements from the two subarrays to the

43 working area sorting the elements as we go. */

44 while (1 /*(l <= mid) && (m <= high)*/) {

68

45 if (m > high) break;

46 if (l > mid) break;

47

48 if (X[l] <= X[m]) {

49 Y[i] = X[l];

50 l++;

51 }

52 else {

53 Y[i] = X[m];

54 m++;

55 }

56 i++;

57 }

58 /* Copy potential remaining elements from a subarray. */

59 if (l <= mid) {

60 for (k = l; k <= mid; k++) {

61 Y[i] = X[k];

62 i++;

63 }

64 }

65 else { /* m <= high */

66 for (k = m; k <= high; k++) {

67 Y[i] = X[k];

68 i++;

69 }

70 }

71 /* Copy results from Y back to X. */

72 for (k = low; k <= high; k++) {

73 X[k] = Y[k];

74 }

75 }

76

77 void mergeSort(int low ,int high) {

78 int mid;

79 int two = 2;

80 if (low < high) {

81 mid = (low + high) / two;

82 /* Recursivly sort the two subarrays . */

83 mergeSort(low , mid);

84 mergeSort(mid + 1, high);

85 /* Merge the resulting sorted subarrays. */

86 merge(low , mid , high);

87 }

88 }

89

90 int main() {

91 mergeSort(0, LENGTH_X -1);

92 return 0;

93 }

69

	Rose-Hulman Institute of Technology
	Rose-Hulman Scholar
	Spring 5-2016

	NEUROSim: Naturally Extensible, Unique RISC Operation Simulator
	David Eric McNeil
	Recommended Citation

	List of Figures
	List of Tables
	List of Code Excerpts
	List of Abbreviations
	Introduction
	Background Knowledge
	NEUROSim Implementation

	Related Work
	Motivation
	Axon (Compiler)
	Supported Syntax

	Synapse (Assembler)
	Register Sets
	Instruction Set Architecture
	Sample Compiled Code

	Neurosim (Simulator)
	The Datapath

	Hardware Design Decisions
	Execute Forwarding
	Control Change Detection
	FPU Configuration
	Conclusion

	Software Design Decisions
	Loop Unrolling
	Recursive Function Calls
	Self Modifying Code

	Branch Prediction
	Static Branch Predictors
	Dynamic Branch Predictors

	Cache Architecture
	Setup and Configuration of Examples
	Modulo Instruction
	Digital Signal Processing Example
	Lowpass Filter
	Multiply Accumulate (MAC) Instruction
	Lowpass Filter Implementation

	Mathematical Expression Approximation
	Lookup Table Approximation
	Taylor Series Expansion Approximation
	Artificial Neural Network Example

	Array Sorting Example
	Compare and Swap (CAS) Instruction
	Bubble Sort vs Merge Sort

	Conclusion
	Future Work
	APPENDIX

