Rose-Hulman Institute of Technology
Rose-Hulman Scholar

G) .
rafiuate' Theses - Electrical and Computer Graduate Theses
Engineering

Spring 5-2016

Modular Design of an Educational Robotics
Platform

Zhen Wei
Rose-Hulman Institute of Technology

Follow this and additional works at: http://scholar.rose-hulman.edu/electrical grad theses

b Part of the Electrical and Flectronics Commons

Recommended Citation

Wei, Zhen, "Modular Design of an Educational Robotics Platform" (2016). Graduate Theses - Electrical and Computer Engineering.
Paper 7.

This Thesis is brought to you for free and open access by the Graduate Theses at Rose-Hulman Scholar. It has been accepted for inclusion in Graduate
Theses - Electrical and Computer Engineering by an authorized administrator of Rose-Hulman Scholar. For more information, please contact

bernier@rose-hulman.edu.

http://scholar.rose-hulman.edu?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/electrical_grad_theses?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/electrical_grad_theses?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/grad_theses?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/electrical_grad_theses?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/electrical_grad_theses/7?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bernier@rose-hulman.edu

Modular Design of an Educational Robotics Platform

A Thesis
Submitted to the Faculty

of

Rose-Hulman Institute of Technology

Zhen Weli

In Partial Fulfillment of the Requirements for the Degree

of

Master of Science in Electrical Engineering

May 2016

© 2016 Zhen Wei

ROSE-HULMAN INSTITUTE OF TECHNOLOGY

Final Examination Report

Zhen Wei Electrical Engineering

Name Graduate Major

Thesis Title Modular Design of an Educational Robotics Platform

DATE OF EXAM: May 2, 2016

EXAMINATION COMMITTEE:

Thesis Advisory Committee Department
Thesis Advisor: Carlotta Berry ECE
Mark Yoder ECE
David Fisher ME

PASSED X FAILED

ABSTRACT
Wei, Zhen
M.S.E.E
Rose-Hulman Institute of Technology
May 2016
Modular Design of an Educational Robotics Platform

Thesis Advisor: Dr. Carlotta Berry

The goal of this thesis is to design a modular educational robotics platform to improve
the limitation of current educational robotics platforms, such as limited pins, single programming
language, and single programming device. This platform uses an SPI bus for modularity and to
solve the problem of limited pins on current educational robot platforms. A Raspberry Pi, which
runs a 32-bit Embedded Linux System, has been used to build the central control for this
educational robotics platform to enable it to use different programming languages and to be
programmed by different devices. The modules and libraries for stepper motors and IR sensors
have been built for this robot, and the example projects, basic control, obstacle avoidance, and
wall following, show that this educational robotics platform can be used as a platform for basic
artificial intelligence design. This thesis also shows how to design a custom module, which

enables users to design their own modules and put them into their robot projects.

ACKNOWLEDGEMENTS

This thesis would not have been possible without the guidance and help of many
individuals who gave their valuable assistance in preparation and completion of my projects.

First, thanks to my thesis advisor, Dr. Carlotta A. Berry, for her inspiration and
encouragement and her steadfast support.

Second, thanks to Jack Shrader and Gary Meyer, for their support with technology and
help in implementing the robot.

Third, thanks to my committee members, Dr. Mark Yoder and Dr. David S. Fisher, for
their suggestions to improve my work.

Finally, thanks to my family and friends for their support and for giving me the strength

to complete this thesis.

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

1. Introduction

2. Literature Review

3. Design of the Modular Robotic Platform

3.1 Mechanical Design

3.2 Electrical Design

3.2.1 Communication Interface

3.2.2 Central Controller and Custom Module

3.2.3 Motor Control Module

3.2.4 IR Sensor Module

3.2.5 Power Supply

10

12

15

15

16

16

18

22

24

26

3.2.6 Conclusion

3.3 Firmware Design for Modules

3.3.1 SPI Communication

3.3.2 Stepper Motor Control

3.3.3 IR Sensor Control

3.4 Central Controller Setup

3.5 Firmware Design for Central Controller

4. Demo Project

5. Comparison

6. Conclusion and Future Work

LIST OF REFERENCES

APPENDICES

APPENDIX A: PROJECT PARTS LIST

APPENDIX B: MSP430G2553 FIRMWARE CODE

APPENDIX C: RASPBERRY PI FIRMWARE CODE

APPENDIX D: EXAMPLE PROJECT CODE

27

30

30

33

39

42

46

48

52

55

57

58

58

61

76

86

Demo Project 1: Basic Control

Demo Project 2: Obstacle Avoidance

Demo Project 3: Wall Following

APPENDIX E: LIST OF DEMO VIDEOS

APPENDIX F: USER’S MANUAL

APPENDIX G: SIMPLE EDUCATIONAL PROJECT

86

&9

95

101

102

116

LIST OF FIGURES

Figure 1: Overall View of the Platform

Figure 2: SPI Connection for Modular Educational Robotics Platform

Figure 3: Image of Custom Module

Figure 4: The Schematic of Custom Module

Figure 5: PCB Layout of Custom Module

Figure 6: Schematic of Motor Controlling Module (H-Bridges)

Figure 7: Schematic of Motor Controlling Module (Microcontroller and Connectors)

Figure 8: Schematic of IR Sensor Module (Voltage Divider)

Figure 9: Schematic of IR Sensor Module (Microcontroller and Connectors)

Figure 10: Schematic of Voltage Regulator Circuit

Figure 11: Power Wiring Diagram

Figure 12: Schematic of Base Board

Figure 13: PCB Layout of Base Board

Figure 14: Image of Base Board

Figure 15: USCI Control Register 0

16

18

20

21

22

23

24

25

26

26

27

28

29

29

31

Figure 16:

Figure 17:

Figure 18:

Figure 19:

Figure 20:

Figure 21:

Figure 22:

Figure 23:

Figure 24:

Figure 25:

Figure 26:

Figure 27:

Figure 28:

Figure 29:

Flow Chart for SPI communication

Excitation Sequences for Different Drive Modes

Bipolar Wound Stepper Motor

Full Step Control Signal Generated by Time Delays

Full Step Control Signal Generated by Timer Interrupts

Timer A Control Register

TACCTLx, Capture/Compare Control Register

Part of ADC10 Control Register 1

ADCI10AEOQ, Analog (Input) Enable Control Register 0

ADCI0OMEM, Conversion-Memory Register, Binary Format

ADCI10CTLO, ADC10 Control Register 0

Flow Chart for a Basic Function Design

Flow Chart for Obstacle Avoid Project

Flow Chart for Wall Following

32

33

33

35

36

37

38

39

40

40

40

47

50

51

LIST OF TABLES

Table 1: Used Pin Connections for Raspberry Pi 2

Table 2: Control Command for Basic Control Demo

19

48

1. Introduction

Most robots or microcontrollers in the market have limited I/O ports, ADCs, DACs, and
communication ports. For example, the Android Robot, which is currently used in ECE 425
Mobile Robot class, only has 8 extra I/O ports, and the Traxster II has 5 analog input ports and 9
digital I/O ports. Therefore, this may not be enough for users to develop their own additional
robot features. It would be more economical and time effective to use a modular or “plug and
play” robot when developers wish to use many different sensors, motors, or other technologies.
It may be argued that C is the universal robot programming language, but it may no longer be the
most popular language among users. The developer may prefer to program in Python, JAVA,
Lua, or some other language of choice, so it would preferable to have flexibility in the software
used and sometimes it even makes it easier to implement the robot algorithms by using a
programming language other than C. However, this is currently not the case, as most robot
platforms are still based on C programming. Also, the PC is not the only tool developers use for
robot control and programming; smartphones, tablets, and notebooks have become more popular,
as these are cheaper, simpler and more easily accessible devices. This thesis will focus on
finding the solution to the problems current educational robotics platforms have, including
limited pins, single programming language, and single programming device. Also, the robot
should be able to do all the projects which the robot used in the ECE 425 Mobile Robotics class
can do.

This research designed a modular educational robotics platform, which was built on one

central controller that functions as the command center or brain for several different modules. It

10

is like a “plug and play” robotic platform. The modules in this research include IR sensors,
motors, and a custom module. Because any kind of microcontroller will have limited IO ports,
this research used SPI bus communication technology to compensate for this limitation. The
central controller is the “master” and the modules are the “slave”. The master and slaves are
connected using the 4 wire SPI mode. Normally the central controller will set the sensor modules
selection pin to ON to select the sensor module and make sure they can send the data back to the
central controller. This way, only one module can communicate with the central controller at a
time. After the central controller gets data from sensor modules, it may send some control
commands to the other modules. Then the central controller turns off the current sensor module
selection pin, and turns on the new selection pin.

A 32-bit Embedded Linux System was run on a central controller, which enables it to use
different programming languages and to be controlled by different devices. The 32-bit
Embedded Linux System is as same as a normal Linux System, and it can run all kinds of
programming languages such as C, Java, Python, Lua, and so on. Therefore, users can program
on this robotics platform just like a normal Linux System. The Linux System allows the robot to
be connected, controlled, and communicated through Secure Shell (SSH). The SSH is a
cryptographic (encrypted) network protocol allowing remote login and other network services to
operate securely over an unsecured network. By using the SSH, users can remote login to this
robotics platform and control, program this robotics platform through the network by any kind of
devices. Therefore, the SSH allows this platform be programed by different devices, such as

Android phones or tablets, Apple devices, Windows PCs, or Chromebooks.

11

12

2. Literature Review

In Andrey Shvartsman, Maurice Tedder, and Chan-Jin Chung’s A Modular Mobile
Robotic Platform As An Educational Tool In Computer Science And Engineering, they designed
a mobile robotic platform which can be used as a tool for computer science and engineering
education. This platform consists of several integrated modules, including a laptop computer that
serves as the main control module, a microcontroller-based motion control module, a vision-
processing module, a sensor interface module, and a navigation module. They concluded that
their modular mobile robot platform design is inexpensive due to off the shelf components and a
mass-production manufacturing model. In this robot, the main control module controls the others
primarily through serial ports and USB hubs. Also, this robot can be controlled by multiple
programming languages, as the main software development environment is setup on a laptop
computer [1]. Their design uses a laptop computer as the main control module, which also can be
understand as a central controller, which makes the robot platform expensive, but it improved the
idea of building a flexible software development environment on a robot platform. The design
for this thesis follows this idea and uses an embedded Linux development board as a central
controller, which gives the flexible software development environment and also decreases cost.

In Raspberry Pi Learning Resources there is a robot called Robobulter which is powered
by Raspberry Pi with Raspbian Linux OS. The Robobulter used the GPIOs to control the motors
directly. Python has been used to program this robot [2]. For this robot, it is easy to program the
robot, and gives user the flexible software development environment. However, Raspberry Pi has
a limited number of GPIO pins, and by using the GPIO to directly control the robot, it quickly

uses up the GPIO. In this thesis, the robot has be designed into modular, which means it use the

13

Raspberry Pi to control all the modules and the module control the robot. In this way, the user
can add any features into the robot by adding a module and do not need to worry about how
many GPIOs Raspberry Pi has.

S Piperidis, et. al. presented a paper to reduce the cost of a mobile robot for education and
research, while maintaining its capabilities. The low cost modular mobile robot ALE worked
well for both education and research, because it has been used for a course and the research lab
in the past two years. In this design, the Bluetooth communication module has been used to make
the robot modular, and it is controlled by a personal computer through a serial port in real time
[3]. For real time control, the robot platform designed in this thesis uses Wifi instead of a serial
connection, so that the robot can be controlled by different types of devices running different
operating systems and wirelessly. This makes the robot platform more user friendly. The
modular design of ALE is good, but using Bluetooth to transfer data between modules wirelessly
is cumbersome, because the module still need wired power and all of the modules are very close
to each other. Additionally the Bluetooth chip will increase the cost.

In Josep M. Mirats Tur and Carlos F. Pfeiffer’s Mobile Robot Design in Education, they
described the course on robot design that electronics systems engineers take in their last semester
at the Instituto Tecnoldgi- co de Estudios Superiores de Monterrey (ITESM), Monterrey, Mexico
Campus. In this course, the use of Project Oriented Learning and collaborative learning are
proposed. They then describe the design and implementation of a modular, low-cost,
three-wheeled autonomous robotic platform to serve as a base platform from which different
applications, educational and research, could be mounted. For this robot platform, all control

hardware is modular, distributed, and interconnected using a CAN (controller area network) bus,

14

which has been proven to be a robust solution for industrial applications [4]. For a modular
design, using a CAN bus is excellent. However, most cheap microcontrollers are not designed
with a CAN port, which means if a CAN bus is used to connect these microcontrollers, they
require an external CAN controller and CAN transcoder. To add additional chips increases the
cost and power corporation. The design in this thesis uses a SPI bus instead of a CAN bus,
because SPI is one of the most popular protocol in microcontrollers and most microcontrollers

have at least one internal SPI communication port.

15

3. Design of the Modular Robotic Platform

3.1 Mechanical Design

When designing a new mobile robot, the wheeled mobile robot classification is always
chosen first. The book, Mobile Robotics for Multidisciplinary Study, mentions that there are four
prevalent wheeled mobile robot classifications distinguished by the arrangement of the driving
and steering wheels. They are differential drive, synchronous drive, tricycle drive and car drive
[5]. The most common type of wheeled mobile robot is differential drive, which is simple for
programming and locomotion. For designing an educational robot, simplicity is one of the most
important factors. Also compared with other popular educational mobile robots, most of them
are using differential drive wheeled mobile robot classifications. For example, all of the iRobot,
Traxster, TraxBot, CEENBot, Arduino Robot, and Khephera used the differential drive
classification. Therefore, the differential drive classification has been chosen for this platform.
The design of the platform has two wheels driven independently on a common axis with one
caster on the back for stability.

The platform design in this thesis uses a robot body from an old Traxster robot, which
included the wheels and frame, and two stepper motors to drive the mobile robot. The biggest
part of the mechanical design in this thesis is choosing the motors. Compared with the normal
mobile robots currently in the market, most of them used DC motors with or without encoders.
All of the Traxster, TraxBot, Arduino Robot, and Khephera use two DC motors with encoders to
build their motion system. Only the CEENBot used stepper motors. In general, DC motors are

connected by two wires and driven by a power signal, which means the location can be figured

16

out by differentiation overtime. There is a relative margin of error, meaning the exact location
cannot be known. However, stepper motors are driven by position signals, which means it can be
located with less error than dead reckoning. Therefore, mobile robots which are controlled by
stepper motors can run much more accurately than those controlled by DC motor without

encoder.

Figure 1: Overall View of the Platform

3.2 Electrical Design

3.2.1 Communication Interface

The electrical control circuit is the most important part of this platform design. Thinking
about the features, this design requires a stepper motor control module, an IR sensor module, and
a custom module. Before starting to design the modules, the communication interface must be

designed.

17

For a modular design, the communication interface can be a wired bus or some wireless
networks, so the data can be transferred between components in the system. Inside the robot,
everything will be wired, so there is no reason to add a wireless communication module into
each of these modules. Therefore, this design uses a wired communication bus to connect all of
the modules together. The most popular wired bus communication interfaces are Serial
Peripheral Interface (SPI), Inter-Integrated Circuit (I*C), and Controller Area Network (CAN
Bus). The SPI bus is a synchronous serial communication interface specification used for short
distance communication, primarily in embedded systems and most of the microcontrollers have
at least one SPI port. I?C is a multi-master, multi-slave, single-ended, serial computer bus. It is
typically used for attaching lower-speed peripheral ICs to processors and microcontrollers, and
most of the microcontrollers have an I>C port also.CAN Bus is a vehicle bus standard designed to
allow microcontrollers and devices to communicate with each other in applications without a
host computer. It is a message-based protocol, designed originally for multiplexing electrical
wiring within automobiles. For a modular mobile robot, the ideal would be CAN bus, but most
low cost microcontroller do not have CAN bus port. If using CAN bus, an extra CAN bus
module would be required for each module, so it would increase the cost of the robot. Comparing
I2C and SPI, the transfer speed of SPI is faster than [>°C. Normally, the speed of I?C is between
100 kHz to 400 kHz. However, SPI do not have upper limit speed in the protocol itself, it is only
limited by its electrical interface and connected devices. Also, SPI support full-duplex
communication but I?C does not support. Therefore, SPI has been chosen for this design, which
will give the platform more potential expandability in the future, even though the transfer speed

and full-duplex communication does not affect current design. The design of this robotics

18

https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Master/slave_(technology)
https://en.wikipedia.org/wiki/Computer_bus
https://en.wikipedia.org/wiki/Vehicle_bus
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Host_computer
https://en.wikipedia.org/wiki/Message-based_protocol
https://en.wikipedia.org/wiki/Multiplexing

platform is most like a one master and several slaves system, which is shown in Figure 2. The
master controller is designed based on a Raspberry Pi 2, which is a 32-bit Embedded Linux
platform, and called the Central Controller. All the other modules are designed based on the
MSP430G2553 microcontroller. This thesis includes three module: motors control, IR sensor and

custom.

Central Controller Motors Module
Raspberry Pi (32 bit Embedded) MSP430G2553
SCLK [; _»| SCLK
Stepper motor
. controller to
MasL # MOl control the
base of the
MISO < MISO robot with two
stepper motors
551{Motors Module) STE
S52(IR Sensors Module)
853(Custom Module) [
IR Sensor Module

MS5P430G2553

SCLK

A controller

1 5 MosI which
controlled four
IR sensors and
send data back
to central

> STE controller

MISO

Custom Module

MS5P430G2553

SCLK

Leave enough

» MOSI 10 ports a.rm.
communication

MISO ports for
developers to
build their own
module

> STE

Figure 2: SPI Connection for Modular Educational Robotics Platform

3.2.2 Central Controller and Custom Module
The central controller is used to control everything and lets users program the robot. It is

built with a Raspberry Pi 2 which runs the Debian Linux OS. Based on the GPIO pin out for the

19

Raspberry Pi 2, the SPI should be connected to the GPIO 10, GPIO 09, and GPIO 11. The other
GPIO pins are used as the SPI slave transmit enable pin. The GPIO 04, the GPIO 17, and the
GPIO 18 has been used as slave transmit enable pin in this project for motor control module, IR
sensor module, and custom module. The pin connections are shown in Table 1. On the final
design, all of these pins except slave transmit enable pin for custom module are wired into a 7
pin header on a custom module, which makes it easier to connect motor control module and IR
sensor module into this platform. The image of custom module is shown in Figure 3.

Table 1: Used Pin Connections for Raspberry Pi 2

Connections Pin # | Pin Name | Description

SPI Connections 19 GPIO 10 | SPI Master Out Slave In

21 GPIO 09 | SPI Master In Slave Out

23 GPIO 11 | SPI Clock pin

SPI Slave Transmit | 07 GPIO 04 | Slave Transmit Enable Pin for Motor Control
Connections Module

11 GPIO 17 | Slave Transmit Enable Pin for IR Sensor Module

12 GPIO 18 | Slave Transmit Enable Pin for Custom Module

The custom module is designed for user to add their own circuits into the robot platform.
This module only has a MSP430G2553 chip in the circuit. The Adafruit part P2223 header
connector, a normal 2 by 20 female header with extra long pins, has been used to connect the
custom module and Raspberry Pi 2. The P2223 header will allow users to add more custom
designed modules into the robot easily. Users just need to plug in their own modules using the
P2223 header and change the GPIO pins for SPI slave transmit enable. The sample schematic of

custom modules in this design is shown in Figure 4. J1 is raspberry pi 2 GPIO pin connectors,

20

which will use the P2223 header and connect to the Raspberry Pi. J1 also shows the pinout for
SPI MISO (GPIO 10), MOSI (GPIO 09), CLK (GPIO 11), and all slave transmit enable pins for
three different modules, motor control module (GPIO 17), IR sensor module (GPIO 04), and
custom module (GPIO 18). J2 shows the connector with all SPI pins, and it is used to connect the
motor control module and IR sensor module into the SPI bus. The schematic also shows the
circuits design for the MSP430G2553, which include protection, programming, and resetting.
This custom module also allows access to every free pins of the MSP430G2553 for users. The
PCB layout is shown in Figure 5. On the PCB layout, there is a protoboard area, made of 0.1”
pitch through holes, for users to solder their own circuits on the module. The PCB is designed
following the shape of the Raspberry Pi 2 to make sure it can be plug in and mounted easily. The
programming headers on the side of the PCB makes it easy for users to programming the

module.

'y P1 2 HModel B w1

@) @) @ @) @ @ r,rJr)(-J

Figure 3: Image of Custom Module

21

AN N AN\
ol + +
Py .__w.wq 2 o 1
GRICOE 54 B
21,
GRICOE GND &= < _@
aPIcD4 GPION4 [O 3
GHND GPIOIS [0 -4
GPICI7 GPIO18 ._M..._ SIE & _
GPICE7 GND L.C & et
GPICR2 GPIOR23 6 7
3RV GPIO24 18 e g = T
GRICD GHND .Mg i M V3 &
GPICOSTGPIOZS 20 — . — SBWTCK B
GRIOT GPICS 24 \/ Y, Jr i .
5 iRy 7 :
GND GRPIOOT 1 : DEHD —
ID_SD D_SC g mW 1 5P 420 Prog k.u_|
ariosc one 90 WE vl e
S ” P25 - i
PI006 GRIOT2 ol 5
)) 34 P2 w._.mmq = P
GPIC3 GND . Mm_ 5 P
GRIoTE GPIoTs [2Y) ammauw& 5
aPIces aPioen [O0 N o TPRE 6
anp apiozt [40 s P17 -
R 3 pre
aspberry FiE 3 .B B
— & P37 e 3
5 20)
= P38 L._ @
P35
- — nm.m._.,_ W_n -
DGNE _UNLL. mf 4
P23 ._u_|m__, -
P34 H——ts
———
K

Figure 4: The Schematic of Custom Module
22

oNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo)
pDJO0NO0OLO0O0PLPOOOOO0O0O0000O0
a erry Pi 2 Model B V1.1 2
§° k1000000000000 00000000 | °
J O000000000000000000O0
1 O00000000000000000O0
O- +0000000000000000000
C(O00000000000000000O0
| O00000000000000000O0
O00000000000000000O0 @
OQOO0OO0O0000QO00000000000 >
QQAQOO000RO00000000000
> N IR VEE
< g B RN N o ik < Designed by Zhen Wei
e /0|12 Ty
a - ‘!!:.)” S :tF’1.1 2
Sl (6 e S
E1.0 -
| 430G2553_2418 | b ‘) b %
Ul i (L] %
N\, = 1 L. T
@ . fwéoobfﬁi (: :)
mm [5 B L
\ | S | J /

Figure 5: PCB Layout of Custom Module

3.2.3 Motor Control Module

The motor control module controls the motion of the robot. In this design, the motor
control module is designed to control two stepper motors. The Adafruit stepper motor with
product id 324 has been used. It is a bipolar stepper motor which is driven by 12V and a
maximum current of 340 mA. This 4-wire bipolar stepper motor has 1.8 degrees per step and 200
steps per revolution. The red and yellow wires are paired for coil #1, and the green and grey

wires are paired for coil #2. The Adafruit web also shows that the wires should be in order for

23

red, yellow, green, grey. The 4-wire bipolar stepper motor should be easily controlled by two full
H-bridges. Each full H-bridge controls one of the coils. It can make the current go through the
coil in either direction by turning the H-bridge on or off. Because the maximum current limit for
this 324 Adafruit 4-wire bipolar stepper motor is 340 mA, the two full H-bridges chip L293DD
who is made by STMicroelectronics with 600 mA current limit has been chosen. The schematic

of the stepper control, which used two L293DDs, is shown in Figure 6.

' = ENT2 = oz [

[[ow [T fam
s

M RN =
U OUT QT [
= GHD ano =
=t (5D GND -

e o G
~ o GND [
—doutz ouT
e LE N3 s
s ENZA |

Figure 6: Schematic of Motor Controlling Module (H-Bridges)
The supply voltage Vs and logic supply voltage Vss are connected to 12V, which requires 4.5V
as minimum and 36V as maximum that shows in STMicroelectronics’ datasheet for L293DD.
The minimum of the input high voltage level is 2.3V and the logic high for MSP430G2553
output is 3.3V, so the logic control pins of L293DD can connect directly to the MSP430G2553,
and the EN pins connected to 3.3V. All the output pins are connected to the wires from the
stepper motor in order of red, yellow, green, grey. The schematic of all the connection between

H-bridges and microcontroller, and between H-bridges and motors are shown in Figure 7, and

24

the PCB Layout is shown in Figure 13. Due to the modular design, the final version puts the
motor control module and IR sensor module on the same board which will make it easy to wire
and hold on the base, the SPI jumpers are used to connect or disconnect the module from the SPI

bus, which are shown in Figure 7 as J§ and J9.

=F: P22 e He0
P22 P34 Eﬁ-ﬂ’—

r'}h
£ B
SH
Sl (IS g =
A T T4
g 'S
us o + I MoaI_ .
.ir I':; falc Tl 2& oFI_MiEn 'wﬁ—.
T e vdd = -
£ ! F|_ATE_ WO .l
-y =4 F10 F2.6 ? uome, =
T - P27l |
P - A la
C T Hn e
Pl i, ,a
3RI 5TE WOIOE & 2 3 St - L J_,L 51—
_ATE. Pa B prrfiy _ i
e : TR IR : Tl N [t
¥ frv—h-— = S T
= PR1 F Fa7 il ——f
—H P05 P36 £; 9, e
P20 P3.5 et & k.
| E : -IHJ‘ bl -] 1
Pz F25 i]—ng 1 i
! LB e, - B
o 4
EV-E-- M T
AT

iy

. ::_-%!# p22 P24 !E—[-r _?_
| saiE
e

r ControlR

Figure 7: Schematic of Motor Controlling Module (Microcontroller and Connectors)

3.2.4 IR Sensor Module

The IR sensor module is used to get the data from four Sharp 0A41SKOF IR distance
measuring sensor unit, which is composed of an integrated combination of position sensitive
detector (PSD), infrared emitting diode (IR-LED), and signal processing circuit. Its operating

supply voltage is 4.5V to 5.5V, and the analog out range is -0.3V to Vcc+0.3V. In this design,

25

the Vcc is 5.5V, so the maximum out voltage is 5.3V. The maximum ADC input voltage for
MSP430G2553 only can be 3.3V, which means Vce for MSP430G2553. Therefore, the output
signal from the IR sensor cannot be connected to the MSP430G2553 directly. A voltage divider

has been used here to reduce the output voltage, and as shown in Figure 8.

(N

A

Figure 8: Schematic of IR Sensor Module (Voltage Divider)

The schematic shows the ratio of the voltage divider is 2 calculated by the following equation:

X R
in R*R,

Vor=V

out

where both of the R1 and R2 are equal to I0KOhm. Since the maximum output value of the
sensor is 5.3V, the maximum output value of the voltage divider is 2.75V, which is less than
3.3V, and it is safe to connect to MSP430G2553. Also it uses the same design as motor
controlling module to connect and disconnect the IR sensor module to SPI bus. All the circuits

are shown in the Figure 9.

26

o3

| P20
L P21

| P2 2

1
2]
_é.
sl e o W |_4.4
1= adia =120
—“l—% F1.0 N2 1]
1 .rﬂ‘_-l | P11 TTUC 0RO C030k1 HUTP2? ﬁ
2-|- -Il‘: 4 P1 AUCAIT-OMC 0300 TESTIEEYWTL K T7
5 L P11, 3% ml- RAATM kA IFEETOIO

P1_6MCEIS0MILCEIECL
P25
F2.4

an a:.E_a.|_7_- E .F"I_ﬂ'IJI:EI:IETErI.IEmI:LKM'nh-_h"I_?ﬂJI:EI:IEIHI:IrLII:EI:IEI:I.ﬁ.
EIHjI.E..l.Hq_&_.F'l.wnaunLﬁmnmarE

Figure 9: Schematic of IR Sensor Module (Microcontroller and Connectors)

3.2.5 Power Supply

The power supply is built with a power regulator circuit, an on/off switch, and a 12V

Li-ion Battery. The power regulator circuit supports 2 different voltage levels, 5V and 3.3V. The

circuit is shown in Figure 10.

= Wout

GND

vl + VO
GND

*,

==

/]\
* L
Vb

Figure 10: Schematic of Voltage Regulator Circuit

The Ul is a non-isolated switching regulator whose part number is V7805-2000, which supports
5V 2A with 12V input. It is used to support all the 5V parts, such as IR sensors, and Raspberry
Pi 2. The second level of the power regulator is a linear regulator with 3.3V and 800mA output.
The 3.3V voltage level supports all of the microcontroller and other 3.3V level circuits. It also
provides a micro USB connector, which makes it easy to power the Raspberry Pi. The 12V
Li-ion Battery connects to the voltage regulator circuit through a switch, which turns the robot on

and off. The wiring diagram is shown in Figure 11.

+ | FHE
GND
| e S
12V Li-ion Battery /V USB cable
Base Board 5V power suppl
+12v 2V P ppRly
—O/._é}‘/
‘ Raspberry Pi
On/Off switch Power Supply

Figure 11: Power Wiring Diagram
On the base board, there is a micro USB connector which is used to supply the 5V power for

Central Control. Also the 3.3V should be wired to all modules.

3.2.6 Conclusion
Since all of the Power systems, IR sensors, motors will be installed to the base, the design
combines all of them together onto one board, which will be called as base board and shown in

Figure 14. The base board includes the power regulators, IR sensor module, and motor control

28

module, and is installed to the bottom of the robot base frame. The final schematic design of the

base board is shown in Figure 12, and the PCB layout design in Figure 13.

o7 | umn b |,j'_m_u:u + a
2la | = h |2 ymun iE
JF | = I 1)
= e R 1) Ta | wiowe Ta || o jmce
== —
‘ H)IIIL@E;..;_%-— Ti,jr_ﬁ.uzl
q 8 nemyam, e |4
- . E i — JH 1
'1“;., I ? 2 ﬁ % kb k smpiamR, "1a |47 @ ook
L7 , L b T e
g T , P :
1 &, = |m) IucaRMuCAEDd T ?ﬁﬂ"‘ ';‘ 1
t’ : 3 |13 LI CAM THOILE MWD TEM BWIER l ="—=’=m.—bil=l,a Pl,'!-r‘i M_’T‘_
s lniawn o SPELK MR, Py 5§ 4 13 T T 1
- b p[wmsm:nnuw-ﬁl,amnsmunm %\z‘_ﬂ,m —HF 3 F].'(’-V = * Mﬁ‘—t
r |1 i -ﬁfm] F]i-iﬂ;"‘-m— 1 Z[m“
TR REH— Bl
TR R = “”-‘“*—ﬁ-;_
-‘“-‘W’ Fi2 238 s “T
SR FJ_G-E-N— Hx-“i—:r
Tkl

o] T
R — 20 TE— 20
o) i) =T BN 2o was
o B m=slh |N-11[‘ M1 N4 .[‘j
h—“‘-}ij—nun oura 1‘]’}“ iy :!J oum oura .[‘;5'“
—— BN OND = —l@No aNO -TT
1b—€.~nnu I oo l}b‘ E EMO + oNo 1[7,‘—0
1}—?—unu oKO 13 ? oND GNo 1[—,:1—0
Hi:—:‘g—nnu OO 1‘3‘“ I = B BND GKo —TEroh
TjouTE Oum jour oun
A —IN 2 1N 3 st = [H N3 [
L] i EH3 ah 0 % EN3]
S L | E—
B
wHa

Figure 12: Schematic of Base Board

29

Byl ary \ , ! [S
[T : / //—///
o»O\i:!> g od| ;
iii:lu m 20 O
F dulg’$P,
Lllﬁ |LI /
R 1lx '
0 o000
QPP o

Sensor Mddule SPI

Hot_ors Module SPI

Figure 14: Image of Base Board

30

3.3 Firmware Design for Modules

As the words said, hardware is the body and the firmware is the soul [6]. A good robot
design cannot only have hardware. The firmware is also a very important part of the design. The
modules should have their own firmware to control the module and communicate with the
central controller. The firmware design should include the SPI communication, stepper motor

controller, and IR sensor control.

3.3.1 SPI Communication

All of the modules in this design have been chosen as an SPI slave. The four-wire SPI
bus has been decided to use in this project because the four-wire SPI bus can select the modules
which it wants to communicate with by using the fourth wire. In MSP430G2553, there is a
module called a universal serial communication interface (USCI) which supports multiple serial
communication modes. For MSP430G2553, there are two USCI modules named USCI_A and
USCI_B. Both USCI_A and USCI_B modules support SPI mode. The SPI mode of USCI
module connects the MSP430G2553 to an external system via four pins: UCxSIMO (slave input,
master output, which is output from master), UCxSOMI (slave output, master input, which is
output from slave), UCXCLK (serial clock, which is output from master), and UCXSTE (slave
transmit enable or slave select).

The design for modules select the SPI to 4-pin SPI operation with slave mode, and the
data length will be 8-bit. For slave mode, the code needs to set UCMST to 0. The UC7BIT set to

0 to select 8-bit data length, and the UCMODE set to 1 to get 4-pin SPI with UCXSTE active

31

high. Finally, the USCI control register 0 should be set as follows: “UCBOCTLO |= UCMSB +

UCSYNC + UCCKPH + UCMODE 1;”. This register is shown in Figure 15.

7 6 5 4 3 2 1 0
UCCKPH UCCKPL UCMSB UC7BIT UCMST UCMODEX UCSYNC=1
w-0 rw-0 rw-0 rw-0 w-0 w-0 rw-0
UCCKPH Bit 7 Clock phase select.
0 Data is changed on the first UCLK edge and captured on the following edge.
1 Data is captured on the first UCLK edge and changed on the following edge.
UCCKPL Bit 6 Clock polarity select.
0 The inactive state is low.
1 The inactive state is high.
UCMSB Bit 5 MSB first select. Controls the direction of the receive and transmit shift register.
0 LSB first
1 MSB first
uc7BIT Bit 4 Character length. Selects 7-bit or 8-bit character length.
0 8-bit data
1 7-bit data
UCMST Bit 3 Master mode select
0 Slave mode
1 Master mode
UCMODEXx Bits 2-1 USCI mode. The UCMODEX bits select the synchronous mode when UCSYNC = 1.
00 3-pin SPI

01 4-pin SP| with UCXSTE active high: slave enabled when UCxSTE = 1
10 4-pin SPI with UCXSTE active low: slave enabled when UCXSTE =0

11 12C mode

UCSYNC Bit0 Synchronous mode enable
0 Asynchronous mode
1 Synchronous mode

Figure 15: USCI Control Register 0

As mentioned before, the SPI mode of USCI module has independent interrupt capability
for the receive and transmit feature. The firmware uses the interrupt only to receive, which
means any time one module of the robot gets a message from central controller, the SPI interrupt
for receive will wake up the module from the low power mode, and it will send the message
back. This method helps the robot save power. Inside the USCI interrupt, the program checks the
flag first, the flag helps to identify what kind of interrupt is. If the receive flag is up, which
means the chip is receiving data from an external device, it gets data from the receive buffer, and

identifies what the data is. If the data is not an end of a command, it stores the data into a buffer

32

array, which is built by 10 8-bit values. When the code get the data end of the command, it will
return the command, and execute the command.

To transmit a message back to the central controller, the slave will package the message
and push it into a global char array tx_buf. When communication starts, the slave pushes the data
into a transmit buffer one bit at a time to get the data from the receive buffer. In the same way,
the master gets the data from the buffer at the same time when it sends the data. In the firmware
code, there are two functions that send the data back. One is spi_putc() function, which is used to
check transmit flag and push a 8-bit data into the transmit buffer when the transmission is free.
Another one is return_message, which helps to transmit a string with 10 8-bit datas. The SPI

code spi_slave.c and its head file spi_slave.h are attached in APPENDIX B.

STE is sat
Rx Flag is up

YES

receive the message

YES
¥

transfer the message
in the buf

I

Figure 16: Flow Chart for SPI communication

33

3.3.2 Stepper Motor Control
To control a stepper motor, the most common driver modes are wave drive, full step
drive, and half step drive [7]. The excitation sequences for those drive modes are summarized in

Figure 17. The Figure 18 shows a bipolar stepper motor.

Normal
Wave Drive full step Half-step drive
Phase 1234 12314 123456738
A B « . . e o
E & e o e o o
é . ° o e o o
= ° ° o e o o

2

o—
Stator A\ l

e
Stator B IBé) TR

AT

«
| P
O

Phase B

Figure 18: Bipolar Wound Stepper Motor [7]
In Wave Drive, as Figure 17 shows, it only energizes one winding at a time. For the stepper

motor shown in Figure 18, it energizes the winding by following the sequence A—B—A—B.

34

The rotor steps are from the position 8—2—4—6. In Full Step Drive, two phases are energized
at any given time. Like Figure 17 shows, the sequence to energize the stator is
AB—AB—AB—AB , and the rotor steps from position 1 -3—5—7. The Half Step Drive is
mixed with both wave and full step drive modes, as Figure 17 shows, only one winding
energizing status will be changed at one time. The sequence of the stator is energized is
AB—B—AB—A—AB—B—AB—A , and the rotor steps from position
1—2—3—4—5—6—7—38.[7] Full Step Drive is used in the design, due to full step drive mode
provides improved torque and speed performance, which means compare with half step drive and
wave drive, full step drive provides more torque than the other two.

To generate the controlwave for full step drive, four GPIO out pins have been used to
generate the output signal. The speed of stepper motors is controlled by the time difference
between two steps, which means if the steps are changing faster, the motor will turn much faster.
There are two ways to make the stepper motor control work: one is using a time delay to change
the GPIO output values inside the main loop, and the another idea is using the timer interrupt to
control the GPIO output values, and time difference to trigger the interrupt are used to control
the speed. The first way to control the robot is easy to make it happen, but when adding more
code into the main loop, the speed should be changed to be not that accurate. However, the
second way can make the motor run more accurately, and it do not effect by how many codes
need to be run inside the main loop.

The full step control signal for using a time delay between changing the GPIO output
values shows in Figure 19. The graph also shows that it takes 24.07 ms for four steps. The code

set the speed of the motor as 50 rpm, which means 6 ms per step and 24 ms for four steps.

35

However, in Figure 20, the full step control signal for using timer interrupts, shows that it only
takes 23.98 ms to run four steps. Comparing these data, for every four steps, the controlling
signal generated by time delay cost 0.07 ms more than the ideal value. The controlling signal
generated by timer interrupt cost 0.02 ms less than the ideal data. The result shows that the signal
generated by the timer interrupt is more accurate than the signal generated by time delay.
Therefore, the timer interrupt has been used to control the stepper motors in this project to

increase the accuracy.

Tek Run [I - - | 1Trig’d

3 Lot AR e e b © b A bt . 3 [——
£] & £ Autoset
[2 3D L 2 ot

......

Autoset

& 500V] & 5.00V € s00v). . -
Value Mean Min Max std Dev [10-0"“5][IOOKS/F } @& 5 180 V]
@ reriod 24.07ms Low signal amplitude 10k points
3 Low signal amplitude
Period 24.07ms Low sighal amplitude
Period 24.07ms Low signal amplitude 14:22:51

Figure 19: Full Step Control Signal Generated by Time Delays

36

Tek Stop

J

[[

i et i

et e et o = + 4
j l J Autoset
PRt it cherivhredmeb i . A . b

Autoset

@@ 500V] 5.00V 500V | : . i . - .
value Mean Min Max std Dev [10-0""5] [100k5/_5 J @ r 1380 V}
@& Period 23.98ms Low signal amplitude 10k points
3 g Low signal amplitude
Period 23.98ms Low signal amplitude
€D Period 23.98ms Low signal amplitude 14:24:34

Figure 20: Full Step Control Signal Generated by Timer Interrupts
In this design, the timer interrupt has been used to control stepper motors. The stepper
motor, which has been used in this design, has 200 steps/revolution with maximum speed 50
RPM. Therefore, the maximum speed should be 10000 steps/min and 167 steps/second. For
timers, this design use Timer A0 and Timer A1l in MSP430G2553. The Timer A control

register is shown in Figure 21.

37

15 14 13 12 11 10 2 8
\ Unused \ TASSELX \
rw-(0) w-(0) rw-(0) w-(0) w-(0) rw-(0) w-(0) rw-(0)
T 6 5 4 3 2 1 0
\ IDx MCx | Unused | TACLR | TAE | TAFG |
rw-(0) w-(0) rw-(0) rw-(0) w-(0) rw-(0) w-(0) rw-(0)
Unused Bits 15-10 Unused
TASSELx Bits 9-8 Timer_A clock source select
00 TACLK
01 ACLK
10 SMCLK
1 INCLK (INCLK is device-specific and is often assigned to the inverted TBCLK) (see the
device-specific data sheet)
IDx Bits 7-6 Input divider. These bits select the divider for the input clock.
00 n
01 2
10 14
11 8
MCx Bits 5-4 Mode control. Setting MCx = 00h when Timer_A is not in use conserves power.
00 Stop mode: the timer is halted.
01 Up mode: the timer counts up to TACCRO.
10 Continuous mode: the timer counts up to OFFFFh.
11 Up/down mode: the timer counts up to TACCRO then down to 0000h.
Unused Bit 3 Unused
TACLR Bit 2 Timer_A clear. Setting this bit resets TAR, the clock divider, and the count direction. The TACLR bit is
automatically reset and is always read as zero.
TAIE Bit 1 Timer_A interrupt enable. This bit enables the TAIFG interrupt request.
0 Interrupt disabled
1 Interrupt enabled
TAIFG Bit 0 Timer_A interrupt flag
0 No interrupt pending
1 Interrupt pending

Figure 21: Timer A Control Register

The SMCLK clock source and up mode has been used. The up mode triggers the interrupt when

the timer counts to the TACCRO value, and at the same time the TACCRO CCIFG interrupt flag

will be setted. Therefore, the TACTL will be set to TASSEL 2 + MC 1 + TACLR, where

TACLR is used to reset the TAR, and TACLR bit is automatically reset to zero after the TAR

has been resetted. To enable the timer interrupt, the TACCTL, capture/compare control register,

should set the CCIE, capture/compare interrupt enable bit, to 1. The capture/compare control

register is shown in Figure 22.

38

15 14 13 12 1 10 B 8

| CMx | CCISx | §CS | SCCl | Unused CAP
rw={0) rw={0) rw-(0) rw-(0) rw-(0) t] rw-{0)
7 6 5 4 3 2 1 0
| OUTMODX CCIE | CcCl | out | cov CCIFG
rw=(0) rw=(0) rw-(0) rw-(0) ' rw-(0) rw-(0) rw-{0)
CMx Bit 15-14 Capture mode

00 No capture

01 Capture on rising edge

10 Capture on falling edge

1 Capture on both rising and falling edges

CCISx Bit 13-12 Captura/compare input select. These bits salect the TACCRx input signal. See the device-specific data
sheet for specific signal connections.

oo CClxA
o CCixB
10 GND
1" Vee
8C8 Bit 11 Synchronize capture source. This bit is used o synchronize the capture input signal with the timer clock.
0 Asynchronous capture
1 Synchraonous capture

scCl Bit 10 Synchronized capture/compare input. The selected CCI input signal s latched with the EQUx signal and can
be read via this bit

Unused Bite Unused. Read only. Always read as 0.
CAP Bita Capture mode
0 Compare mode
1 Capture mode
OUTMODx Bits 7-5 Qutput mode. Modes 2, 3, 6, and 7 are not useful for TACCRO, because EQUx = EQUO.
000 OUT bit value
om Set
010 Toggle/reset
on Setireset

100 Toggle
1o Reset
110 Toggle/set
m Reset/set
CCIE Bit 4 Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG flag.
0 Interrupt disabled
1 Interrupt enabled
ccl Bit3 Capturefcompare input. The selected input signal can be read by this bit.
ouT Bit2 Qutput. For output mode 0, this bit directly controls the state of the output.
1] Output low
1 Output high
cov Bit 1 Capture overflow. This bit indicates a capture overflow occurred. COV must be reset with software.
0 Mo capture overflow occurred
1 Capture overflow occurred
CCIFG Bit0 Capturefcompare interrupt flag
0 Mo interrupt pending
1 Interrupt panding

Figure 22: TACCTLX, Capture/Compare Control Register
The final stepper motor controlling API, stepper motor driver.c and stepper motor driver.h, are

shown in Appendix B.

39

3.3.3 IR Sensor Control

The most important part of the firmware of the IR sensor is the ADC, and there are 8

channels of 10-bit analog-to-digital conversion. The INCHx is used to select ADC channels, and

INCHZx covers bit 12 to bit 15 in ADC10 Control Register 1, which is shown in Figure 23.

Therefore, code “ADC10CTL1 = (pin << 12);”, where pin is the channel number of the ADC,

has been used to select the ADC input channel. Another bit needed in this project is

ADCI0BUSY in ADC10 Control Register 1, which indicates an active sample or conversion

operation. The ADC10BUSY bit has been used to check if conversion is completed.

15 14 13 12 11 10 2] 8
| INCHx | SHSx | AbcioDF | ISSH |
w-(0) rw-(0) rw-(0) w-(0) rw-(0) w-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
| ADC10DIVx | ADC10SSELx [CONSEQx | ApcioBUSY |
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r-0
Can be modified only when ENC =0
INCHx Bits 15-12 Input channel select. These bits select the channel for a single-conversion or the highest channel for a

sequence of conversions.
0000 A0
0001 Al
0010 A2
0011 A3
0100 A4
0101 A5
0110 A6
0111 A7
1000 VaFl EF+
1001 VieeNVoper.
1010 Temperature sensor
1011 (Mg - V) /2
1100 (Vg - Vss) /2, A12 on MSP430x22xx devices
1101 (Vge - Vas) /2, A13 on MSP430x22xx devices
1110 (Vee - Vss) /2, A14 on MSP430x22xx devices
1111 (Vg - Vss) /2, A15 on MSP430x22xx devices

ADC10BUSY Bit 0 ADC10 busy. This bit indicates an active sample or conversion operation
0 No operation is active.

1

A sequence, sample, or conversion is active.

Figure 23: Part of ADC10 Control Register 1

The Analog Input Enable Control Register O is used to enable the corresponding pin for analog

input. The code looks like “ADCI0AEQ = (1 << pin);” and the register is shown in Figure 24.

40

All of the data can be retrieved from 10 bit conversion results which is inside of the

Conversion-Memory Register, which is shown in Figure 25.

F 6 5 4 3 2 1 0
\ ADC10AEOxX \
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

ADC10AEOx Bits 7-0 ADC10 analog enable. These bits enable the corresponding pin for analog input. BITO corresponds to A0,
BIT1 corresponds to A1, etc.

0 Analog input disabled
1 Analog input enabled

Figure 24: ADCI10AEOQ, Analog (Input) Enable Control Register 0

15 14 13 12 11 10 9 8

| 0 | 0 | 0 | 0 | 0 | 0 \ Conversion Results ‘
r0 r0 r0 r0 r0 r0 r r
7 6 5 4 3 2 1 0

| Conversion Results \
r r r r r r r r

Conversion Bits 15-0 The 10-bit conversion results are right justified, straight-binary format. Bit 9 is the MSB. Bits 15-10 are
Results always 0.

Figure 25: ADC10MEM, Conversion-Memory Register, Binary Format
There is another control register called ADC10 Control Register 0, which is used to select the
reference voltage, timers and other ADC settings, and shown in figure 26. In this project, this
register has been set to use the reference voltages as Vcc and Vss, 16 clock sample-and hold
time. The ADC100N is used to enable ADC, and the ENC and ADC10SC are used to enable and
start conversion. The ADC code, adc.c and adc.h, are shown in Appendix B. The IR sensor API
also includes the ir_sensor driver code, whose c file and h file are shown in Appendix B, are
used to get the data, and make sure the message, which will be sent out through the SPI Bus, is

ready.

41

15 14 13 12 11 10 9 8

SREFx | ADC10SHTx | ADC10SR | REFOUT | REFBURST |
rw-(0) w-(0) w-(0) w-(0) w-(0) rw-(0) w-(0) rw-(0)
2 6 5 4 3 2 ‘ 1 _ 0
Msc | REF25v | REFON | ADC10ON | ADC10IE | ADC10IFG ENC ADC10SC |
w-(0) w-(0) w-(0) w-(0) w-(0) w-(0) w-(0) w-(0)

Can be modified only when ENC =0

SREFx Bits 15-13 Select reference
000 Vi, = Vec and Vi, = Vg
001 Vi, = Vg, and V. = Vg
010 Vn, = Veper, and V. = Vg
o1 Vp, = Buffered Vepee, and V. = Veg
100 Vi, = Ve and Vi, = Viee/ Vinee.
101 Vg = Vaer, and Va. = Vrer/ Vener.
110 Vi, = Veger, and Va. = Vieerd Verer
i1 Vi, = Buffered Veqg, and Vi, = Viaer/ Virer.
ADC10SHTx Bits 12-11 ADC10 sample-and-hold time
00 4 x ADC10CLKs
01 8 x ADC10CLKs
10 16 x ADC10CLKs
11 64 x ADC10CLKs

ADC10SR Bit 10 ADC10 sampling rate. This bit selects the reference buffer drive capability for the maximum sampling rate.
Setting ADC10SR reduces the current consumption of the reference buffer.
0 Reference buffer supports up to ~200 ksps
1 Reference buffer supports up to ~50 ksps
REFOUT Bit9 Reference output
0 Reference output off
1 Reference output on
REFBURST Bit 8 Reference burst.
0 Reference buffer on continuously
1 Reference buffer on only during sample-and-conversion
MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes.
0 The sampling requires a rising edge of the SHI signal to trigger each sample-and-conversion.
1 The first rising edge of the SHI signal triggers the sampling timer, but further
sample-and-conversions are performed automatically as soon as the prior conversion is completed
REF2_5V Bit 6 Reference-generator voltage. REFON must also be set.
0 1.5V
1 25V
REFON Bit 5 Reference generator on
0 Reference off
1 Reference on
ADC100N Bit 4 ADC10 on
0 ADC10 off
1 ADC10 on
ADC10IE Bit 3 ADC10 interrupt enable
0 Interrupt disabled
1 Interrupt enabled
ADC10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically reset

when the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is set
when a block of transfers is completed.

0 No interrupt pending
1 Interrupt pending
ENC Bit 1 Enable conversion
0 ADC10 disabled
1 ADC10 enabled
ADC10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set together
with one instruction. ADC10SC is reset automatically.
0 Mo sample-and-conversion start
1 Start sample-and-conversion

Figure 26: ADC10CTLO, ADC10 Control Register 0

42

3.4 Central Controller Setup

Central controller for this robot is built with a Raspberry Pi 2, which can be connected by
computers, tablets, or smart phones through a Wi-Fi connection. The Raspberry Pi acts as the
“hostap” (host access point). To set up the Raspberry Pi as hostap, software hostapd and
isc-dhep-server should be installed into the Raspberry Pi by using the following command.

Sudo apt-get install hostapd isc-dhcp-server
Host Access Point Daemon (Hostapd) is a user space software access point capable of turning
normal network interface cards into access points and authentication servers [8]. The Dynamic
Host Configuration Protocol (DHCP) is a network service that enables host computers to be
automatically assigned settings from a server as opposed to manually configuring each network
host. After installing the softwares, the setup work needs to be done. To set up the DHCP server,
the dhcpd.conf file, which can be found under /etc/dhcp/dhepd.conf, needs to be edited. In the
dhcpd.conf file, find and comment out the following lines:

option domain-name "example.org";
option domain-name-servers nsl.example.org, ns2.example.org;

And remove the comment for “authoritative;” . Then, add the following lines at the bottom of
config file.

subnet 192.168.42.0 netmask 255.255.255.0 {
range 192.168.42.10 192.168.42.50;
option broadcast-address 192.168.42.255;
option routers 192.168.42.1;
default-lease-time 600;
max-lease-time 7200;
option domain-name "local";
option domain-name-servers 8.8.8.8, 8.8.4.4;

43

After changing the dhcpd.conf file, saving it. Another configuration file called isc-dhcp-server,
which can be found under /etc/default/isc-dhcp-server must be edited. In the isc-dhep-server file,
the line “INTERFACES=""" was updated to “INTERFACES="wlan0"”. Then the wlan0 must be
setup for a static IP, which is necessary to be known to remote connect to the robot. The
command “sudo ifdown wlan0” is run to activate wlan0. Next the configuration file interfaces,
which are under /etc/network/interfaces, are edited. The wlan0 settings are updated to

allow-hotplug wlan0

iface wlan0 inet static
address 192.168.42.1
netmask 255.255.255.0

The command “sudo ifconfig wlan0 192.168.42.1” is then run to assign a static IP address to the
wifi adapter. The address need not be 192.168.42.1, it can be any ip address. In this project,
192.168.42.1 has been used as the IP address. After setting up the DHCP server, the next thing to
do is configure the access point. For this project, the access point will set up a
password-protected network so only people with the password can connect. The first step to
configure the access point is creating or editing a configuration file named hostapd.conf under
/etc/hostapd/hostapd.conf. And then adding or updating the following lines

interface=wlan0Q
driver=rtl871xdrv
ssid=Pi_Robot AP
hw_mode=g

channel=6

macaddr acl=0

auth_algs=1

ignore broadcast ssid=0
wpa=2
wpa_passphrase=RaspberryPiRobot
wpa_key mgmt=WPA-PSK
wpa_pairwise=TKIP
rsn_pairwise=CCMP

44

where the ssid, the network broadcast name, and wps_passphrase, the password for this access
point, can be change to anything user want. The driver for the wifi adapters needs to be
determined, and it will be set by “driver=". The value of the driver in hostapd.conf could be
rtl871xdrv, which used for Adafruit wifi adapters, nl80211 or something else. The Raspberry Pi
need to be told where to find this configuration file, the “4DAEMON_CONF="""in file
/etc/default/hostapd needs to be updated to “DAEMON _ CONF="/etc/hostapd/hostapd.conf"”.
After this, the Network Address Translation (NAT) must be set up, which will allow multiple
clients to connect to the Wi-Fi and have all the data tunneled through the single Ethernet IP.
“net.ipv4.ip_forward=1" must be added to the configuration file /etc/sysctl.conf. This will start
IP forwarding on boot up. Then the command “sudo sh -¢ "echo 1 >
/proc/sys/net/ipv4/ip_forward"” needs to be run to activate it immediately. Next, the following
commands need to be run to create the network translation between the ethernet port ethO and the
wifi port wlan0.

sudo iptables -t nat -A POSTROUTING -o ethO -} MASQUERADE

sudo iptables -A FORWARD -i eth0 -o wlan0 -m state --state

RELATED,ESTABLISHED -j ACCEPT

sudo iptables -A FORWARD -i wlan0 -o ethO -} ACCEPT
After rebooting the changes will take effect by running the command

sudo sh -c "iptables-save > /etc/iptables.ipv4.nat"
At the end of /etc/network/interfaces configuration file, the line “up iptables-restore <

/etc/iptables.ipv4.nat” must be added, and the following commands run to start it.

sudo service hostapd start
sudo service isc-dhcp-server start

45

[9]. At this point, any kind of devices can connect to the Raspberry Pi through Wi-Fi with AP,
and control the robot by ssh into the robot through the ip address.

The next step is to set up the programming environment, beginning with the c-periphery
library. The c-periphery is a set of C wrapper functions, which wrap, simplify, and consolidate
the native Linux APIs to GPIO, SPI, 12C, MMIO, and Serial peripheral I/O interface access in
the embedded Linux environments (including BeagleBone, Raspberry Pi, etc. platforms). To
install the c-periphery library, the c-periphery files need to be download into the Raspberry Pi,
and the current directory must be c-periphery directory. The “make” command is used to build
c-periphery into a static library and “make tests” can be used to build c-periphery tests. The
“CC” environment variable must be set with the cross-compiler by use the following command.

CC=arm-linux-gcc make clean all tests

Now the library has been set up on the Raspberry Pi, and it is ready to use. Then the header files
just need to be included in src/, such as gpio.h, spi.h, i2c.h, mmio.h, serial.h, and the periphery.a
static library linked in when compiling the C control code for the robot. For example, to compile
myprog.c program, the command

gcc -I/path/to/periphery/src myprog.c /path/to/periphery/periphery.a -o myprog
should be used to generate the output file named myprog.[10] As central controller of this robot
is a Raspberry Pi which is running Linux, the robot can be programmed in any programming
languages which can be compile by Linux. There are another two Linux API wrappers for these
interfaces for embedded Linux environments named python-periphery and lua-periphery, and

these libraries allow this robot to be controlled by python and lua.

46

3.5 Firmware Design for Central Controller

After setting up the programming environments on the central controller, the robot is
ready for firmware design. In this design, firmware for the IR sensor and the stepper motor
controller has been done. The firmware for the IR sensor and the stepper motor controller is a set
of functions which is used to communicate with modules. It sends the commands out and gets
the feedback message to control each modules and gets user input to control the robot. All
functions which are used to control the robot in the central controller are designed by following
the flowchart shown in Figure 27. All of the functions the robot has now are attached in

Appendix C. Users can call these functions in their own program to control the robot.

47

gpio_open()

5 gpio_opent()

iinaats WO Return error

YES
Y

goio_write()
sel the value 1o 1

S gpio_write()

SAREER WO Return error

YES
¥

spi_open(]

s spi_open{)

SHAAGLE WO Return error

YES
Y

spi_transfer()
transfer the spi data

5 5pi_transfer|

y
i M Return error

spi_close()

Y

goio_write()
sel the value to 0

s gpio_write()

SOARABE WO Return error

YES
¥

gpio_close()

N

Function End

Figure 27: Flow Chart for a Basic Function Design

48

4. Demo Project

The demo projects are used to demonstrate that the robot has all of the features which
other educational robot platforms have. There are three demo projects that illustrate that the
robot platform works, they are basic control, obstacle avoidance, and wall following. Basic
control is used to test simple features like motors go, get the IR sensor readings. Obstacle
avoidance and wall following projects are used to demonstrate this robot platform can used to
design more advanced Artificial Intelligence (Al) Systems.

Basic control is a simple demo. The idea of this demo is to use a computer to control the
robot platform by sending different commands. This demo uses the stepper motor_api and
ir_sensor_api. The main.c file of the basic control demo gets the control command through the
command line input and calls the functions which have been given in stepper motor api and
ir_sensor_api. The final output file, robot, would been generated by running the makefile. The
robot platform can be controlled by running the code in the form “./robot <control command>
<other commands (option)>". For example, when instructing the robot go forward with speed 50
rpm, the command “./robot go 50 1 50 1” is used, and the command “./robot irget” is used to get
the IR sensor readings. All of the control commands are shown in Table 2. The makefile and
main.c file are included in Appendix D.

Table 2: Control Command for Basic Control Demo

Commands Description

./robot go <speed right> <direction right> This command used to run the robot at

<speed left> <direction left> different speeds in rpm and different
directions.

./robot go This command used to run the robot in default
settings. It is as same as ./robot go 50 0 50 0.

49

./robot stop This command is used to stop the robot.

./robot get This command is used to get the total steps
travelled when robot stopped.

./robot cget This command is used to get the total steps
while the robot is running.

Jrobot irget This command is used to get all four IR
sensors values

Jrobot irget <sensor name> This command is used to get the value of one
of the four IR sensor

The demo of obstacle avoidance includes three small demos, stop before obstacle, shy
avoid, and obstacle avoid. These three small demos are also three steps for the obstacle
avoidance demo project. The first step shows that robot can get the data from IR sensor and it
can make a response with the feedback from the IR sensor. The stop before obstacle demo shows
robot can go forward and continue getting feedback from IR sensors. When the robot senses that
there is an obstacle in front of it, it stops. This step shows the basic feature that the robot can
respond and get feedback with interrupts, the next step is used to show that robot can execute
tasks recursively. Shy avoid is a project to make the robot like a shy kid, when an obstacle is too
close to the robot, it will run away. This code runs continuously and is example of subsumption
architecture where the priority is a halt behavior that can be subsumed by a runaway behavior.
The code has the robot check both the front and back IR sensors. If an obstacle is too close to the
robot, the robot runs away. The obstacle avoid project requires the robot to do something to
make it avoid the obstacle not only detect the obstacle. In this demo, the robot keeps going
forward and making right turns when it senses an obstacle to avoid the obstacle. The makefile of

this demo project generates three output files, they are StopBeforeObstacle, ShyAvoid, and

50

ObstacleAvoid. The demos are easy to run by using “./” to run the output files in sudo mode. All

code is shown in Appendix D.

Robot Go Forward Get the sensor data

Robot Go Forward
Get the sensor data

ront sensor

YES

Robot Stop

Stop Before Obstacle

Obstacle Avoid

>
y
Robot Stop

Shy Avoid

Figure 28: Flow Chart for Obstacle Avoid Project

The third demo project is wall following, it required the robot to follow walls and use P,
PI, or PID feedback control to determine how to respond to inner and outer corners in the wall.
This project has three part that are required to function, following the wall, turning on the inner
corner, and turning on the outer corner. For following the wall, it used a proportional controller
to set the robot’s distance to the wall. When the robot detects the corner, it distinguishes what
type this corner is. If the front sensor senses the wall, the corner should be an inner corner, and if
the sensor on the same side of the wall lose the wall, it should be a outer corner. When robot is in

the inner corner, it makes a turn to the opposite wall, and keeps following the new wall which

51

was detected by the front sensor before. When robot is in the outer corner, the robot should run
in a small circle and make the front sensor touch the new wall, and then turn to make the robot
follow the wall again. The makefile generates an output file named WallFollowing. All of the

project programs are shown in Appendix D.

v
Get the sensor data

Calculate the Motor
Speeds with PID
controller

|

Robot Go with

calculated Motor
Speeds

left sensor
get wall
NO

Robot Run Curve 1o
Left

‘ Get the sensor data ‘

font sensor
get obstacle
N

o]

Figure 29: Flow Chart for Wall Following
All of the demos prove that this mobile robot platform works well and has all of the
features which are required to design an Al systems. The videos of these demos are uploaded to
Youtube and listed in Appendix E. This robotics platform should also be able to do the other Al
behaviors such as line following, homing, docking, heat and light sensing, localization, path
planning, and mapping by using current design. For these Al behaviors, it maybe useful to get
the feedback of counts of stepper motor steps, which should be helpful to calculate the distance

the robot goes.

52

5. Comparison

This mobile robot platform is designed for education, and it’s based on all the features
which ECE 425 Mobile Robotics class needed. The demo projects using this mobile robot
platform proved that this mobile robot platform can be used in ECE 425 class for teaching
students programming and control of a mobile robot. Comparing this mobile robot platform,
Arduino Robot, which ECE 425 currently uses, this mobile robot platform is more powerful.

For hardware, due to the mobile robot platform modular design, the user can add any
kind of hardware, such as GPIO, ADC, DAC, SPI, I12C, UART, by designing their own custom
modules. The current design uses SPI bus, which requires an extra pin to select slave module,
this robot platform can have 20 extra custom modules, which give very large capacity for users
to add their own features into this robot. However, Arduino Robot is limited on the hardware
side. The Arduino Robot only has 8 extra digital I/O/Analog input channels, 7 PWM channels,
and some I2C ports [11]. However, the Arduino Robot has a nice full color LCD screen, speaker,
pushbuttons, IR line follower sensors, compass, and motors, but the mobile robot platform
designed in this thesis only has two motors and four IR sensors [11]. For motors, this mobile
robot platform has two stepper motors, which can control the motions very accurately, but
Arduino Robot only has two DC motor without encoders, which means all of the motions only
can be controlled by timers or sensors [11]. Overall, the mobile robot platform designed in this
thesis is much more powerful and gives more opportunity for users to design their own robot
projects, but it has fewer fancy features, all of these features need users to design as a custom

module and add it into the robot by themselves.

53

For programming the robot, this robot platform is unlike Arduino Robot in that it does
not have an IDE, and all the programs are done by using text editors, such as vim. And it need
the user to compile the program by themselves, such as writing makefiles or using the command
lines to compile the program. If it has a IDE like Arduino Robot, the compile and program will
becomes easier by just click a button. Currently, due to it does not have the IDE yet, and the
Arduino IDE is very simple, the robot platform designed in this thesis is harder to program than
Arduino Robot. However, Arduino Robot can be programed only in Arduino C code, but the
robot platform designed in this thesis has the feature to program in different programming
languages. Therefore, this robot platform is better in that it can use more than one programming
language, and be programmed by different devices like smart phones. However, the Arduino
Robot is better in that it has a nice IDE which makes user easier to program and debug the robot.

Designing a custom module require users to study embedded firmware, to learn how to
program a microcontroller by using C or other low level programming languages, it increases the
depth of knowledge level when users design their own projects by using the robot platform
designed in this thesis. Therefore, it also gives more opportunity to learn how to program an
embedded system. Compared with Arduino Robot, the Arduino Robot does not require user to do
a lot of low level firmware program. Arduino is easy to use, it already contains a lot of useful
functions. Users just need to call these functions and they do not need to know how these
function works. However, in the real world, a good engineer in area of embedded system needs
to know more about the lower level programming, which user cannot learn from using Arduino.

Therefore, the robot platform designed in this thesis makes users learn more skills.

54

Overall, compared to the Arduino Robot, this modular educational mobile robot platform
is much more powerful, which means it has more pins, more features, and can be programed in
different languages and different devices. However, it still has some shortages, such as the IDE,

if it has a nice IDE, it would make design works much easier.

55

6. Conclusion and Future Work

Recall that the purpose of this thesis was to design a modular educational robotic
platform which could solve the limitation problems which current educational robot platforms
have, such as limited number of I/O pins, only use low level programming languages, and only
can be programmed by PCs. The goal of this modular educational robotic platform was to solve
the limited pins, single programming language, and single programming device problems. The
feedback given by a student volunteer who used this modular educational robotic platform was
said, “this robot platform is simple and powerful”. The Linux System makes the robot easily
controlled by different devices, and it can be programed in different programming languages.
The modular design makes it easy to add more hardware, and the plug and play design is
interesting and easy to use. Also, three demos show that this robot platform has all the features
which are needed for education. Overall, this modular educational robotic platform solves the
problems by providing more pins, multiple programming language, and multiple programming
devices.

Future work includes designing an Integrated Development Environment (IDE), which
can support different requirements for different development levels. The elementary version of
the IDE is preferred to be a block programming tool which likes LEGO programming IDE. Users
just need to drag and drop different blocks into the programming area, and draw lines to link
different blocks. Then the robot will run following the sequence of blocks. This IDE will have
another version for more advanced robotics designers and programmers, it should look similar to

the Arduino IDE. When the user opens a new main file, there are two default functions named

56

init() and loop(). The init() function will run at the beginning of the code, and the loop() function
will run inside a main loop. The last version of this IDE is used for users at a professional level
without Linux experience. This version is just like a normal C programming IDE like Eclipse,
users can fully with code and use buttons to build, compile and execute the code. This IDE will
make it easier for users to program and control the robot at a more advanced level.

Other future work is to create a battery monitoring system for the robot. In the current
design, there is no battery monitoring system inside the robot, which means the user does not
know if the battery level is too low until it turns the robot power off. Fully discharging will
reduce the battery life for Li-ion battery, so a battery monitoring system is needed to track the
battery level to protect battery life. Also, SPI communication will become unstable when the
battery level is too low, so it good to let the user know about the battery level to help
troubleshooting. Therefore, a battery monitoring system makes the robot more user friendly and
protects the robot. Also a Al algorithms to sensing the light will be added to the future, which

will require adding a lighting sensor module, to help understand how to using this platform.

57

LIST OF REFERENCES

[1] Shvartsman, Andrey, Maurice Tedder, and Chan-Jin Chung. "A Modular Mobile Robotic
Platform As An Educational Tool In Computer Science And Engineering." Web.

[2] "Robobutler." Raspberry Pi. Web. <https://www.raspberrypi.org/learning/robo-butler/>.

[3] Piperidis, S., L. Doitsidis, C. Anastasopoulos, and N. C. Tsourveloudis. "A Low Cost Modular
Robot Vehicle Design for Research and Education." 2007 Mediterranean Conference on
Control & Automation (2007).

[4] Tur, J.m. Mirats, and C.f. Pfeiffer. "Mobile Robot Design in Education." IEEE Robotics &
Automation Magazine IEEE Robot. Automat. Mag. 13.1 (2006): 69-75.

[5] Berry, Carlotta A. Mobile Robotics for Multidisciplinary Study. San Rafael, Calif.?: Morgan &
Claypool, 2012. Print.

[6] Gibson, Steve. "Tech Talk." InfoWorld 1 Dec. 1986: 70. Print.

[7] "Stepper Motor Basics." Solarbotics.net. Web.
<http://www.solarbotics.net/library/pdflib/pdf/motorbas.pdf>.

[8] Malinen, Jouni. "Hostapd: IEEE 802.11 AP, IEEE 802.1X/WPA/WPA2/EAP/RADIUS
Authenticator." Hostapd: IEEE 802.11 AP, IEEE 802.1X/WPA/WPA2/EAP/RADIUS
Authenticator. Web. 12 Jan. 2013. <http://w1.fi/hostapd/>.

[9] Ada, Lady. "Setting up a Raspberry Pi as a WiFi Access Point." Adafruit. Web. 20 Nov.
2015.

[10] Sergeev, Vanya. "Vsergeev/c-periphery." GitHub. Web. 8 Aug. 2015.
<https://github.com/vsergeev/c-periphery>.

[11] "Arduino - Robot." Arduino - Robot. Web. <https://www.arduino.cc/en/Main/Robot>.

58

59

APPENDICES

APPENDIX A: PROJECT PARTS LIST

Capacitors

Resistors

LEDs

ICs

Part Number

CL21B102KBANNNC

CL21F104ZBCNNNC

CL21F105ZOCNNNC

CL21F106ZPFNNNE

UWX0G221MCL1GB

RC2012F331CS

RCO0805JR-0747KL

RC0805JR-0710KL

LG R971-KN-1

MSP430G2553IPW28R

MSP430G2553IPW20R

L293DD

LM1117IMPX-3.3/NOPB

Description

1nF 0805 Capacitor

0.1uF 0805 Capacitor

1uF 0805 Capacitor

10uF 0805 Capacitor

220uF Electric Capacitor

330 Ohm 0805 Resistor

47K Ohm 0805 Resistor

10K Ohm 0805 Resistor

LED GREEN DIFFUSED

0805 SMD

MSP430G2553 28Pin

MCU TSSOP-28

MSP430G2553 20Pin

MCU TSSOP-20

H-Bridge Motor

Controller

Linear Voltage Regulator

60

Price

$0.10

$0.10

$0.10

$0.16

$0.33

$0.10

$0.10

$0.10

$0.26

$2.73

$2.59

$3.69

$1.06

Quantity

Total

$0.30

$0.50

$0.60

$0.48

$0.66

$0.20

$0.30

$0.80

$0.52

$5.46

$2.59

$7.38

$1.06

Connectors

V7805-2000R

640454-4

0022013047

640454-3

0022013037

640456-7

0022053071

0022013077

0008500114

Adafruit/P2223

1935161

CONVERT DC/DC REG 5V

2000MA R/A

CONN HEADER VERT

4POS .100 TIN

CONN HOUS 4POS .100

W/RAMP/RIB

CONN HEADER VERT

3POS .100 TIN

CONN HOUS 3POS .100

W/RAMP/RIB

CONN HEADER VERT

7POS .100 TIN

CONN HEADER VERT
7POS .100 TIN (Right
Angle)

CONN HOUS 7POS .100

CONN TERM FEMALE

22-30AWG TIN

GPIO Stacking Header For

Raspberry Pi

TERM BLOCK PCB 2POS

5.0MM GREEN

.100" pitch Connector

Headers

USB Connector

61

$10.84

$0.18

$0.20

$0.16

$0.19

$0.27

$0.79

$0.36

$0.19

$2.50

$0.37

$0.50

$0.10

34

$10.84

$0.36

$0.40

$0.64

$0.76

$0.27

$0.79

$0.72

$6.46

$2.50

$0.37

$0.50

$0.10

Pushbutton

Motors

Others

FSMSM

Adafruit/324

SWITCH TACTILE

SPST-NO 0.05A 24V

Stepper Motor

Respberry Pi 2

Battery

62

$0.22

$14.00

$40.00

$23.92

Total:

$0.66

$28.00

$40.00

$23.92

$138.14

APPENDIX B: MSP430G2553 FIRMWARE CODE

spi_slave.h

#ifndef SPI H
#define SPI H

char txbuf[10];
void spi_init(void);
void spi_putc(unsigned char c);

void return_message(char *buf);

#endif

63

spi_slave.c

#include <msp430g2553.h>
#include "spi_slave.h"
#include "commands.h"

char cmdbuf[10];
char cmd_index=0;

void spi_init(void) {
PISEL |=BIT4 | BIT5 | BIT6 | BIT7;
P1SEL2 |= BIT4 | BITS | BIT6 | BIT7;
UCBOCTL1 = UCSWRST;
UCBOCTLO |= UCMSB + UCSYNC + UCCKPH + UCMODE 1,
UCBOCTL1 &=~UCSWRST;
IE2 |= UCBORXIE;

}

void spi_putc(unsigned char c) {
while (I(IFG2 & UCBOTXIFQG));
UCBOTXBUF =c;

}

void return _message(char *buf) {
inti=0;
while (*buf) {
txbuf[i] = *buf++;
i++;

9

}
spi_putc(txbuf[0]);
J

#pragma vector = USCIABORX VECTOR
__interrupt void USCIORX ISR(void) {
char rx_char;

while (IFG2 & UCBORXIFG) {

rx_char = UCBORXBUF;

if (rx_char =="\n") {
commands(cmdbuf);
cmd _index = 0;

} else {
cmdbuf[cmd index] = rx_char;
cmd_index++;
spi_putc(txbuf[cmd index]);

64

65

stepper_motor driver.h

#ifndef STEPPER MOTOR_DRIVER H
#define STEPPER. MOTOR_DRIVER H

#include <stdint.h>

/* Define step motor pin */

#define STEPPERMOTOR_PORTOUT P30UT
#define STEPPERMOTOR _PORTDIR P3DIR
#define STEPPERMOTOR PORTREN P3REN
//define the right motor pin

#define STEPPERMOTOR MRI1A BITO
#define STEPPERMOTOR MRI1B BIT1
#define STEPPERMOTOR_MR2A BIT2
#define STEPPERMOTOR MR2B BIT3
//define the left motor pin

#define STEPPERMOTOR _MLI1A BIT4
#define STEPPERMOTOR MLI1B BIT5
#define STEPPERMOTOR ML2A BIT6
#define STEPPERMOTOR_ML2B BIT7

//define some constant values

#define RIGHT MOTOR 0

#define LEFT MOTOR 1

#define BOTH_MOTOR 2

#define DIRECTION_FORWARD 0

#define DIRECTION BACKWARD 1

#define DIRECTION_ CLOCIWISE 0

#define DIRECTION _COUNTERCLOCKWISE 1

void stepper_motor _init(void);

void robot_go(uint8 t speed R, uint8 t direction R, uint8 tspeed L, uint8 t
direction_L);

void robot_stop(void);

void robot_get cycle count(void);

#endif

66

Stepper_motor_driver.c

#include <msp430.h>

#include <stdlib.h>

#include "stepper motor driver.h"
#include "spi_slave.h"

#define WHEEL DIFFERENCE 200 //wheel differences in mm
#define WHEEL DIAMETER 85 //wheel diameter in mm
#define WHEEL PERIMETER 267 //wheel perimeter in mm
#define P13

volatile uint8 t DIRECTION R =
volatile uint§ t DIRECTION L =
volatile uint8§ t MOTOR_SPEED R
volatile uint8 t MOTOR SPEED L
T
T

0;
0;

0;
0;

0;
0.

2

volatile uint32 t CYCLES COUNT R
volatile uint32 t CYCLES COUNT L

/************ Stepper_motor_init() sk sk sk sfeoskeoske skeoskeoske skoskok
Enable the motor pin settings and Timer settings
***/
void stepper_motor_init(void) {
//init the 1o pins for all stepper motors
STEPPERMOTOR PORTOUT &= (~STEPPERMOTOR_MRI1A) &
(~STEPPERMOTOR_MR1B)
& (~STEPPERMOTOR_MR2A) & (~STEPPERMOTOR_MR2B)
& (~STEPPERMOTOR_ML1A)
& (~STEPPERMOTOR_MLI1B) & (~STEPPERMOTOR _ML2A)
& (~STEPPERMOTOR_ML2B);
STEPPERMOTOR PORTDIR |= STEPPERMOTOR_ MRI1A |
STEPPERMOTOR_MRI1B
| STEPPERMOTOR_MR2A | STEPPERMOTOR MR2B |
STEPPERMOTOR MLI1A
| STEPPERMOTOR _MLIB | STEPPERMOTOR_ ML2A |
STEPPERMOTOR ML2B;
STEPPERMOTOR_PORTREN &= (~STEPPERMOTOR_MR1A) &
(~STEPPERMOTOR_MR1B)
& (~STEPPERMOTOR_MR2A) & (~STEPPERMOTOR_MR2B)
& (~STEPPERMOTOR_ML1A)
& (~STEPPERMOTOR_MLI1B) & (~STEPPERMOTOR_ML2A)
& (~STEPPERMOTOR_ML2B);

/ITIMER A CONFIG
TAOCTL = TASSEL 2 | MC 0| TACLR;

67

TAICTL = TASSEL 2 |MC 0| TACLR;
TAOCCTLO &= ~CCIE;
TA1CCTLO &= ~CCIE;

}

[rEFARER stepper_ motor_direction_set() *HHAwwk
Set the motor run direction
motor sel: motor selection O:right 1:left 2:all
direction: motor direction 1:front 0:back
***/
void stepper_motor_direction_set(uint8 t motor sel, uint8 t direction) {
switch (motor_sel) {
case RIGHT MOTOR:
DIRECTION R = direction;
break;
case LEFT MOTOR:
DIRECTION L = direction;
break;
default:
DIRECTION R = direction;
DIRECTION L = direction;
break;

}

/**************** Set_speed() sk ok s sk o sk sk ook sk sk sk koo skok sk

set the motor speed
motor_sel: motor selection O:right 1:left 2:all
speed: motor speed 5~50 rpm
***/
void set_speed(uint8 t motor_sel, uint8_t speed) {
switch (motor sel) {
case RIGHT MOTOR:
MOTOR_SPEED R = speed;
break;
case LEFT MOTOR:
MOTOR_SPEED L = speed;
break;
default:
MOTOR _SPEED R = speed;
MOTOR SPEED L = speed;
break;

68

/********** Calculate_speed_cycles() skeskeoske skeoskeoske skeoskosk sk
calculate and return the timer cycles by motor
speed in rpm
***/
uintl6 t calculate speed cycles(uint8 t speed) {

uintl6_t steps = 0;

uintl6_t delay cycles = 0;

uint8 ti=0;

for (1=0; 1 <speed; i++) {
steps +=200;

}

delay cycles = (uintl6_t)(60000000 / steps);
return delay cycles;

}

/*************** timer_enable() sk sk s ke sfe ke sk sk sk sk skosk sk

enable the timer interrupt
***/

void timer_enable(void) {

TAOCCTLO |= CCIE;
TAOCCRO = calculate speed cyclescMOTOR SPEED R);

TA1CCTLO |= CCIE;
TAITCCRO = calculate speed cyclescMOTOR SPEED L);

TAOCTL = TASSEL 2 | MC_1 | TACLR;
TAICTL = TASSEL 2 | MC_1 | TACLR;

}

/*************** timer_disable() sk s s sk sfe skeoske sk sk skoskosk

disable the timer interrupt
***/
void timer_disable(void) {

TAOCCTLO &= ~CCIE;

TAICCTLO &= ~CCIE;

TAOCTL = MC_0;
TAICTL = MC_0;
}

/**************** rObOt gO() sk sk ke sk ske ke sk ske ke sfeoskeoske seoseoske skoskok
the robot will go by different speed
speed R, speed L: motor speed 5~50 rpm

direction R, direction L: O:front 1:back
***/

69

void robot_go(uint8 t speed R, uint8 t direction R, uint8 t speed L, uint8 t
direction_L) {
CYCLES _COUNT R =0;
CYCLES_COUNT L =0;
stepper_motor direction_set(RIGHT MOTOR, direction R);
stepper_motor direction_set(LEFT MOTOR, direction L);
set_speed(RIGHT MOTOR, speed R);
set_speed(LEFT MOTOR, speed L);
timer_enable();
return_message("M:RUNNING.");

}

/****************rObOtﬁ“ﬂK)******************

the robot will stop
***/
void robot_stop(void) {
timer_disable();
set_speed(RIGHT MOTOR, 0);
set speed(LEFT _MOTOR, 0);
unsigned char *rightCount = (unsigned char*)&CYCLES COUNT R;
unsigned char *leftCount = (unsigned char*)&CYCLES COUNT L;
char buf[10] = {'M, "', rightCount[0]+1, rightCount[1]+1, rightCount[2]+1,
rightCount[3]+1, leftCount[0]+1, leftCount[1]+1, leftCount[2]+1, leftCount[3]+1};
return_message((char *)buf);

}

/**********rObOtgetCYCk Counq)************
the robot will return the cycle count
***/
void robot_get cycle count(void) {
unsigned char *rightCount = (unsigned char*)&CYCLES COUNT R;
unsigned char *leftCount = (unsigned char*)&CYCLES COUNT L;
char buf[10] = {'M, "', rightCount[0]+1, rightCount[1]+1, rightCount[2]+1,
rightCount[3]+1, leftCount[0]+1, leftCount[1]+1, leftCount[2]+1, leftCount[3]+1};
return_message((char *)buf);

}

//TIMER A INTERRUPT AO for right, A1l for left
#pragma vector=TIMERO A0 VECTOR
__interrupt void Timer AO(void) {

if (DIRECTION R ==0) {

switch(CYCLES _COUNT R % 4) {
case 0:
STEPPERMOTOR_PORTOUT &=

(~STEPPERMOTOR_MR2B) & (~STEPPERMOTOR_MRI1A);

70

STEPPERMOTOR PORTOUT |=
STEPPERMOTOR_MR2A | STEPPERMOTOR_MRI1B;

break;

case 1:

STEPPERMOTOR PORTOUT &=
(~STEPPERMOTOR_MR2B) & (~STEPPERMOTOR_MR1B);

STEPPERMOTOR PORTOUT |=
STEPPERMOTOR_MR2A | STEPPERMOTOR MRIA;

break;

case 2:

STEPPERMOTOR PORTOUT &=
(~STEPPERMOTOR_MR2A) & (~STEPPERMOTOR_MRI1B);

STEPPERMOTOR PORTOUT |-
STEPPERMOTOR MR2B | STEPPERMOTOR MRI1A;

break;

case 3:

STEPPERMOTOR PORTOUT &=
(~STEPPERMOTOR_MR2A) & (~STEPPERMOTOR_MRI1A);

STEPPERMOTOR PORTOUT |=
STEPPERMOTOR MR2B | STEPPERMOTOR MRI1B;

break;

default:

STEPPERMOTOR PORTOUT &=
(~STEPPERMOTOR MR2B) & (~STEPPERMOTOR_MR2A) &
(~STEPPERMOTOR_MR1B) & (~STEPPERMOTOR _MR1A);

break;

}
} else {
switch(CYCLES COUNT R % 4) {
case O:

STEPPERMOTOR PORTOUT &=
(~STEPPERMOTOR MR2A) & (~STEPPERMOTOR MR1A);

STEPPERMOTOR PORTOUT |=
STEPPERMOTOR_MR2B | STEPPERMOTOR MRI1B;

break;

case 1:

STEPPERMOTOR PORTOUT &=
(~STEPPERMOTOR_MR2A) & (~STEPPERMOTOR_MRI1B);

STEPPERMOTOR PORTOUT |=
STEPPERMOTOR MR2B | STEPPERMOTOR MRI1A;

break;

case 2:

STEPPERMOTOR PORTOUT &=

(~STEPPERMOTOR_MR2B) & (~STEPPERMOTOR MR1B);

71

STEPPERMOTOR PORTOUT |=
STEPPERMOTOR_MR2A | STEPPERMOTOR_MRI1A;

break;

case 3:

STEPPERMOTOR PORTOUT &=
(~STEPPERMOTOR_MR2B) & (~STEPPERMOTOR_MR1A);

STEPPERMOTOR PORTOUT |=
STEPPERMOTOR MR2A | STEPPERMOTOR MRI1B;

break;

default:

STEPPERMOTOR PORTOUT &=
(~STEPPERMOTOR_MR2B) & (~STEPPERMOTOR MR2A) &
(~STEPPERMOTOR_MRI1B) & (~STEPPERMOTOR_MR1A);

break;

h
}
CYCLES _COUNT _ R++;
§

#pragma vector=TIMER1 A0 VECTOR
__interrupt void Timer Al(void) {
if (DIRECTION L ==0) {
switch(CYCLES COUNT L % 4) {
case 0:
STEPPERMOTOR PORTOUT &=
(~STEPPERMOTOR_ML2A) & (~STEPPERMOTOR_MLI1A);
STEPPERMOTOR PORTOUT |=
STEPPERMOTOR ML2B | STEPPERMOTOR_ MLI1B;
break;
case 1:
STEPPERMOTOR PORTOUT &=
(~STEPPERMOTOR ML2A) & (~STEPPERMOTOR_MLI1B);
STEPPERMOTOR PORTOUT |=
STEPPERMOTOR ML2B | STEPPERMOTOR_MLI1A;
break;
case 2:
STEPPERMOTOR PORTOUT &=
(~STEPPERMOTOR _ML2B) & (~STEPPERMOTOR_ ML1B);
STEPPERMOTOR PORTOUT |=
STEPPERMOTOR ML2A | STEPPERMOTOR MLIA;
break;
case 3:
STEPPERMOTOR PORTOUT &=
(~STEPPERMOTOR _ML2B) & (~STEPPERMOTOR ML1A);

72

STEPPERMOTOR PORTOUT |=
STEPPERMOTOR ML2A | STEPPERMOTOR MLI1B;
break;
default:
STEPPERMOTOR PORTOUT &=
(~STEPPERMOTOR _ML2B) & (~STEPPERMOTOR MIL2A) &
(~STEPPERMOTOR_MLI1B) & (~STEPPERMOTOR ML1A);
break;
}
} else {
switch(CYCLES COUNT L % 4) {
case O:
STEPPERMOTOR PORTOUT &=
(~STEPPERMOTOR_ML2B) & (~STEPPERMOTOR ML1A);
STEPPERMOTOR PORTOUT |=
STEPPERMOTOR ML2A | STEPPERMOTOR MLI1B;
break;
case 1:
STEPPERMOTOR PORTOUT &=
(~STEPPERMOTOR _ML2B) & (~STEPPERMOTOR ML1B);
STEPPERMOTOR PORTOUT |=
STEPPERMOTOR ML2A | STEPPERMOTOR MLIA;
break;
case 2:
STEPPERMOTOR PORTOUT &=
(~STEPPERMOTOR_ML2A) & (~STEPPERMOTOR_MLI1B);
STEPPERMOTOR PORTOUT |=
STEPPERMOTOR ML2B | STEPPERMOTOR _MLI1A;
break;
case 3:
STEPPERMOTOR PORTOUT &=
(~STEPPERMOTOR ML2A) & (~STEPPERMOTOR_MLI1A);
STEPPERMOTOR PORTOUT |=
STEPPERMOTOR ML2B | STEPPERMOTOR_MLI1B;
break;
default:
STEPPERMOTOR PORTOUT &=
(~STEPPERMOTOR _ML2B) & (~STEPPERMOTOR MIL2A) &
(~STEPPERMOTOR_MLI1B) & (~STEPPERMOTOR ML1A);
break;
}
}

CYCLES_COUNT _L++;

73

adc.h

#ifndef ADC H
#define ADC H

void init_adc(void);
uintl6_t adc_convert(uint8 t pin);

#endif /* ADC H_*/

74

adc.c

#include <msp430.h>
#include <stdint.h>
#include "adc.h"

void init_adc(void) {
uintl6 t adc10ctl0 = 0x0000;
adc10ctl0 |= SREF _0; /* VR+=VCC & VR-=VSS */
adc10ctl0 |= ADC10SHT 2; /* 16 clock sample-and-hold time */
adc10ctl0 |= ADCI0ON; /* enable ADC */
ADC10CTLO = adc10ctlO;

}

/* 10-bit ADC will return max of Ox3FF */
uintl6 tadc convert(uint8 t pin) {

ADCIO0CTLI1 = (pin << 12);
ADCI0AEO = (1 << pin); /* enable analog input */

ADCIOCTLO |= (ENC | ADC10SC); /* enable & start conversion */
while(ADC10CTL1 & ADC10BUSY); /* wait for conversion to complete */
ADCI10CTLO &= ~ENC; /* disable conversion */

return(ADC10MEM); /* converted value */

75

ir_sensor_driver.h

#ifndef IR_SENSOR DRIVER H_
#define IR SENSOR DRIVER H

#define IR_SENSOR F 0
#define IR_SENSOR B 1
#define IR_ SENSOR L 2
#define IR_SENSOR R 3

void ir_sensor_init(void);

uintl6 _t get IR sensor data(uint8 t IR number);
void prepare IR data(void);

void get IR data(void);

#endif

76

ir_sensor_driver.c

#include <stdint.h>

#include "ir_sensor_driver.h"
#include "adc.h"

#include "spi_slave.h"

void ir_sensor_init(void) {

}

init_adc();

uintl6 t get IR sensor data(uint8 t IR number) {

}

return adc_convert(IR_number);

void prepare IR data(void) {

uintl6_t sensorData F = get IR sensor data(0);
uintl6_t sensorData B = get IR sensor data(2);
uintl6_t sensorData L = get IR sensor data(1);
uint16_t sensorData R = get IR sensor data(3);

unsigned char data F 0 = (unsigned char)((sensorData_F & 0xFF00) >> 8) + 1;
unsigned char data F 1 = (unsigned char)(sensorData F & 0x00FF);
if (data F 1 ==0x00) data F 1=0x01;

unsigned char data B0 = (unsigned char)((sensorData_B & 0xFF00) >> 8) + 1;
unsigned char data B 1 = (unsigned char)(sensorData B & 0x00FF);
if (data B_1 ==0x00) data B 1 =0x01;

unsigned char data L0 = (unsigned char)((sensorData L & 0xFF00) >> 8) + 1;
unsigned char data L. 1 = (unsigned char)(sensorData_L & 0x00FF);
if (data L 1==0x00) data L 1 =0x01;

unsigned char data R 0 = (unsigned char)((sensorData_R & 0xFF00) >> 8) + 1;
unsigned char data R 1 = (unsigned char)(sensorData R & 0x00FF);
if (data R 1 ==0x00) data R 1 =0x01;

char buf[10] = {'S', "', data F 0, data F 1,data B 0,data B 1, data L 0,

data L 1,data R 0,data R 1};

}

return_message((char *)buf);

void get IR data(void) {

}

return_message("S:IR_ READY");

71

APPENDIX C: RASPBERRYPI FIRMWARE CODE

stepper_motor api.h

#ifndef STEPPER MOTOR_API H
#define STEPPER._ MOTOR_API H

void robotMotorModulelnit(uint8 t en_pin);

void robotGo(uint8 t speed r, uint8 t direction r, uint8 t speed I, uint8 t direction I);
void robotStop(void);

void robotGet(void);

void robotCGet(void);

#endif

78

stepper_motor_api.c

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>

#include "gpio.h"
#include "spi.h"

#include "stepper motor api.h"
uint8_t Motor Module Sel Pin = 4;

void robotMotorModulelnit(uint8 t en_pin) {

Motor Module Sel Pin=en_pin;

printf("The Motor Module Connected to Pin%d\n", en_pin);
}

void robotGo(uint8_t speed r, uint8 t direction_r, uint8 t speed 1, uint8 t direction 1) {
gpio_tspi sel;
spi_t spi;
bool value;
uint8 t buf[10] = {'M', "', 'G', 'O', speed_r, '0'+direction_r, speed 1,
'0"+direction_1,"', "\n'};
printf("shifted out: %s\n", buf);

if (gpio_open(&spi_sel, Motor Module Sel Pin, GPIO DIR OUT) <0) {
fprintf(stderr, "gpio_open(): %s\n", gpio_errmsg(&spi_sel));
exit(1);

b

if (gpio_write(&spi_sel, !value) < 0) {
fprintf(stderr, "gpio_write(): %s\n", gpio_errmsg(&spi_sel));
exit(1);

}

if (spi_open(&spi, "/dev/spidev0.0", 0, 10000) <0) {
fprintf(stderr, "spi_open(): %s\n", spi_errmsg(&spi));
exit(1);

h

if (spi_transfer(&spi, buf, buf, sizeof(buf)) < 0) {
fprintf(stderr, "spi_transfer(): %s\n", spi_errmsg(&spi));
exit(1);

79

printf("shifted in: %s\n", buf);
spi_close(&spi);

if (gpio_write(&spi_sel, value) < 0) {
fprintf(stderr, "gpio_write(): %s\n", gpio_errmsg(&spi_sel));
exit(1);

}

gpio_close(&spi_sel);
}

void robotStop(void) {
gpio_tspi_sel;
spi_t spi;
bool value;
uint8 t buf[10] = {'M", "",'S",'"T",'O", 'P",'","", "', "\n'};
printf("shifted out: %s\n", buf);

if (gpio_open(&spi_sel, Motor Module Sel Pin, GPIO DIR OUT) <0) {
fprintf(stderr, "gpio_open(): %s\n", gpio_errmsg(&spi_sel));
exit(1);

}

if (gpio_write(&spi_sel, !value) < 0) {
fprintf(stderr, "gpio_write(): %s\n", gpio_errmsg(&spi_sel));
exit(1);

}

if (spi_open(&spi, "/dev/spidev0.0", 0, 10000) <0) {
fprintf(stderr, "spi_open(): %s\n", spi_errmsg(&spi));
exit(1);

}

if (spi_transfer(&spi, buf, buf, sizeof(buf)) < 0) {
fprintf(stderr, "spi_transfer(): %s\n", spi_errmsg(&spi));

exit(1);
}

printf("shifted in: %s\n", buf);
spi_close(&spi);
if (gpio_write(&spi_sel, value) < 0) {

80

fprintf(stderr, "gpio_write(): %s\n", gpio_errmsg(&spi_sel));
exit(1);
h

gpio_close(&spi_sel);
b

void robotGet(void) {
gpio_tspi_sel;
spi_t spi;
bool value;
uint8 t buf[10] = {'M", "",'G",'E","T",'","","","", "\n'};
printf("shifted out: %s\n", buf);

if (gpio_open(&spi_sel, Motor Module Sel Pin, GPIO _DIR OUT) <0) {
fprintf(stderr, "gpio_open(): %s\n", gpio_errmsg(&spi_sel));
exit(1);

}

if (gpio_write(&spi_sel, !value) <0) {
fprintf(stderr, "gpio_write(): %s\n", gpio_errmsg(&spi_sel));
exit(1);

}

if (spi_open(&spi, "/dev/spidev0.0", 0, 10000) <0) {
fprintf(stderr, "spi_open(): %s\n", spi_errmsg(&spi));
exit(1);

}

if (spi_transfer(&spi, buf, buf, sizeof(buf)) < 0) {
fprintf(stderr, "spi_transfer(): %s\n", spi_errmsg(&spi));
exit(1);

}

uint32_t rightCount = ((uint32_t)(buf[5]-1) <<24) | ((buf[4]-1) << 16) |
((buf[3]-1) << 8) | (buf2]-1);

uint32 t leftCount = ((uint32_t)(buf[9]-1) << 24) | ((buf[8]-1) << 16) | ((buf[7]-1)
<< 8) | (buf[6]-1);

printf("shifted in: %c%cL=%ld,R=%Ild\n", buf[0], buf[1], leftCount, rightCount);

spi_close(&spi);

if (gpio_write(&spi_sel, value) < 0) {
fprintf(stderr, "gpio_write(): %s\n", gpio_errmsg(&spi_sel));
exit(1);

81

}

gpio_close(&spi_sel);

void robotCGet(void) {

gpio_tspi_sel;

spi_t spi;

bool value;

uint8 t buf[10] = {'M", "'",'C",'G",'E", "T",','"," ", "\n'};
printf("shifted out: %s\n", buf);

if (gpio_open(&spi_sel, Motor Module Sel Pin, GPIO DIR OUT) <0) {
fprintf(stderr, "gpio_open(): %s\n", gpio_errmsg(&spi_sel));
exit(1);

}

if (gpio_write(&spi_sel, !value) < 0) {
fprintf(stderr, "gpio_write(): %s\n", gpio_errmsg(&spi_sel));
exit(1);

}

if (spi_open(&spi, "/dev/spidev0.0", 0, 10000) <0) {
fprintf(stderr, "spi_open(): %s\n", spi_errmsg(&spi));
exit(1);

}

if (spi_transfer(&spi, buf, buf, sizeof(buf)) < 0) {
fprintf(stderr, "spi_transfer(): %s\n", spi_errmsg(&spi));
exit(1);

}

uint32_t leftCount = ((uint32_t)(buf[5]-1) << 24) | (buf[4]-1) << 16) | ((buf[3]-1)
<< 8) | (buf[2]-1);

uint32_t rightCount = ((uint32_t)(buf[9]-1) << 24) | ((buf[8]-1) << 16) |

((buff7]-1) << 8) | (bufl6]-1);
printf("shifted in: %c%cL=%ld,R=%ld\n", buf[0], buf[1], leftCount, rightCount);

spi_close(&spi);
if (gpio_write(&spi_sel, value) < 0) {

fprintf(stderr, "gpio write(): %s\n", gpio_errmsg(&spi_sel));
exit(1);

82

gpio_close(&spi_sel);

83

ir_sensor_api.h

#ifndef STEPPER MOTOR_API H
#define STEPPER MOTOR_API H

void IRSensorModulelnit(uint8 t en_pin);
void getIR(uint16_t* data);

void prelR(void);

void get ir datas(uintl6_t* data);
uintl6 t get ir data(uint8 t* IR Sensor);

#endif

84

ir_sensor_api.c

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>

#include "gpio.h"
#include "spi.h"

#include "ir_sensor api.h"
uint8 t IR Sensor Module Sel Pin=17;

void IRSensorModulelnit(uint8 ten pin) {

IR Sensor Module Sel Pin=en_ pin;

printf("The IR Sensor Module Connected to Pin%d\n", en_pin);
}

void prelR(void) {
gpio_tspi sel;
spi_t spi;
bool value;
Uintg_t buﬂlo] — {VSV’ V:l, IPI’ IRV’ VEI’ ' V’ VIV’ VRV’ ' l’ l\nl};

if (gpio_open(&spi_sel, IR_Sensor Module Sel Pin, GPIO DIR OUT) <0) {
fprintf(stderr, "gpio_open(): %s\n", gpio_errmsg(&spi_sel));
exit(1);

}

if (gpio_write(&spi_sel, !value) <0) {
fprintf(stderr, "gpio_write(): %s\n", gpio_errmsg(&spi_sel));
exit(1);

}

if (spi_open(&spi, "/dev/spidev0.0", 0, 10000) <0) {
fprintf(stderr, "spi_open(): %s\n", spi_errmsg(&spi));
exit(1);

b

if (spi_transfer(&spi, buf, buf, sizeof(buf)) < 0) {
fprintf(stderr, "spi_transfer(): %s\n", spi_errmsg(&spi));
exit(1);

}

printf("shifted in: %s\n", buf);

85

spi_close(&spi);

if (gpio_write(&spi_sel, value) < 0) {
fprintf(stderr, "gpio_write(): %s\n", gpio_errmsg(&spi_sel));
exit(1);

b

gpio_close(&spi_sel);
}

void getlR(uint16_t* data) {
gpio_tspi sel;
spi_t spi;
bool value;
Uintg_t buﬂlo] — {VSV’ V:l, IGV’ 'E', ITV’ ' l’ lI') |Rl’ ' V’ V\nv};

if (gpio_open(&spi_sel, IR_Sensor Module Sel Pin, GPIO DIR OUT) <0) {
fprintf(stderr, "gpio_open(): %s\n", gpio_errmsg(&spi_sel));
exit(1);

}

if (gpio_write(&spi_sel, !value) <0) {
fprintf(stderr, "gpio_write(): %s\n", gpio_errmsg(&spi_sel));
exit(1);

}

if (spi_open(&spi, "/dev/spidev0.0", 0, 10000) <0) {
fprintf(stderr, "spi_open(): %s\n", spi_errmsg(&spi));
exit(1);

b

if (spi_transfer(&spi, buf, buf, sizeof(buf)) < 0) {
fprintf(stderr, "spi_transfer(): %s\n", spi_errmsg(&spi));
exit(1);

}

uintl6 t dataFront = ((uint16_t)(buf[2]-1) << 8) | (buf[3]);

uint16_t dataBack = ((uint16_t)(buf[4]-1) << 8) | (buf[5]);

uintl16_t datalLeft = ((uint16_t)(buf[6]-1) << 8) | (buf[7]);

uintl6 t dataRight = ((uint16_t)(buf[8]-1) << 8) | (buf[9]);

printf("shifted in: %c%cF=%d,B=%d,L=%d,R=%d\n", buf[0], buf[1], dataFront,
dataBack, dataleft, dataRight);

data[0] = dataFront;
data[1] = dataBack;

86

data[2] = dataleft;
data[3] = dataRight;

spi_close(&spi);

if (gpio_write(&spi_sel, value) < 0) {
fprintf(stderr, "gpio_write(): %s\n", gpio_errmsg(&spi_sel));
exit(1);

}

gpio_close(&spi_sel);
}

void get ir_datas(uintl6_t* data) {
prelR();
//delay
nt i;
for (i=0;1<50000; i++);
getIR(data);

}

uintl6_t get ir data(uint8 t* IR Sensor) {

uintl6 _t data[4];

get ir datas(data);

if (!strcmp(IR_Sensor,"front")) {
return data[0];

} else if (Istremp(IR_Sensor,"back")) {
return data[1];

} else if (!strcmp(IR _Sensor,"left")) {
return data[2];

} else if (!stremp(IR_Sensor,"right")) {
return data[3];

} else {
return 0;

}

87

APPENDIX D: EXAMPLE PROJECT CODE

Demo Project 1: Basic Control

main.c

#include <stdio.h>

#include <stdlib.h>
#include <stdint.h>
#include <string.h>

#include "stepper motor api.h"
#include "ir_sensor api.h"

int main(int argc, char const *argv[])
{
robotMotorModulelnit(4);
IRSensorModulelnit(17);
printf("%s\n", argv[1]);
if (!stremp(argv[1],"go")) {
if (arge > 3) {
uint8 t speed r = atoi(argv[2]);
uint8 t direction r = atoi(argv[3]);
uint8 t speed | = atoi(argv([4));
uint8_t direction_| = atoi(argv[5]);
printf("%d %d %d %d\n",speed_r,direction_r,speed l,direction I);
robotGo(speed _r,direction_r,speed l,direction 1);
} else {
robotGo(50,0,50,0);
}
} else if (!strcmp(argv[1],"stop")) {
robotStop();
} else if (Istremp(argv[1], "get")) {
robotGet();
} else if (Istremp(argv[1], "cget")) {
robotCGet();
} else if (Istremp(argv[1], "irget")) {
if (arge > 2) {
printf("IR Sensor %s: %d\n", argv[2], get ir data(argv[2]));
} else {
uintl6_t data[4];
get_ir_datas(data);
printf("F:%d B:%d L:%d R:%d\n", data[0], data[1], data[2],
data[3]);

88

}

return 0;

&9

Makefile

CC=gcc
CFLAGS=-1/home/pi/c-periphery-master/src

LIBS =-lm

periphery = /home/pi/c-periphery-master/periphery.a
FILE = main.c stepper _motor_api.c ir_sensor_api.c
TARGET = robot

all: $(TARGET)

robot: $(FILE)
$(CC) -0 $@ $" $(periphery) $(CFLAGS) $(LIBS)

clean:
rm $(TARGET)

90

Demo Project 2: Obstacle Avoidance

stop_before_obstacle.c

#include <stdio.h>

#include <stdlib.h>
#include <stdint.h>
#include <string.h>

#include "gpio.h"
#include "spi.h"

#include "stepper motor api.h"
#include "ir_sensor api.h"
#include "ir_functions.h"

int main(int argc, char const *argv[])

{

uintl6 _t frontLimit = Calculate Front IR Value(10);
uint16_t sensorData[4];
int i;

printf("Front Limit is %d\n", frontLimit);

robotMotorModulelnit(17);
IRSensorModulelnit(4);
printf("Obstacle Avoidance project start!\n");

robotGo(20,1,20,1);

for (1= 0; 1 <50000; i++);

get _ir_datas(sensorData);

while (sensorData[0] < frontLimit) {
for (1= 0;1<50000; i++);
get_ir_datas(sensorData);

}

for (1= 0;1<50000; i++);

robotStop();

for (1= 0; 1< 50000; i++);

robotGet();

return 0;

91

shy_avoid.c

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>

#include "gpio.h"
#include "spi.h"

#include "stepper motor api.h"
#include "ir_sensor api.h"
#include "ir_functions.h"

int main(int argc, char const *argv[])

{
uintl6 t frontLimit = Calculate Front IR Value(10);
uint16_t backLimit = Calculate Back IR Value(10);
uintl6_t sensorData[4];
int 1;
uint8 t status = 0;

printf("Front Limit is %d\n", frontLimit);
printf("Back Limit is %d\n", backLimit);

robotMotorModulelnit(17);
IRSensorModulelnit(4);
printf("Obstacle Avoidance project start!\n");

while(1) {
get _ir_datas(sensorData);
for (1= 0; 1 <50000; i++);
if (sensorData[0] > frontLimit && sensorData[1] < backLimit) {
if (status !1="F") {
robotGo(20,0,20,0);
for (1= 0;1<50000; i++);
status ='F";
h
} else if (sensorData[0] < frontLimit && sensorData[1] > backLimit) {
if (status !="B") {
robotGo(20,1,20,1);
for (1= 0;1<50000; i++);
status ='B';

} else {

92

robotStop();
for (i=0;1<50000; i++),

return 0;

93

main.c for obstacle avoid
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>

#include "gpio.h"
#include "spi.h"

#include "stepper motor api.h"
#include "ir_sensor api.h"
#include "ir_functions.h"

uint8_t ObstacleAvoid(uintl6 t frontLimit, uintl6 t* sensorData, uint8_t states);

int main(int argc, char const *argv[])

{

uintl6 _t frontLimit = Calculate Front IR Value(10);
uint16_t sensorData[4];

int i;

uint8_t states = 0;

printf("Front Limit is %d\n", frontLimit);

robotMotorModulelnit(4);
IRSensorModulelnit(17);
printf("Obstacle Avoidance project start!\n");

while(1) {
get ir datas(sensorData);
for(i=0; 1< 50000; i++);
states = ObstacleAvoid(frontLimit, sensorData, states);

}

return 0;

}

uint8_t ObstacleAvoid(uint16 t frontLimit, uintl6 t* sensorData, uint8 t states) {
int i;
uint8 t nextStates = states;
switch (states) {
case 0:

robotGo(30,1,30,1);
for (i = 0; i < 50000; i++);

94

nextStates = 1;
break;
case 1:
if (sensorData[0] > frontLimit) {
robotStop();
for (1= 0; 1 <50000; i++);
nextStates = 2;
}
break;
case 2:
robotGo(30,0,30,1);//turn right
for (i=0; 1< 50000; i++);
nextStates = 3;
break;
case 3:
if (sensorData[0] < frontLimit) {
robotStop();
for (i=0;1<50000; i++);
nextStates = 0;
h
break;
default:
robotStop();
for (1= 0; 1 <50000; i++);
break;
§

return nextStates;

95

Makefile

CC=gcc
CFLAGS=-1/home/pi/c-periphery-master/src

LIBS =-lm

periphery = /home/pi/c-periphery-master/periphery.a

FILE SBO = stop before obstacle.c stepper motor api.c ir_functions.c ir_sensor_api.c
FILE SA =shy avoid.c stepper motor api.c ir_functions.c ir_sensor api.c

FILE OA = main.c stepper_motor api.c ir_functions.c ir_sensor api.c

TARGET = StopBeforeObstacle ShyAvoid ObstacleAvoid

all: $(TARGET)

StopBeforeObstacle: $(FILE SBO)
$(CC) -0 $@ $” $(periphery) $(CFLAGS) $(LIBS)

ShyAvoid: S(FILE_SA)
$(CC) -0 $@ $" $(periphery) $(CFLAGS) $(LIBS)

ObstacleAvoid: $(FILE_OA)
$(CC) -0 $@ $" $(periphery) $(CFLAGS) $(LIBS)

clean:
rm $(TARGET)

96

Demo Project 3: Wall Following

main.c

#include <stdio.h>

#include <stdlib.h>
#include <stdint.h>
#include <string.h>

#include "gpio.h"
#include "spi.h"

#include "stepper motor api.h"
#include "ir_sensor api.h"
#include "ir_functions.h"

#include "pi_robot headers.h"

#define MODE_FOLLOW LEFT WALL 0
#define MODE_FOLLOW_RIGHT WALL 1
#define MODE_IN_ THE MIDDLE OF WALLS 2

uint8 t Kp =2;
struct Motors motors;

uint8_t LeftWallFollowing(struct SensorLimits IRLimits, uint16_t* sensorData, uint8 t
states);
void P_Controller(struct SensorLimits IRLimits, uint16 t* sensorData, uint8 t mode);

int main(int argc, char const *argv[])

{
struct SensorLimits IRLimits;
IRLimits.frontLimit = Calculate Front IR Value(10);
IRLimits.leftLimit = Calculate Left IR Value(5);
IRLimits.rightLimit = Calculate Right IR Value(5);
uint16_t sensorData[4];
int i;
uint8_t states = 0;

printf("Front Limit is %d\n", IRLimits.frontLimit);
printf("Left Limit is %d\n", IRLimits.leftLimit);
printf("Right Limit is %d\n", IRLimits.rightLimit);

motors.speed 1= 30;
motors.speed r = 30;
motors.direction 1= 1;

97

motors.direction r=1;

robotMotorModulelnit(4);
IRSensorModulelnit(17);

while(1) {
get _ir_datas(sensorData);
for(i=0; 1 <50000; i++);
states = LeftWallFollowing(IRLimits, sensorData, states);

}

return 0;
}
uint8_t LeftWallFollowing(struct SensorLimits IRLimits, uint16_t* sensorData, uint8 t
states) {

nt i;

uint8_t nextStates = states;

switch (states) {
case 0:
robotGo(motors.speed r, motors.direction_r, motors.speed |1,
motors.direction_I);
for (1= 0; 1 <50000; i++);
nextStates = 1;
break;
case 1:
if (sensorData[0] > IRLimits.frontLimit) {
robotStop();
for (1= 0; 1< 50000; i++);
nextStates = 2;
} else if (sensorData[2] < Calculate Left IR Value(20)) {
robotStop();
for (1= 0;1<50000; i++);
nextStates = 4;
} else {
P_Controller(IRLimits, sensorData,
MODE FOLLOW_LEFT WALL);
robotGo(motors.speed_r, motors.direction r,
motors.speed 1, motors.direction 1);
for (1= 0;1<50000; i++);
nextStates = 1;
§
break;
case 2:

98

case 3:

robotGo(30,0,30,1);

for (i=0;1<50000; i++);
nextStates = 3;

break;

if (sensorData[0] < IRLimits.frontLimit && sensorData[2] >

Calculate Left IR Value(9)) {

case 4:

case 5:

case 6:

case 7:

robotStop();
for (1= 0;1<100000; i++);
nextStates = 0;
motors.speed 1= 30;
motors.speed r = 30;
motors.direction 1= 1;
motors.direction r=1;

} else {
nextStates = 3;

}
break;

robotGo(50,1,15,1);

for (1= 0; 1 <50000; i++);
nextStates = 5;

break;

if (sensorData[0] > Calculate Left IR Value(8)) {
robotStop();
for (1= 0; 1 <50000; i++);
nextStates = 6;
} else {
nextStates = 5;

§
break;

robotGo(30,0,30,1);

for (1= 0; 1 <50000; i++);
nextStates = 7;

break;

if (sensorData[0] < IRLimits.frontLimit && sensorData[2] >

Calculate Left IR Value(5)) {

robotStop();

for (i=0; 1< 100000; i++);
nextStates = 1;
motors.speed 1= 30;
motors.speed r=30;

99

motors.direction 1= 1;
motors.direction_r = 1;

} else {
nextStates = 7;

}

break;

default:

robotStop();

for (1= 0;1<50000; i++);

break;

}

return nextStates;

}

void P_Controller(struct SensorLimits IRLimits, uint16 t* sensorData, uint8 t mode) {
int cur_error;
double cur_error_inch;
switch (mode) {
case MODE FOLLOW_ LEFT WALL:
cur_error = IRLimits.leftLimit - sensorData[2];
cur_error_inch =
Calculate Left Inch Value((double)sensorData[2]) - 10.;
motors.speed 1= (uint8 t)(30. - cur_error inch * ((double)Kp));
motors.speed r = 30;
printf("the error is %d, and %f inch\n", cur_error, cur_error _inch);
printf("the left speed is %d\n", motors.speed_1);
printf("the right speed is %d\n", motors.speed r);
break;

100

pi_robot_headers.h
#ifndef PI ROBOT HEADERS H
#define P ROBOT HEADERS H

struct Motors {
uint8 t speed I;
uint8 t speed r;
uint8 t direction [;
uint8_t direction r;

3

struct SensorLimits {
uintl6_t frontLimit;
uintl16_t backLimit;
uintl16_t leftLimit;
uintl6 t rightLimit;

#endif

101

Makefile

CC=gcc

CFLAGS=-1/home/pi/c-periphery-master/src

LIBS = -lm

periphery = /home/pi/c-periphery-master/periphery.a

FILE WF = main.c stepper_motor_api.c ir_functions.c ir_sensor_api.c
TARGET = WallFollowing

all: $(TARGET)

WallFollowing: $(FILE_WF)
$(CC) -0 $@ $" $(periphery) $(CFLAGS) $(LIBS)

clean:
rm $(TARGET)

102

APPENDIX E: LIST OF DEMO VIDEOS

Demo of Basic Control: https:/www.voutube.com/watch?v=72nGzVvk&8Y g

Demo of Obstacle Avoidance: https://www.youtube.com/watch?v=Emuj7UCeCBA

Demo of Wall Following (inner corner): https://www.youtube.com/watch?v=PRIdmvR Wy Xk

Demo of Wall Following (long wall): https://www.youtube.com/watch?v=DnVG7MBfuXA

Demo of Wall Following (outer corner): https://www.youtube.com/watch?v=0IlhhXDOD0mM

103

https://www.youtube.com/watch?v=72nGzVvk8Yg
https://www.youtube.com/watch?v=Emuj7UCeCBA
https://www.youtube.com/watch?v=PRldmvRWyXk
https://www.youtube.com/watch?v=DnVG7MBfuXA
https://www.youtube.com/watch?v=OIhhXDOD0mM

APPENDIX F: USER’S MANUAL

The modular educational robotics platform has been built by Wei Zhen on the Raspberry
Pi 2 platform, which runs the 32-bit Embedded Linux System “Raspbian”, several modules,
which designed by 16-bit microcontroller and used to control all of the features this robot has,
and some other mechanical and electrical parts, such as frame, motors, and sensors. The modules
are used to control all of the motors and sensors, and the Raspberry Pi 2 is used to control all of
the modules called by the Central Controller. Modules and Central Controller are connected by
SPI. Central Controller is the master, and modules are slaves.

The Central Controller uses WiFi technology to connect and control it. It runs a DHCP
server under Linux System, which makes it easier to find and connect to computers. And the
32-bit Embedded Linux System gives users more options about programming languages. Users
can use any kind of language they like to program and control the robot. For this menu only the
C library for Central Controller is included, but with communication API and web sources
documentations, users can easily program the robot in another language, such as Python and Lua.

Modules are designed to control all of the motions and feedbacks which means all of the
motors and sensors. Currently, all of the modules are designed under TI’s 16-bit microcontroller
MSP430G2553, and only Stepper Motor Controlling Module, IR Sensor Module, and Custom
Module are included in the design. However, with this documentation, users can easily figure out
the way to design their own modules to control everything they want with or without

MSP430G2553.

104

The examples and libraries are stored in github, which address is

git@github.com:weizhen1883/Modular-Robot-Design-MastersThesis.git, user can easily

download all of the code and hardware designs of the robot. They can use it as examples for their

own design, too.

Wire the Robot

1. Connect power cables to the base board. Shown in figure F-1.

Figure F-1: Wire Power cables

2. Connect stepper motor connectors to the base board. Shown in Figure F-2.

Figure F-2: Wire Stepper Motors

105

https://github.com/weizhen1883/Modular-Robot-Design-MastersThesis.git

3. Connect IR sensors and to the base board and wire the cable who connected the base

board to central controller. Shown in Figure F-3.

Figure F-3: IR Sensors and Cable connections

4. Connect the power switch with battery. Shown in Figure F-4.

Figure F-4: Power the Battery

106

5. Clean up the wires in the base. Shown in Figure F-5.

Figure F-5: Clean the Wires
6. Mount the Raspberry Pi on the top, and connect the custom module. Shown in Figure

F-6.

Figure F-6: Connect the custom module with Raspberry Pi

107

7.

Power the Raspberry Pi and done all of the wiring works. Shown in Figure F-7.

Figure F-7: Final Looking of the Robot

Connect to the Robot

N —

[98)

Turn on the power of robot

. Find and connect to WiFi whose name is Pi_Robot AP and password is

RaspberryPiRobot
The robot has been connected
Use Putty or Terminal to ssh into robot by
a. username: pi
b. password: 1qaz2wsx
c. 1ip address: 192.168.42.1
Then you can take control of robot. Everything you need to do is just like using the Linux
OS.
(Options) Type the 192.168.42.1 in web browers, and controller GUI will show up

Getting Started (For Windows Users)

Assume that a Linux or Unix user should familiar with bash command lines and how to

use ssh, this tutorial is for Windows Users who do not familiar with bash command lines and ssh.

108

After connected the Pi_Robot AP, the user should do the following stapes.
1. Installing the sshfs follows tutorial in DigitalOcean

https://www.digitalocean.com/community/tutorials/how-to-use-sshfs-to-mount-remote-fil

e-systems-over-ssh.

2. Mount the Robot file system by using sshfs manager.

Drive Name: |Pi Robot

Host [192.168.42.1

Port: 22 %

Username: ‘ pi
Authentication
method:

Password

Password:

Directory:

Drive Letter: : [] Mount at login

After type all the necessary information into the sshfs manager, click the “Mount” to
mount robot directory into your Windows.

3. Then open “This PC”, the robot directory driver named “Pi Robot” will show up.

Computer View

4 B> ThisPC

s Quick access Z v Folders (6)

[Desktop »*
A
‘ Diviilciis 2 - Desktop 1*:‘ Documents
% Documents o
&=/ Pictures 4 $ Music == Pictures
—
¢& OneDrive
v Devices and drives (4)
I3 This PC m = Local Disk (C:)
#8 Floppy Disk Drive (A:)]
W Desktop - g 403 GB free of 59.5 GB
% Documents
= Pi Robot (G:)
¥ Downloads I
B ivani firware (Wy 453 GB free of 7.18 GB
[s Natwinrl |nratinne (1)

109

https://www.digitalocean.com/community/tutorials/how-to-use-sshfs-to-mount-remote-file-systems-over-ssh
https://www.digitalocean.com/community/tutorials/how-to-use-sshfs-to-mount-remote-file-systems-over-ssh

4. Double click the “Pi Robot” driver to open the robot directory.

Home Share V
- © 4 > ThisPC > PiRobot (G) s

Quick access Name Date modified

[Desktop * c_example
& Downloads # c-periphery-master 1/16/2
Examples

%) Documents #

project
& Pictures
python_games
4 OneDrive RSPLibs
Software
8 This PC
spitest
[Desitop WiringPi-d795066
4 Documents # adafruit_hostapd_14128 95 K8
¥ Do get_IR_sensor.c 2k8
are | getiR K8
% 1K8
0. 2KB

&) Pictures

B Videos
‘& Local Disk (C:)
= PiRobot (G)

= PiRobot (G) <
spi_test.c

b Network spi_test]
[DESKTOP-9U4SC] spidev_test
[MACBOOKPRO-, L spidev_testc 9/1/2015%:41AM CFile 4K8

26items 1 item selected

5. Then user can copy/delete the code, write their own code into this directory as same as
they did in Windows.

6. Make sure the “RSPLibs” starting project is already inside the directory, if not download
from github,

https://github.com/weizhen1883/Modular-Robot-Design-MastersThesis/tree/master/Firm

ware/RSPLibs. Then use the putty to connect to the robot.

Category:
- Session Basic options for your PuTTY session
- Logging Specify the destination you want to connect to
=)~ Terminal
Host Name (or IP address) Port
- Keyboard
. Bel [192.168.42.1 |[22 |
i Features Connection type:
- Window ORaw O Telnet O Riogin @SSH () Serial
H g.;:ea!ance Load, save or delete a stored session
aviour
. Translation Saved Sessions
- Selection ‘ ‘
~ Colours Defautt Settings
=I- Connection 8 o
Data Save
Proxy
Telnet Delete
Rlogin
- SS5H
S Close window on exit:
Aways (ONever (®) Only on clean exit
About Open Cancel

110

https://github.com/weizhen1883/Modular-Robot-Design-MastersThesis/tree/master/Firmware/RSPLibs
https://github.com/weizhen1883/Modular-Robot-Design-MastersThesis/tree/master/Firmware/RSPLibs

7. Click the “Open”, it will open an new window which will require user enter the username

and password.

8. Now the robot has been connected and ready to use. In Linux “Is” used to show
everything inside the current direction, and “cd <folder name>" used to get into a folder.
After get into the “RSPLibs” folder, user can run “sudo ./robot <command>" to control
the robot. For example, “go” ask the robot go, “stop” ask the robot stop, and “irget” get

the IR data.

111

9. After finishing using the robot, just unmount the robot from the Windows machine by

click the “Unmount” in sshfs manager.

-n raspbermy pi 1

Pi Robot

o Add == Remove

Drive Name: |Pi Robot ‘

Host [192.168.42.1 ‘

Port: 22 =

Username: !p\ ‘

. o

:ﬂi‘ttl:gétlcabon Password v

Password: | |

Directory : e ‘

Drive Letter G: v [] Mount at login
.17 Save Unmount

Program the Robot

The C Library of robot in the Central Controller includes two apis, stepper motor api

and ir_sensor_api, and all the functions are listed in Table E-1 for Stepper Motor API and Table

E-2 for IR Sensor API. When using Stepper Motor AP, users need to include the

stepper_motor api.h. Include the ir_sensor api.h for using IR Sensor API.

Table E-1: Stepper Motor Control API

Functions

Descriptions

void robotMotorModulelnit (uint8 ten pin) | The function uses to init the robot stepper motor module, which

has an input pin number for module selections pin. The default
pin number is GPIO 17, so the input is 17.

void robotGo (uint8_t speed_r, uint8 t
direction_r, uint8_t speed_l, uint8 t
direction_I)

This function uses to set the speed and directions of the robot’s
motors. It has four inputs, speed_r, direction_r, speed 1, and
direction_I. The speed is between 0 to 50 rpm. The direction is 0
or 1, 1 means go forward and 0 means backward.

void robotStop (void)

This function uses to make the robot stop.

void robotGet (uint32_t* motorCycles)

This function uses to get the motorCycle value, but must call after

112

the robotStop function called.

void robotCGet (uint32_t* motorCycles) This function uses to get the motorCycle value during robot is
running.

Table E-2: IR Sensor API

Functions Descriptions

void IRSensorModulelnit (uint8_t en_pin) This function uses to init the robot ir sensor module, which has
an input pin number for module selections pin. The default pin
number is GPIO 4, so the input is 4.

void getIR (uintl6_t* data) This function uses to get all four IR data back. It is an internal
function which is called by get_ir_datas. The input for getIR is
an integer array.

void prelR (void) This function uses to ask the ir sensor module to prepare the ir
data. It is an internal function which is called by get ir datas.
The input for prelR is an integer array.

void get_ir datas (uint16_t* data) This function uses to get ir datas. The input is an integer array
pointer, and it is an output too.

uintl6 t get ir data (uint8 t* IR_Sensor) This function uses to get one ir data back. The input is a sensor
name, it can be “left”, “right”, “front”, and “back”. It returns an
integer which is the value of this ir sensor.

When the user is programming the robot, they should call the init function first, and then call the
other functions. The 5000 cycles delay is necessary between calling two of these functions.

A makefile is necessary to compile the robot programs. The Code E-1 shows the format
of a simple makefile for C API.

Code E-1: simple makefile for C API
CC=gcc
CFLAGS=-I/home/pi/c-periphery-master/src

LIBS = -Im

periphery = /home/pi/c-periphery-master/periphery.a

API_FILES =<*_api.c files>
FILES = <all necessary .c files>

TARGET = <list of project names>
all: $(TARGET)

projectName: $(FILES) $(API_FILES)

113

$(CC) -0 $@ $” $(periphery) $(CFLAGS) $(LIBS)

clean:
rm $(TARGET)

In the makefile, the c-peripher-master is the location where the SPI and GPIO libraries are
stored. “The c-periphery is a set of C wrapper functions for GP10, SPI, 12C, MMIO, and Serial
peripheral I/O interface access in userspace Linux. The c-periphery wrappers simplify and
consolidate the native Linux APIs to these interfaces. c-periphery is useful in embedded Linux
environments (including BeagleBone, Raspberry Pi, etc. platforms) for interfacing with external
peripherals. c-periphery is re-entrant, uses static allocations, has no dependencies outside the
standard C library and Linux, compiles into a static library for easy integration with other
projects, and is MIT licensed” [8]. For more documentation, the github project c-peripher can be

checked out on: https://github.com/vsergeev/c-periphery.git. There are another two peripher

projects in Python and Lua, whose links can be found under the README.md file in this
project.

After using makefile to compile the code, the files with project name are generated. Then
the command “$ sudo ./<project name>" should be used to run the program. The program must

be run with sudo, due to the permission issue.

Communication API Between Central Controller and Modules
The Central Controller controls the robot by sending and getting the data sent through the
SPI communication bus. It sends and receives a 10 bits message buf in the format:

X(module identity): XXXXXXX(message)\n (Format E-1)

114

https://github.com/vsergeev/c-periphery.git

Such as “M:GO2121 \n” means robot go at speed 50, direction forward, for both motors, where

the “M” means motor, “GO” means action, and the value of ‘2’ is 50 so the speed is 50. The

Communication APIs for the stepper motor module and the IR sensor module are in Table E-3

and Table E-4. The format of the 10-bit message buf is built by a 1 bit module identity character,

like ‘M’ for Motor module and ‘S’ for IR sensor module, ‘:’, which separates the module identity

and message. Then a 7-bit message and a new line character “\n’. The message has 7 bits but it

should not always be 7 bits, if the useful message is less than 7 bits, the space must be used to fill

the message buf. After the commands are sent to the modules, the modules will return a 10-bit

message buf to the Central Control. The format of returning message is

X(module identity): XXXXXXXX(message) (Format E-2)
The returning messages are also listing in Table E-3 and E-4.
Table E-3: Stepper Motor Communication APIs
Commands Descriptions Returns
M:GO<speed_r><directi | Ask the robot go with specific speed and direction. The M:RUNNING.

on_r><speed I><directi
on I>

speed is a uint8_t value with range 0 to 50. And the
direction is character ‘0’ or ‘1°.

stop the robot

M:STOP Ask the robot stop N/A
M:GET Ask the robot stop, and return the current motor cycle M:<4-bit right

counts count><4-bit left count>
M:CGET Ask the robot return the current motor cycle and without | M:<4-bit right

count><4-bit left count>

Table E-4: IR Sensor Communication APIs

for ir get command.

Commands Descriptions Returns

S:GET IR Ask to get the IR data S:<2-bit front data><2-bit
back data><2-bit left
data><2-bit right data>

S:PRE IR Ask the robot to prepare the IR data, and make it ready N/A

115

Plug and Play Module Design Menu

This robot platform is a plug and play platform, and it allows user to design their own
modules, which can be easily plugged in to work with the platform . If user wants to keep using
MSP430G2553 to design their own modules, they can follow the design of Custom Module and
make their own design very easily.

First, they should delete the J2 in the schematic of Custom Module, which shows in
Figure E-8. The J2 only works to connect the robot base into the SPI bus. The Custom Module

already has this feature, so it is no longer needed.

Figure E-8: SPI Bus Connector for Robot Base
Second, they need to change the SPI STE pin for MSP430G2553 on J1, which shows in
Figure E-9. J1 is the connector which will connect to the Raspberry Pi. As showing, GPIO 17 is
for the motor module, GPIO 04 is for the IR sensor module, and GPIO 18 is for the Custom
Module. Therefore, the user should to change SPI_STE pin to one of any other GP1Os. Be sure

to keep the J1 connector, because it is the most important part to making the platform plug and

play.

116

33V

GPICD2 54
GPIC03 GND
GPICD4 GPIOT4
GND GRIOIS

~
8]
8
a0 cpiots |10
GPIOT7 GP c\,ﬁ L=
14 4

GPICET GND
GRICRZ GPIOZS
38V GRIO24
GRIOI0 GND
aPIo0s TERIo2S

bl

5% e e e o 2 M0

GFION GPIC0S
GND GPICOT

ID_SD ID_SG
GRICOS GND S

GPICO6 GPIO12
GRIIE GND &
GPIC1B GPIOTS
GPIC2s GPIO20 [

GND GPIO21

s}
I

Raspberry Pi2

Figure E-9: Raspberry Pi 2 Connector

And then, the user can delete everything else except the Raspberry Pi 2 connector and
MSP430G2553 chip groups. Now they can make their own designs like adding sensors, screens,
etc.

For users who do not want to use MSP430G2553 Microcontroller, basically they will do
the same thing first, and then just make sure that microcontroller has 4-wire SPI port and replace
the MSP430G2553 with that microcontroller, and connect the SPI pins with the Raspberry Pi 2

Connector.

117

APPENDIX G: SIMPLE EDUCATIONAL PROJECT

Simple Lab: Obstacle Avoidance

Purpose:
An essential characteristic of an autonomous robot is the ability to navigate in an
environment safely. The purpose of this lab is to develop obstacle avoidance behaviors by
using the modular educational robotics platform. After this lab, students should get ideas
about how to develop this robot by using the given hardware and firmware libraries.
Objectives:
At the conclusion of this lab, the student should be able to:
o Write obstacle avoidance behaviors on the modular educational robotics platform
e Move the robot safely in an environment with obstacles
e Program the robot with given library and APIs
e Design their own module
Equipment:
e The Modular Educational Robotics Platform
e (Custom Module
e Ultrasound Sensors
Theory:
The Modular Educational Robotics Platform has a stepper motor module, which controls
two stepper motors, and an IR sensor module, which controls four Sharp GP2Y0D810Z0F

contact sensor, which is a reflectance sensor that emits and detects infrared light. The

118

specifications state that the Sharp contact sensors measure between 1.5” and 12”. The IR sensor
will return the analog value and the IR sensor module will return the analog readings that is

proportional to the distance to an object. In the library, the ir_sensor api should be used to make
it easy to get IR data. And the stepper motor api will be helpful for controlling the motions part

of the robot.

Part 1: Range IR Sensors

In order to determine the specific characteristics of the range sensors on the robot, you
should take several measurements on each sensor to correlate the measured distance with the
actual distance to an obstacle. You will need to use these data to figure out the relationship
between distances and IR sensor analog values. You should write code to transfer the distance to
analog value or analog value to distance. The best way to help you find the function for
relationship between distances and analog values would be use a data table and perform an error
analysis. (see Table F-1)

Table F-1: Sensor Calibration Data

Distance (inch) IR Front IR Back IR Left IR Right

1

15

Part 2: Avoid Obstacle
The obstacle avoidance require the robot to do some behaviors like stop and make a turn

when the robot gets to the obstacle. The goal for this project is make the robot go past the

119

obstacle when it gets to the obstacle. For this part, it require to program for three small

milestones.

Milestone 1: the robot goes forward, and stops when it gets to the obstacle.

Milestone 2: the robot goes forward, and makes a turn to avoid the obstacle when it gets

to the obstacle.

Milestone 3: the robot goes forward, and bypasses the obstacle when it gets to the

obstacle.

Notice: The Obstacle is a cube whose width, length, and height are 10 inches.

Part 3: Ultrasound Sensor

Use the Custom Module to make the Ultrasound Sensors work and redo the obstacle

avoidance project. For this part, you need to wire and mount the ultrasound sensor first. And

then, program the module by writing your own firmware following the example msp430

programs. At the end, make the robot do the same things as IR sensor did.

In this part, you need to

Wire and mount the ultrasound sensor

Write custom firmware, and make it communicate with central controller
Write functions on central controller to control the custom module
Range sensors

Write programs to make the robot avoid obstacle

120

	Rose-Hulman Institute of Technology
	Rose-Hulman Scholar
	Spring 5-2016

	Modular Design of an Educational Robotics Platform
	Zhen Wei
	Recommended Citation

	tmp.1462885627.pdf.zS6ca

