
Rose-Hulman Institute of Technology Rose-Hulman Institute of Technology

Rose-Hulman Scholar Rose-Hulman Scholar

Graduate Theses - Electrical and Computer
Engineering Electrical and Computer Engineering

Summer 5-1-2021

A Novel Technique for Sample Point Discovery and Its Use in a A Novel Technique for Sample Point Discovery and Its Use in a

Proposed Broadcast Confusion Attack on High-Speed Controller Proposed Broadcast Confusion Attack on High-Speed Controller

Area Networks Area Networks

Brendan Mulholland

Follow this and additional works at: https://scholar.rose-hulman.edu/dept_electrical

https://scholar.rose-hulman.edu/
https://scholar.rose-hulman.edu/dept_electrical
https://scholar.rose-hulman.edu/dept_electrical
https://scholar.rose-hulman.edu/electrical_engineering
https://scholar.rose-hulman.edu/dept_electrical?utm_source=scholar.rose-hulman.edu%2Fdept_electrical%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages

A Novel Technique for Sample Point Discovery and Its Use in a Proposed Broadcast Confusion

Attack on High-Speed Controller Area Networks

A Thesis

Submitted to the Faculty

of

Rose-Hulman Institute of Technology

by

Brendan Mulholland

In Partial Fulfillment of the Requirements for the Degree

of

Masters of Science in Electrical Engineering

May 2021

© 2021 Brendan Mulholland

ABSTRACT

Brendan Mulholland

M.S.E.E

Rose-Hulman Institute of Technology

May 2021

A Novel Technique for Sample Point Discovery and Its Use in a Proposed Broadcast Confusion

Attack on High-Speed Controller Area Networks

Thesis Advisor: Dr. Zak Estrada

 Over the last twenty-five years, the Controller Area Network, or CAN, has become

ubiquitous in the automotive world as a communication network. That ubiquity is attributed to its

high immunity to electrical interference and its resilience to data errors. CAN was designed to

ensure data integrity during transmission and allow for multiple nodes to transmit information

without a central device controlling that transmission. Given the ubiquity of CAN, much

research has been performed to detect and protect against external intrusions on the network.

 In this paper, I present a methodology for the measurement of key CAN timing

parameters. With the detection and understanding of these parameters, I demonstrate a proof of

concept attack, dubbed the Broadcast Confusion Attack, which allows for the data integrity of

the network to be weakened. Evolutions of this attack could be performed without being detected

by two of the three categories of CAN intrusion detection systems. In the evolutions of the

attack, devices could be completely overwritten by the attacker without any device (even the

victim) knowing such an attack has occurred.

DEDICATION

To my Mom, for all the support over the years.

ACKNOWLEDGEMENT

Effort sponsored by the Air Force under MOU FA8750-15-3-6000. The U.S. Government

is authorized to reproduce and distribute copies for Governmental purposes notwithstanding any

copyright or other restrictive legends. Any opinions, findings, and conclusions in this paper are

those of the authors and do not necessarily reflect the views of the U.S. Air Force and/or U.S.

Government.

ii

TABLE OF CONTENTS

LIST OF FIGURES ... V

LIST OF TABLES .. VII

LIST OF ABBREVIATIONS ... VIII

LIST OF TERMINOLOGY... IX

CHAPTER 1: INTRODUCTION .. 1

1.1 Introduction to CAN 2

1.2 CAN Intrusion Detection 3

1.3 Organization of the Thesis 4

CHAPTER 2: CAN SPECIFICATION .. 6

2.1 CAN Controller Specifications 7

2.1.1 CAN Frame .. 7

2.1.2 CAN Arbitration ... 12

2.1.3 Clocking in CAN .. 14

2.1.4 Error Detection, Signaling, and Confinement in CAN... 16

2.2 CAN Transceiver 19

2.2.1 Differential Driver .. 20

2.2.2 Differential Receiver .. 20

CHAPTER 3: TIMING ANALYSIS PROCEDURE AND TEST SETUP 22

3.1 Procedure Overview 22

3.2 Physical Driver 23

3.2.1 Forcing a Dominant Signal ... 24

3.2.2 Forcing a Recessive Signal ... 24

3.2.3 Forcing a High Impedance Signal .. 25

3.3 Sample Point Subsystem 25

3.3.1 Detailed Explanation for Sample Point Subsystem .. 27

3.3.2 SPS Connection to ISO Standards .. 29

3.4 Temporal Delay Subsystem 31

3.4.1 Detailed Explanation for Temporal Delay Subsystem ... 35

3.4.2 TDS Constraints ... 39

iii

3.4.3 TDS Connection to ISO Standards ... 40

3.5 Experimental Test Setups 41

3.5.1 Testing Constraints ... 41

3.5.2 Experiment 1 Setup .. 42

3.5.3 Experiment 2 Setup .. 43

3.5.4 Experiment 3 Setup .. 44

3.6 Verification Test Bench Setup 45

3.6.1 Physical Verification of Unit Delay ... 46

3.6.2 TI SoC Datasheet Minima and Maxima ... 50

3.6.3 Calculation of Expected Values for Temporal Delay ... 51

CHAPTER 4: SAMPLE POINT SUBSYSTEM .. 55

4.1 FPGA HDL Implementation 56

4.2 ARM Software Implementation 58

4.3 Experimental Data 60

4.3.1 Verification Test Bench .. 60

4.3.2 Experiment 1 Results .. 64

4.3.3 Experiment 2 Results .. 66

4.3.4 Experiment 3 Results .. 69

CHAPTER 5: TEMPORAL DELAY SUBSYSTEM .. 73

5.1 FPGA HDL Implementation 73

5.2 ARM Software Implementation 74

5.2.1 Configuration of HDL .. 75

5.2.2 Handling Returned Data ... 75

5.3 Experimental Data 75

5.3.1 Verification Test Bench Results ... 75

5.3.2 Experiment 1 Results .. 78

5.3.3 Experiment 2 Results .. 80

5.3.4 Experiment 3 Results .. 81

CHAPTER 6: BROADCAST CONFUSION ATTACK AND SECURITY IMPLICATIONS

... 83

iv

6.1 Broadcast Confusion Attack Setup 84

6.2 Broadcast Confusion Attack Outcome 85

6.3 Security Implications 86

6.3.1 Loss of Data Integrity ... 86

6.3.2 Loss of Confidentiality ... 87

6.3.3 Loss of Availability .. 88

CHAPTER 7: CONCLUSIONS .. 89

7.1 Improvements to the Timing Analysis Procedure 89

7.2 Viability of the Attack on CAN FD 90

LIST OF REFERENCES ... 92

APPENDIX .. 94

v

LIST OF FIGURES

Figure 1 OSI Layout of Controller Area Network[2] ... 6

Figure 2 Comparison of CAN Data Frames ... 8

Figure 3 CAN Arbitration Field .. 8

Figure 4 CAN Control Fields .. 10

Figure 5 CAN Trailing Section ... 10

Figure 6 Active Error Frame Diagram .. 11

Figure 7 Passive Error Frame Diagram .. 11

Figure 8 Two Nodes Arbitrating for Bus Control ... 13

Figure 9: CAN Bit Timing Diagram ... 14

Figure 10 CAN Bit Stuffing Scheme .. 16

Figure 11 CAN Error State Machine .. 18

Figure 12 Procedure Block for Top Level System ... 22

Figure 13 Procedure for the Sample Point Subsystem.. 25

Figure 14 Diagram of Beginning Aligned Sample Point Detection ... 28

Figure 15 Procedure for Temporal Delay Subsystem ... 31

Figure 16 Design for Experiment 1 Test Bench ... 43

Figure 17 Design for Experiment 2 Test Bench ... 44

Figure 18 Design for Verification Test Bench .. 45

Figure 19 MCP2551 Receiver Recessive to Dominant Delay Waveform 47

Figure 20 MCP2551 Receiver Dominant to Recessive Delay Waveform 48

Figure 21 MCP2551 Dominant Driver Delay Waveform... 49

Figure 22 Labeled Signal Delay Path ... 51

vi

Figure 23 BeagleBone Black Beginning of Sample Point Zone Distribution 61

Figure 24 BeagleBone Black End of Sample Point Zone Distribution .. 62

Figure 25 Experiment 1 Beginning of Sample Point Zone Distribution 64

Figure 26 Experiment 1 End of Sample Point Zone Distribution ... 65

Figure 27 Experiment 2 Beginning of Sample Point Zone Distribution 67

Figure 28 Experiment 2 End of Sample Point Zone Distribution ... 68

Figure 29 Experiment 3 Beginning of Sample Zone Distribution .. 70

Figure 30 Experiment 3 End of Sample Zone Distribution .. 70

Figure 31 Arduino Calculated Propogation Delay Distribution ... 76

Figure 32 BeagleBone Calculated Propogation Delay Distribution ... 77

Figure 33 Experiment 1 Temporal Delay Measurements ... 79

Figure 34 Experiment 2 Temporal Delay Measurements ... 80

Figure 35 Experiment 3 Temporal Delay vs. Transmission Line Length..................................... 82

vii

LIST OF TABLES

Table 1 Values for Marked Waveform in Figure 19... 47

Table 2 Values for Marked Waveform in Figure 20... 48

Table 3 Values for Marked Waveform in Figure 21... 49

viii

LIST OF ABBREVIATIONS

ACK Acknowledgement

BRAM Block Random Access Memory

CAN Controller Area Network

CANH/CANL Individual Wires for the CAN Differential Bus

CiA CAN in Automation (User and Manufacturer Organization)

CRC Cyclic Redundancy Check

DLC Data Length Code

DUT Device Under Test

ECU Engine Control Unit

EOF End of Frame

IF Interframe

OSI Open Systems Interconnection

RX Receive

SOF Start of Frame

SPS Sample Point Subsystem

TDS Temporal Delay Subsystem

TX Transmit

ix

LIST OF TERMINOLOGY

Dominant Logical 0, ~ 3.5V = CANH, 1.5V = CANL

Recessive Logical 1, ~ 2.5 V = CANH = CANL

Node A device made up of a single CAN Controller

Tester A system implementing the sample point subsystem and or the

temporal delay subsystem

1

CHAPTER 1: INTRODUCTION

 Controller Area Network, CAN, has become ubiquitous as a communication protocol

because of its low cost and high reliability. Due to that ubiquity, CAN has become a target for

many innovative attacks designed to exploit flaws in the fundamental design of the standard.

Attacks range from ordinary denial of service to attacks such as the Bus-Off Attack[1], where

network specifics of CAN are utilized to reduce the total integrity of data on the network.

 Due to the fundamental layout of a CAN network, with all devices communicating on a

shared bus, the raw signal on the bus is exploitable by playing a forced signal onto the bus.

Networks that employ switches and routers use information contained in higher layer packets,

taking the data contained in those packets and generating new higher layer packets. But with

CAN, the raw signal on a shared bus is the information upon which all devices act. The raw

signal provides the ground truth for information on the network, and controlling the raw signal

allows an attacker to set the ground truth for the network.

 The protocol designers of CAN designed a system that placed absolute priority on all

devices on the network having a consistent view of the state of the system. This is key in a

setting such as an electrically noisy automobile. For an attacker to modify the raw signal of the

network, they would have to work around measures implemented by the protocol designers. In

CAN, these measures are based upon sub-bit timings, the sample point, where the value of a bit

is determined. Knowledge of the sub-bit timings of a network allows a base upon which an

understanding of the entire bus can be built. It is with this, that I present the CAN Physical

Timing Analysis Process, which is able to determine the sample points for all devices on a CAN

network, and the Broadcast Confusion Attack, which is a proof of concept to show how this

2

knowledge can be used to attack the CAN bus and reduce the overall trust in the network’s data

integrity.

1.1 Introduction to CAN

 CAN is a multi-master serial bus communication protocol, with the standard first being

published by Robert Bosch GmbH in 1986, formerly named the Automotive Serial Controller

Area Network. While the network was originally designed for usage in the automotive world, it

quickly expanded beyond the automotive world, being used for manufacturing communication

and medical devices. CAN was officially standardized by the ISO in 1993 with the publication of

the ISO 11898 family of documents. The 11898 standards would be further refined with six

revisions and extensions to the standard over the following twenty-two years [2].

 The importance of CAN in automobiles cannot be overstated. The first car company to

utilize CAN for data transmission in the subsystems of one of its cars was Mercedes-Benz in

1991. CAN became the main automotive communication standard in 2008, when the U.S.

Government mandated that the CAN network layer be employed for all communications to

ensure environmental standards on new vehicles. As a result of this law, the network gained near

ubiquity for all automobiles released over the next 13 years [3].

 With CAN being a multi-master bus, every node is connected to every other node in the

network, with every node being equal in importance to the other nodes. CAN does not establish

any limitations on what, to whom, or when a device may communicate. As CAN was designed to

be deployed in critical applications like automobiles, a failing device is designed to remove itself

from the communication network, so that the devices which are still functioning correctly can

communicate and continue their operation.

3

 The CAN standards were designed with robustness and data integrity as their

fundamental principles. As shown in [4], in an aggressive environment created by placing a high

frequency arc welder two meters away from a CAN network, almost 12.25 GB of data were

transferred with a bit error rate of 2.6 ∗ 10−7, which is better by two orders of magnitude

compared to Wi-Fi [5]. This sort of robustness at the physical side is paired with multiple error

detection methodologies in the logical link control layer. Protections such as devices performing

self-checks for transmitted data appearing on the bus; strict rules for stuff bit insertion; and a

CRC-15 checksum with every frame help to ensure the data transmitted is the same as the data

received for all devices.

1.2 CAN Intrusion Detection

 As CAN has increased in ubiquity in the automotive world, many threats have been

presented which threaten the network’s ability to transmit data securely. With the open nature of

CAN, and with federal law which requires the network be accessible through the OBD port, an

equally large amount of work has been performed to secure the network. As shown in [6], there

are around 14 attack surfaces in an automobile, many of them using CAN for communication.

There, Young et al., showed that there are eight major intrusion detection systems, IDS, types.

An intrusion detection system is a set of systems that can determine the validity of a

message on an open network through feature analysis. The eight IDS types can be further

simplified into three groups based on the information utilized in their analysis. The first type of

IDS utilized frame data analysis to validate the transmitter of the frame. These systems solely use

the information in a CAN frame, such as data and the ID that transmitted the information. A

node performing this technique would have the capability to identify if another node is

transmitting using an ID registered to itself.

4

 The second type of intrusion analysis is based on the timing of a message. These systems

work by analyzing the frequency at which a given ID transmits a data frame on the CAN bus and

reports when the frequency of communication has changed. This is indicative of attacks such as

message injection and deletion attacks. These systems can use either statistical analysis or

machine learning to report erroneous errors on the CAN bus. IDS utilizing timing and frame

analysis are the most commonly used as they are relatively simple to implement, with most of

the analysis requiring software additions instead of new hardware placed onto the CAN bus.

 The third and final type of intrusion analysis uses ECU analog characteristics to

authenticate a message. These systems employ anything from clock skew, clock drift, to voltage

on the bus to correlate IDs to given hardware. When the analysis reports that there is a

discrepancy occurring between the ID and the ECU transmitting the message, that could be a

sign of an intrusion on the bus. These systems are the most theoretical out of the three, as they

require both extensive neural networks and new hardware to be connected to the bus to perform

such analysis. However, the increase in hardware does come with the benefit that, with enough

training time and development, detection systems utilizing this methodology can detect attacks

that were previously undetectable, like the Bus-Off attack[1, 6].

1.3 Organization of the Thesis

 The remainder of this thesis is organized as follows. Chapter 2 gives an overview and a

discussion of the CAN 2.0b specification, with focus given to the aspects of the spec which are

exploited to perform the analysis and attack. Chapter 3 provides details of the issues at hand and

the procedure to perform the timing analysis, along with some background information of the

test setups used throughout this paper. Chapter 4 provides in-depth details of the implementation

of the sample point detection subsystem, along with experimentally captured data. Chapter 5

5

goes in depth into the implementation of the temporal delay subsystem, and as before, analysis of

experimentally captured data. Chapter 6 delves into the Broadcast Confusion Attack, including

how it’s implemented, its feasibility, and the effects it causes for the security of CAN. Finally, in

Chapter 7, I will discuss areas in which the algorithm can be improved, the viability of this attack

in the CAN FD protocol, and general conclusions that I have come to while working on my

thesis.

6

CHAPTER 2: CAN SPECIFICATION

 The most important CAN standards are those governed by the International Organization

for Standards in documents ISO 11898-1 and 11898-2. The 11898-1 standard defines everything

in the CAN controller module, but not the CAN transceiver. This is equivalent to the higher

sublevels of the physical layer and the data link layers of a standard OSI networking stack. The

11898-2 standard specifies how CAN devices communicate with each other in high-speed

applications of up to 1 Mbps. This applies to the lowest levels of the physical layer, and specifies

voltages, slew rates, and transmission line qualities. The connection between certain

functionalities and their corresponding OSI layers is given in Figure 1.

Figure 1 OSI Layout of Controller Area Network[2]

7

The third important CAN document is published not by the ISO, but instead through SAE

in document J2284. This document discusses the standard procedure for ID allocation, and

message format for use in automotive applications. This document, while important to

automotive manufacturers, was not used in this thesis because it would constrain the network

beyond what is required. J2284 is not universally utilized in every CAN network, and places

assumptions on the network that may not be true outside of an automotive setting. Instead, focus

will be placed on the information given in ISO 11898-1 which will be placed in the Controller

subsection, and in ISO 11898-2 which is placed in the transceiver subsection. Any documents or

standards higher than OSI Data Link Layer will not be raised in this thesis.

2.1 CAN Controller Specifications

2.1.1 CAN Frame

 The CAN standard has five predefined frame structures, all with different functionality

and meanings for the CAN controllers to decipher. Three of the frame types: the data frame; the

extended data frame; and the remote request frame, are used in a properly functioning CAN bus.

The other two frames, error and overload, signal an issue with either the bus or an individual

node.

 For the frames used in proper functioning, multiple shared header and footer fields are

utilized. Below in Figure 2, the standard properly functioning CAN fields are shown. These

fields have been aligned at the start of frame, or SOF, which is always present in all proper

functioning frames, and signals the transition from the shared bus being idle to the bus being

occupied. For all fields in a CAN frame, data is big-endian most significant bit first.

8

Figure 2 Comparison of CAN Data Frames

Top: Remote Request Frame, Middle: Standard Data Frame, Bottom: Extended Data Frame

The first section of interest in these frames shown in Figure 2 is the arbitration field,

which includes the ID, RTR, and IDE sections. While the exact method of how arbitration is

achieved is discussed later in this chapter, the fixed bits inside the arbitration field are the

deciding factor as to which of the three normal operation frames the following bitstream will

apply to. These fixed bits are placed surrounding an 11-bit ID field. This ID identifies the

message priority but is not unique per device like a MAC is in ethernet. As shown in Figure 3,

the arbitration field has three fixed bits of information about the frame.

Figure 3 CAN Arbitration Field

9

The first, as mentioned before, is the SOF. The SOF is a single bit period dominant, logic

low, signal. This bit is necessary for proper synchronization to the start point of a CAN frame.

The next fixed bit is the remote transmission request, or RTR bit. When this bit is set as a

recessive bit, logical high, the transmitting device is requesting that the CAN unit utilizing the

given ID transmit some information. While remote transmission requests are still allowed by the

standard, they have fallen out of general use due to the lack of definition in the standards [7].

In Figure 3, the final fixed bit is the ID Extension Bit (IDE) bit which signifies whether

the message has an 18-bit ID extension on top of the 11-bit ID. The extended ID functionality is

useful as it expands the total number of available ID bits, allowing for information about the

sender and the data, along with information about the criticality of the message. ID extensions

are used heavily in automotive applications as it is mandated by SAE J2284. For this thesis, out

of the three frames used in proper functioning, only the standard data frame is considered. There

is nothing stopping the handling of the other two frame types, however, this was an

implementation decision to ease the possible avenues for design errors.

After the arbitration field is the control field. The control field for the standard data frame

is given below in Figure 4. The fixed bit, r0, must always be dominant, as it was left unused to

allow for future expandability to the CAN standard. This precedes the data length code, DLC,

which are the last four bits of the field. The DLC informs the controller of the length in bytes of

the data field. The data field for a CAN device is anywhere from 0 to 8 bytes. While 4 bits are

allocated and some nonstandard CAN devices allow for larger transmission frames, 8 bytes is the

largest allowed by the specification.

10

Figure 4 CAN Control Fields

After the given number of data fields, the CAN controller provides a constructed CRC

field. The CRC field is a 15-bit checksum of all data transmitted from the SOF to the end of the

data field. The CRC is a standard polynomial given in Equation 1. This function has a Hamming

distance of six, allowing for the detection of all randomly distributed bit errors of up to five bits,

and any burst errors of up to 15 bits [2].

𝐱𝟏𝟓 + 𝐱𝟏𝟒 + 𝐱𝟏𝟎 + 𝐱𝟖 + 𝐱𝟕 + 𝐱𝟒 + 𝐱𝟑 + 𝟏 (1)

Figure 5 CAN Trailing Section

The final section of the standard data frame comprises the acknowledgment, ACK; end of

frame, EOF; and the beginning of the interframe, IF, fields. This trailing section is shown in

Figure 5. Note that only the ACK field does not have a fixed value. The ACK field is special in

this way, as it is the only bit which during a non-contended data frame may be longer than a full

bit period without any clock issues. This is because the transmitting device will transmit a

recessive bit, and it is up to the receiving devices to transmit a dominant bit if the data received is

11

valid. If the transmitting node does not detect a dominant signal by its sample point, the

transmitting node will assume a transmission issue and signal an error. After the ACK bit, there

is the ACK delimiter and the EOF fields. This adds up to a total of 8 sequential recessive bits.

CAN devices can only transmit after 11 sequential recessive bits, so for convenience in modeling

transmission rates and frame hierarchy, the first three bits of the IF are included as the trailer to

the standard data frame.

If either during transmission or reception a message violates a list of given rules for CAN

messages, a node will transmit an error frame. The transmission of an error frame is not

dependent on having sole control over the data on the bus, and in some cases, is designed to

cause transmission to cease. In Figure 6 the definition for an active error frame is given, and a

passive error frame is given in Figure 7. More information about the difference between the two

error frames, including why there are two and when each is used is given in §2.1.4 Error

Detection, Signaling, and Confinement.

Figure 6 Active Error Frame Diagram

Figure 7 Passive Error Frame Diagram

The important point to note from Figures 6 and 7 is that the error frame is anywhere from

6 to 12 bits long without counting the delimiter and IF. These error frames are detected through

a violation of CAN’s bit-stuffing rules. In summary of the bit-stuffing rules, after five

12

consecutive bits of the same polarity an opposite polarity bit is inserted into the bitstream to

maintain clock synchronization. The transmission of six repeated bits will cause a stuffing error

to always be detected. The active error frame ensures the reception of an error frame by all nodes

on a bus, while a passive error frame only ensures reception when signaled by a node with

arbitration.

 The final frame is the overload frame. The overload frame is identical to the error frame

shown in Figure 6. The key differences between the two in terms of response are given in the

error section. The overload frame is transmitted during the IF and is differentiated from the error

frame solely because an error cannot occur in the IF.

2.1.2 CAN Arbitration

 During a transmission window, a transmitting node assumes that it is the only device

transmitting on the bus, except when acknowledging a message and when it is in the arbitration

phase. As CAN frames are transmitted on a shared bus, two nodes transmitting simultaneously is

considered a collision and is normally an error due to the integrity of the data on the bus no

longer being assured. However, during the arbitration phase, this destructive nature of collisions

is embraced, as it is the foundation for determining the order of transmission.

This method is called priority-driven arbitration, which ensures that the highest priority

message is the one placed on the bus first. The arbitration method utilizes the fact that a

dominant signal on the CAN bus will always overwrite a recessive signal. If a node is

transmitting a recessive bit during arbitration, and sees a dominant signal on the bus, the device

will stop transmitting, and will enter receiving mode, as it has lost arbitration with another

device.

13

This is shown in Figure 8, where two nodes are competing to send a message on the CAN

bus. Here, both nodes are transmitting at the same time, and for ease of explanation, this is four

bits into the IF. Contention between the ID’s of two devices always starts at the SOF bit, which

is always a dominant bit. Both devices will transmit a dominant bit to signal that a device is

starting to transmit. After this, both devices will transmit the first bit of their ID, which in this

figure is a dominant bit. Since both devices transmit and receive a dominant bit, they will both

move on to the second bit of their IDs. Node A will transmit a dominant bit while Node B will

transmit a recessive bit. Since the dominant bit will overwrite the recessive bit, Node B will not

see the signal it transmitted on the bus and will determine it has lost the arbitration and will move

into receiving mode. With no other devices arbitrating on the bus, Node A will transmit its

remaining ID bits and go on to transmit its frame.

Figure 8 Two Nodes Arbitrating for Bus Control

The remote transmission request bit and identifier extension bits are included in the

arbitration functionality. Due to data frames having a dominant bit in the remote request bit, a

data frame will always have higher priority than a request frame. Along the same lines, as the

identifier extension bit is always dominant in an 11-bit ID frame, the 11-bit ID frame will always

have priority over an extended ID frame.

14

2.1.3 Clocking in CAN

 CAN nodes do not share a common clock; therefore, they must synchronize themselves

based on the only shared resources the nodes have, the signals on the bus. Nodes use certain bit

transitions to self-correct their timing drift to the drift of the transmitting node. Every device is

individually configured with a sub-bit timing interval called the time quanta. The minimal

amount of time quanta per bit period is 8 time quanta, with the maximum being 25 time quanta.

The CAN standard expects a transition to occur within a single time quantum, which is

considered the beginning of a transmitted bit.

 The time quanta are grouped into multiple segments for configuration of key parameters

of a CAN node. These segments are the sync segment, the propagation delay segment, and phase

segments 1 and 2. How a CAN bit is separated into individual timing intervals is shown in Figure

9. According to ISO standards, the sync segment must always be one time quantum long, the

propagation segment and phase segment 1 can be any whole number of time quanta between one

and eight. Phase segment 2’s timing is dependent on the size of phase segment 1, where its value

can be as low as one time quantum and as long as phase segment 1 time quanta count, or 2 time

quanta if phase segment 1 was set to be only a single time quanta. Sync segment is the first

segment within a bit time, where the aforementioned bit transition is expected to occur.

Figure 9: CAN Bit Timing Diagram

15

The propagation segment is required for proper arbitration to occur on the CAN bus. The

length of time in seconds of this segment must be greater than or equal to twice the line delay of

the CAN bus and the sum of the internal delays of the two slowest devices on the CAN bus. This

is required for arbitration to correctly occur, as too low of a value in this segment could lead to

data not reaching all nodes before a sample point, resulting in loss of system integrity [2].

Phase segments 1 and 2 come sequentially after the propagation segment. These are

named as such because these segments can be lengthened or shortened due to resynchronization

to align the bit with an edge outside of the sync segment. The transition between phase segment

1 and phase segment 2 is the point in time at which the bus level is read and interpreted as the

value of the bit. This location is referred to as the sample point, and usually lies within 60%-90%

from the beginning to end of a bit. The data read by the controller at this point is delayed from

the current state of the bus by 10’s to 100’s of nanoseconds, due to the asynchronous handling of

the signal through clock domain crossings, debouncing and receiver delay.

To maintain synchronization between multiple nodes on a bus, bit stuffing is used to

mitigate long runs of a single polarity. Bit stuffing occurs at the transmission and reception of

CAN data inside the controller. Frames are stuffed just prior to transmission, and are unstuffed

before the submodules that require the bitstream. CAN demands that after the consecutive

transmission of five homogenous bits a bit of opposite polarity must be transmitted, even if the

bit that was to be transmitted is of opposite polarity from the consecutive transmission. This is

shown in Figure 10.

16

Figure 10 CAN Bit Stuffing Scheme

CAN allows bit stuffing to occur starting with the SOF all the way to the end of the CRC

sequence. There is a wide range in which stuff bits occur. Since the insertion of stuff bits may

cause further stuff bits to appear, CAN message may be up to 24 bits longer than expected [8].

Important to note is that the stuff bit counter is not incremented before the SOF or after the CRC

and is kept at zero at these locations. Therefore, any bits that are not set to the expected values as

given in the frame section after the CRC is treated as a frame error.

2.1.4 Error Detection, Signaling, and Confinement in CAN

 Due to the importance placed on the priority of messages and the integrity of the data

transmitted throughout the network, error handling is given great importance in the design of the

network. Errors in the CAN network are broadcasted to all other nodes, and the entire network

should enter an error state shortly after the error occurs. This is to speed up the time to

retransmission as an invalid message received by a single node would cause the state of the

system to be inconsistent across all nodes. If errors did not cause frame transmission to cease

instantly, then the bus would be occupied by an invalid frame with all nodes having to discard

the known invalid message.

17

 ISO 11898-1 specifies five non-mutually exclusive error types that can be detected by a

node. The first error is a bit error and occurs when a transmitting device does not detect the

expected polarity on the bus during transmission of a bit. This error does not occur during

arbitration; the ACK bit; or during the transmission of a passive error flag. The second error is an

error in the stuffing protocol. This error is triggered when six consecutive bit times of constant

polarity occur within a field within the frame in which bit stuffing can occur. The third error is a

CRC error, caused by an error detected by the receiver’s CRC calculation. The fourth error is a

form error, which is when a fixed bit value in the CRC frame is not detected at the predetermined

location. The final error type is the ACK error in which a transmitter does not detect a dominant

signal in the ACK slot [2].

 Using error states, a CAN node needs to have the ability to confine itself from the

network if it is detecting too many errors on the bus. This is where the concept of error counting

in CAN comes from. For each error, a counter, for either transmission or reception, is

incremented by a set amount given in ISO 11898-1 §13.1.4.2 [2]. On average, the error counter

is increased by eight on the detection of each error and decreased by one for the successful

transmission or reception of a CAN frame. A node that either detects an error type or an error

frame and is currently transmitting a CAN frame will increase its TX error counter by 8. A node

that is not transmitting the current CAN frame will increase its RX error counter by 8.

 The error counter value is directly utilized in the fault confinement logic. The fault

confinement also determines how a device is to interact on the CAN bus, and what type of error

frame will be sent by the node. There are three error modes specified in the standard, those being

error-active, error-passive, and bus-off. Error-active is the default state of a CAN node and will

partake in all bus activity. It is named error-active as it will send a dominant error frame, as

18

shown in Figure 6. The next state is the error-passive state, named so because it transmits a

recessive error frame as shown in Figure 7. A node in error-passive mode can partake in all bus

activity that an error-active node partakes in but must wait eight bits into IF before attempting

arbitration. The recessive error frame does not overwrite information currently on the bus and

will only be detected by other nodes if the node sending the recessive error frame is the node that

currently has arbitration on the bus. The final mode is bus-off. A node in bus-off mode neither

receives nor transmits any frames onto the bus and effectively removes itself from the network.

Figure 11 CAN Error State Machine

 The values at both the TX and RX error counters provide the logic for determining which

of these three modes the CAN device is in. As shown in Figure 11, an error-active node becomes

19

error-passive if either the TX or RX error counters are greater than 127. The counters continue

up to 255, where all values between 127 and 255 constitute the error-passive state. If both the

RX error count and TX error count drop below 128, the node returns to error-active with its

current RX and TX error counts. If, however, enough TX errors occur and the TX error count

exceeds 255, then the node goes into bus-off mode. Upon reaching bus-off mode, the node must

wait for 127 occurrences of a consecutive 11 recessive bit sequence on the bus. This can be

either from the bus being inactive for that period of time, or from 127 frames of any kind being

transmitted on the bus. Once either of those occurs, a CAN controller is allowed to return to

transmission on the bus.

2.2 CAN Transceiver

 CAN specifies two standards for physical layer signaling and topology, Low-Speed CAN

and High-Speed CAN. Most CAN networks use the High-Speed standards, due to their ability to

support all rated CAN bus speeds, while the Low-Speed CAN standard only allows for much

lower speeds but with higher fault tolerance. ISO 11898-2, the High-Speed CAN standard,

specifies a two-wire solution for CAN messages, with the differential voltage between the two

wires producing the digital signals that the CAN Controller recognizes. These two wires are

CANH and CANL. One key feature to note is that the standard does not require common

grounds or voltages between nodes, only that the relative voltage from any node is not more than

4.5V offset from the expected voltage of 2.5V in respect to every other node’s ground. This

standardized limit is lower than many transceivers are rated for, with some being rated for

common mode voltages of up to 36V relative to ground [9].

 The standards do not give the actual internal circuitry for a CAN transceiver, as that is up

to the device manufacturer. The following portions of this section use information gained from

20

the TI SNx5HVD251 Transceiver. This device was not employed during the implementation of

this thesis but has similar specifications and abilities to the transceivers utilized.

2.2.1 Differential Driver

 The driver of the CAN bus is controlled through a 5V CMOS digital input. The logic

value placed on the digital input (TXD) will be the logical value driven onto the bus, so a ‘1’ will

drive a recessive bit, and a ‘0’ will drive a dominant bit. To prevent a transceiver that is not

connected to a controller from forcing a dominant bit on the bus, the input has an integrated pull-

up resistor to VCC.

 Most CAN devices also have an input to adjust the slope of the driver’s output. This is

useful for lowering the total EMI caused by a transmitting CAN node due to the lower

interference with lower slew rates on the outputs to the bus. This is performed by connecting a

resistor to the slew input to ground.

 To drive the output, the digital signal goes into a differential output amplifier, which

creates the voltages needed to drive the switching transistors. These transistors are both in series

with a diode, which acts as a voltage buffer, providing an offset between the rail the transistor is

connected to and the dominant voltage that will appear on the bus. When the device is outputting

a recessive bit, the voltage on the bus is created by a simple voltage divider between the two

rails. In the TI transceiver, the expected value for this resistance is around 9 kΩ.

2.2.2 Differential Receiver

 The CAN receiver uses a Schmitt triggered comparator. The receiver side of the chip also

contains the recessive driver circuitry, with the voltage divider and receiver being separated by a

~45kΩ resistor from the bus pin. For this device, the comparator has a switching time of around

21

50ns, compared to the fastest CAN bit timing of 1us, for both positive and negative edges, with a

comparator differential resistance of around 75kΩ.

22

CHAPTER 3: TIMING ANALYSIS PROCEDURE AND TEST SETUP

3.1 Procedure Overview

 The procedure demonstrated in this paper is split into multiple sections due to the

complexity of the subsystems. This procedure aims to describe a system that could be placed

onto an arbitrary CAN network and produce timing analysis for the nodes connected to the

network. With this in mind, Figure 12 describes the top-level procedure with references to the

sample point and temporal delay subsystems.

Figure 12 Procedure Block for Top Level System

 The first section of the procedure is the simplest in total scope. In it, a device is placed on

the CAN bus in listen-only mode. The first goal for this section is to determine the bus speed at

which all the CAN nodes are communicating. This tester should not take part in any transmission

during this analysis, which is why listen-only mode is used. Listen-only mode is a commonly

included mode in CAN devices in which the node will not output anything onto the bus but will

23

still receive messages and errors. An incorrectly assigned baud rate will cause valid data on the

bus to be incorrectly interpreted, leading to errors being detected by the device. A bus speed that

allows for valid data to be interpreted from the bus is assumed to be the valid baud rate of the

network.

 The system should go through all common then uncommon baud rates, waiting for a

minute to see if the error counter reaches error-passive through a standard CAN controller under

the control of the tester. If the counter placed the device in error-passive mode, the system should

reset and initialize its CAN controller at a new baud rate. If a minute passes and the device has

not reached an error-passive state, the baud rate for which the tester’s CAN controller has been

configured should be the valid rate.

 Once the valid baud rate has been determined, the system should listen and store a list of

all CAN IDs viewed on the bus. This list of IDs will be sent to the sample point and temporal

delay analyzers to parameterize those properties of each ID. This gathering process has no fixed

period in which to run, as differences in baud rate, population on the bus, and time between a

node transmitting are all unknown variables.

3.2 Physical Driver

 A custom driver is necessary to force both dominant and recessive signals on the CAN

bus, while also allowing the CAN bus to drive itself. This contrasts with a standard CAN driver

as a recessive signal produced by these devices is not forced onto the bus but is treated as a

default overwritable state. The driver needs to be controlled by a digital input while allowing

arbitrary voltages to be selectively output from the driver. The driver also needs the ability to

allow a high impedance to be selected to not affect the state of the bus. This leads to my

24

choosing a four-input analog multiplexer for the selection between resistor circuits implementing

the required voltages and high impedance [10].

3.2.1 Forcing a Dominant Signal

 The driver forces a dominant signal using two voltage dividers, which attempts to force a

constant 3.5V on CANH and 1.5V on CANL when selected.

3.2.2 Forcing a Recessive Signal

 The recessive signal was more difficult to create than the dominant signal, as this had to

be able to overwrite a dominant bit on the bus. Many CAN transceiver datasheets have bus limits

on the number of devices to which the transceiver could drive a dominant signal. The TI

SNx5HVD251 is only rated to transmit to 64 other devices [11], while the ISO standard is that

30 devices must be supported.

Because every node has some resistance between the two CAN lines, and resistance to

ground and VCC, the parasitic losses end up appearing as parallel resistances to the load

resistors, dropping their total resistance. This resistance drop leads to the transceiver becoming

current limited, which could force the voltages of a dominant bit to be within the range to qualify

as a recessive bit. Using the fact that a resistor between the CANH and CANL multiplexers

would appear in parallel with the load resistors, this effect was created for a network with only

two devices. A 20Ω resistor was chosen to maximize the voltage drop across the bus while

keeping within the analog mux’s current limit. This resulted in a 75% drop in the load resistance

of the network.

25

3.2.3 Forcing a High Impedance Signal

 For the high impedance signal, the differential and internal resistance limits given by ISO

11898-2 were used to match the resistance of a recessive CAN transceiver closely. A resistance

of 50kΩ was chosen to provide a differential resistance between CANH and CANL, and both

CANH and CANL had a 25kΩ resistor to ground. These values were chosen due to their ease of

acquisition and the values’ large margin to the specification limits.

3.3 Sample Point Subsystem

Figure 13 Procedure for the Sample Point Subsystem

26

 The sample point subsystem begins after being configured with a set of signals to

playback, the rates at which data is being transmitted on the CAN bus, and a target CAN ID. The

first stage is to listen on the bus for a SOF to occur. Once the SOF occurs, the ID of the

transmitting device must be determined. Once the complete ID has been transmitted, if the ID

does not match the target ID the frame currently being transmitted is of no interest and the

subsystem will return to waiting for the SOF.

 If the ID does match the target ID, a check must occur to ensure that the target does not

enter a bus-off state due to the occurrence of too many errors. Therefore, a counter is kept, which

counts how many times the target ID has been detected. This is incremented every time the target

ID is detected. After the counter is incremented, if the value of the counter is not a multiple of

nine, then the subsystem returns to waiting for the SOF.

 If the ID does match and the counter is a multiple of nine, then a wait is applied until the

frame is six bits into the data frame. The counter will wait for a multiple of nine to occur

allowing the DUT to return to a normal state. The wait until six bits into the data frame

minimizes the possibility that a stuff bit error will occur. After the wait, at the detection of a

recessive state on the bus, a signal in the set of signals which with the subsystem was configured

is played onto the CAN bus. The signal, either coming from the beginning aligned signal list or

end aligned signal list, is referenced by an index into the signal list.

 After the playback has concluded, the state of the bus is monitored for an error frame to

be asserted over the current data frame. If an error frame is asserted, the overwrite signal was

detected by the DUT. The index into the signal list is incremented, then returns to waiting for a

SOF on the bus. However, if no error frame is asserted, the signal was not detected by the DUT,

27

and one of the limits of the sample zone has been found. Upon reaching this, the subsystem is

considered finished and returns the signal to the top-level procedure.

3.3.1 Detailed Explanation for Sample Point Subsystem

 Knowledge of the sample point is key to the understanding of the internal configuration

of a CAN node. The sample point is the location at which a CAN device reads a bit. By

determining the location of the sample point, we know how the tested node responds to a signal

produced by our system. This subsystem is run twice per CAN ID, unlike the temporal delay

subsystem, because there is the issue of capacitance and switching speeds with any CMOS logic

and communications bus. Due to the impossibility of creating a perfect square wave signal, the

playback must be run more than once. Each stage of signal transition, from digital logic driving,

differential signal driving, to the differential and logical reception, adds nonidealities that

preclude a perfect square wave from existing. But as this is impossible, the two runs are needed

to find a range at which a signal will be received by the DUT.

 The sample point subsystem is run with two sets of signals, those beginning aligned and

those end aligned. The beginning aligned signals are named, such as the set of signals is created

to have a fixed start point, but with incrementally earlier endpoint. The signal is created utilizing

enough discrete dominant samples to produce a one-bit long signal at a given sampling rate.

Each successive beginning aligned signal has the last dominant sample in the previous signal

replaced with a high impedance sample. This continues until there is only a single dominant

sample in a signal. An example of this is shown in Figure 14.

28

…

Figure 14 Diagram of Beginning Aligned Sample Point Detection

A similar process is performed for the end-aligned signals. Again, a signal made up of

one-bit time worth of dominant samples is used. Unlike the beginning aligned signal, in the end-

aligned signal, the first dominant sample is replaced by a high impedance signal for each

successive signal in the list. This process continues until there is only a single dominant sample

in a signal.

29

 The beginning aligned signals find the last point in which a signal can change from a

dominant to a recessive bit without the DUT detecting a dominant signal. The end-aligned signal

finds the earliest point at which a dominant signal can overwrite a recessive signal without the

DUT detecting the dominant signal. This creates a zone around which the sample point lies.

The idea of thinking about the sample point as a zone instead of an exact point comes

from Ziermann’s paper on CAN+, an experimental method for encoding a UART signal in a

portion of the CAN bit where neither synchronization nor sampling occurs [12]. In this paper, a

CAN bit is broken down into three sections, a synchronization zone, and gray zone, and a sample

zone. In his paper, the sample zone extends beyond the sample point itself but does not

encompass the end of the bit time [12]. Working with sample zones is much easier as there are

many variables that could slightly change the relative sample point such, as voltage differences,

heat, noise, clock drift and metastability when crossing a clock domain.

3.3.2 SPS Connection to ISO Standards

 The method presented in this subsystem is similar to those put forward by the ISO in

11898-2 section 6.7 [9]. In this standard listing, a procedure for determining the delay in

detecting an input signal transitioning from recessive to dominant and the delay in outputting a

dominant to recessive signal of a DUT is given. The test setup is designed for a single device on

a test bench. The ISO procedure starts with the DUT producing an SOF on the bus. Once the

tester has detected the first recessive bit, the tester outputs a dominant signal at the expected end

of the bit. The delay between detectioning the recessive bit and the output of the dominant signal

is shortened each successive run until the DUT loses arbitration.

 The overall outcomes of the two procedures are quite different. The ISO procedure is

designed to produce the combined delay of the DUT both receiving and transmitting a dominant

30

to recessive signal. The subsystem is designed to determine the sample point of the DUT relative

to the round-trip signal propagation delay to the DUT. The ISO procedure treats a state in which

the normal activity of the device, being arbitration, is interrupted as the final iteration of the

procedure in which the value is determined. In the sample point subsystem, iterations occur with

errors being produced until an error state is not observed. At that point where an error state does

not occur, and the device continues to transmit data, the overwrite signal is considered outside

the sample point range, and the length of the overwrite signal is stored.

While the sample point detection subsystem shares many similarities with the ISO

procedure, this was found only after the subsystem had been designed. The ISO procedure

should therefore be viewed not as a base upon which the sample point subsystem was developed,

but instead as validation for its feasibility.

31

3.4 Temporal Delay Subsystem

Figure 15 Procedure for Temporal Delay Subsystem

32

 The subsystem is initialized with a target CAN ID; the sample point zone for the target;

the baud rate of the network; a wait parameter initially set to the length of three bits; and an ID

for the subsystem to use for communication with the network. The subsystem begins with the

creation of four signals, those signals being the Error Out signal, the Valid signal, the Bad CRC

signal, and the ACK signal. The Error Out signal is similar in function and design to the initial

signals used in the sample point detection subsystem, being made up of one bit time of dominant

polarity. When played over a recessive bit in a data frame, the Error Out will cause a transmit

error for the device currently transmitting the recessive bit. The creation of this signal is only

dependent on the system baud rate and the signal playback rate.

 The Valid signal is comprised of the polarity needed to reproduce an entire CAN frame,

including CRC, EOF sequence, and bit stuffs. Proper CAN functionality is key to this message,

so the ACK and EOF sections of the CAN frame shall be high impedance, to allow for signaling

in these sections from the other devices on the bus. This frame needs to use the chosen ID for

communication. To maintain compliance with the CAN standard, the ID should not match any

IDs viewed on the bus, while also having a high-priority encoding. This has the knock-on effect

that the stuff bits and CRC must be calculated at runtime instead of being predefined. The length

of this frame should be minimized to increase the total throughput of the CAN bus during the

execution of the subsystem, as its reception will lower the RX error counts of all receiving nodes

on the network. The generation of this signal is solely dependent on the system baud rate, the

signal playback rate, and the choice of CAN ID.

 The Bad CRC signal is the foundation for the temporal delay measurement. As such, the

reasoning for the configuration of this signal will be covered in detail after the overview of the

subsystem. To summarize, the Bad CRC signal begins with a fully valid CAN signal without any

33

form errors initially. However, once in the CRC, the signal is manipulated to generate an invalid

CRC, which will cause an error when calculated. The last 5 bits of the CRC shall be a sequence

of pulses in the order of dominant, recessive, dominant, recessive, dominant, with each pulse

lasting for one bit time. After this, the signal shall be made up of multiple high impedance

signals to allow the DUT to communicate on the bus. This signal is dependent only on the signal

playback rate and the system baud rate.

 The final signal to be generated is the ACK signal. Its generation is dependent not only

on the playback rate and the baud rate, but also on the sample point zone generated by the

sample point algorithm for the CAN ID being treated as the target for the temporal delay

subsystem. The signal shall be high impedance from the start of the bit time to five playback

samples before the end of the sample point zone. At that point, the signal shall become dominant

for the remainder of the bit period. By delaying the assertion of an ACK to the limit of when a

signal could be registered by the DUT, the subsystem gains greater precision over the states of

all non-DUT nodes connected to the bus.

 After the generation of the signals, the subsystem must wait until the network enters IF.

At the detection of the bus entering the IF, a count begins for the total number of bit periods that

have elapsed. The count is compared against the wait parameter, and this process is the root of

the subsystem’s decision tree. If the count exceeds the wait parameter, the subsystem will take

control of the CAN bus and play its Valid signal. A separate count is taken for the number of

times a valid signal has been played on the bus. This count is reset every time an Error Out signal

is placed on the bus. Every time the valid counter reaches a multiple of 128, the wait parameter is

increased by 4 to allow devices in error-passive mode to gain access to the bus. After this

34

process, the subsystem, having placed a signal on the CAN bus, will wait for the network to enter

IF.

 At the root of the decision tree, if the elapsed bit counter is less than the wait parameter

and a SOF is detected due to a device on the network attempting to communicate, the subsystem

must determine if the device transmitting on the bus is the target device. This is done by reading

the CAN ID transmitted and comparing it to the DUT’s ID. If the ID does not match, the device

transmitting must be removed from the bus. The only way to remove a device from the CAN bus

is by incrementing the device’s transmit error counter, which is done by using the Error Out

signal. The subsystem waits for a recessive bit in the data segment of the frame and plays the

Error Out signal, which causes the transmitting device to detect an overwrite error and increment

its TX error counter. Upon playing the signal, the subsystem has completed this branch of the

decision tree and waits for the network to enter IF.

 However, if the CAN ID, once read, was found to match the target ID, the subsystem

must allow for uninterrupted transmission of the frame and wait until the ACK for this frame to

continue. At the beginning of the ACK field, the subsystem records, at a high temporal resolution

recording rate, the signal on the bus until the point at which the dominant polarity of the

generated ACK signal is output from the tester. The recorded signal is filtered to remove noise

from the input and then is analyzed for a dominant signal. The filtering and analysis are treated

as implementation details and vary based on the specifics of the network this subsystem is

measuring and the specifics of the methodology of implementation. Filtering should remove all

pulses whose length is less than the switching speed associated with the tester’s differential

comparator. If a dominant signal is reported, that means that there are still units other than the

35

DUT that are transmitting on the bus. The subsystem then returns to the standard, waiting for the

IF before entering the decision tree.

 If the analysis does not return a dominant signal, the subsystem has determined with a

high degree of certainty that all devices on the bus have been forced to disconnect due to

encountering too many errors, except for the DUT. After this determination, the subsystem waits

for the IF to occur, then takes control of the bus at the earliest time allowed by the CAN

standard. The subsystem then begins playing the Bad CRC signal onto the CAN Bus. Once the

signal playback reaches the last five bits of the CRC where the pulse sequence was inserted, the

subsystem begins recording the signal on the bus at a high temporal resolution recording rate.

Once the ACK has been reached, the DUT will not assert an ACK, and will instead signal the

CRC error after the ACK delimiter. The recording unit records through the assertion of the error

signal, and after analyzing the recorded signal, returns the temporal delay from the device

implementing the subsystem to the DUT.

3.4.1 Detailed Explanation for Temporal Delay Subsystem

 The SPS produced the sample point zone. The sample point zone is offset by the temporal

round trip delay between the tester and the DUT and by the nonideal response of the tester’s

driver and receiver. In a known system, such as an ideal testing environment, this can be

calculated through bench testing, and substituted as a correction factor in the measurement.

However, this platform assumes no knowledge about the makeup of this network and has to

employ experimental processes to minimize the number of unknown variables.

 Utilizing the temporal delay subsystem, a tester can determine the total round-trip delay

between the tester and the DUT. When run on multiple nodes in a network, the relative offset of

the sample point zone can be replaced by an absolute delay based on the tester’s timing accuracy.

36

By modifying the relative delay into absolute delay, all nodes that have been run through the

subsystem can have their sample point zones adjusted to the same epoch, the epoch being the

logic and clock of the tester itself.

 To correctly record the temporal delay measurement of a DUT, the nodes on the network

must be in a state where the DUT is the only device that can use a dominant signal to report the

CRC error. In his paper, Novak demonstrated a methodology for measuring the sample point of a

single node. This methodology required the tester and a controlled CAN node for the detection of

the sample point for a single DUT. Much of that procedure would fall apart with more than one

device, which is mentioned in the paper [13]. Novak based his designs on the ISO 11898-2 test

setup, having the test unit create the sample signal as a valid CAN frame and allow the error

detection of the DUT to reveal the delay. This required the DUT to remain in an error-passive

state, while the controlled CAN node would be disabled during transmissions from the tester, as

it may accidentally signal the error, invalidating the measurement.

 This subsystem does have the same requirement as [13] that the DUT be the only device

to signal off the Bad CRC. However, we get around having a single device on the bus due to our

Error Out signal. The nodes on the CAN bus that are not the DUT are quickly brought up to

error-passive mode upon their first transmission through multiple playbacks of the Error Out

Signal. The non-desired node, having triggered the playback of the Error Out Signal, will attempt

arbitration at the earliest possibility with the message that had originally triggered the error out

signal. The non-desired node will continue to trigger the error out signal through its

transmissions until the increase in the non-desired node’s TX error count leads the node to enter

into an error-passive state, where the node has to delay itself before transmission.

37

 The fact that all the nodes that have transmitted before the DUT are in error-passive

mode permits a false assumption that there are no more devices in error-active mode on the bus.

This is not true, as other than keeping a count of the Error Out signals that have been used to

overwrite every ID on the network, an implementation expensive task, there is no way to know

for certain if there is more than one device in error-active mode from the tester’s point of view.

However, the implementation of the bus-off state does allow for the knowledge of bus

occupancy.

 As stated in Chapter 2, all CAN devices connected to the network will ACK a valid

message, this is true for both error-active and error-passive nodes. However, a node in the bus-

off state is considered disconnected from the network. This means those nodes do not take part in

any network activity and do not ACK nor report errors. With this knowledge and with the

knowledge of the relative sample point of the DUT, the system can determine if any devices

responded with an ACK to a message sent by the DUT. If there is no response to the ACK, the

DUT is the only device left on the bus. If there is a response, a node is still connected to the bus.

 Extreme care needs to be taken to keep the DUT from exiting the error-active state. If the

DUT was to enter error-passive mode, the device would respond with a passive error frame, from

which no data can be discerned about its delay. The two methods for the DUT to enter error-

passive mode are either having a failed frame transmission or receiving an error frame.

Preventing the node from receiving too many error frames is difficult, as the process for all other

nodes entering error-passive mode will lead to the DUT temporarily entering error-passive mode.

Due to the transmissive nature of CAN errors, the DUT could be forced into an error-

passive state which would preclude the detection of the temporal delay. To mitigate this, the

transmission of valid frames, must be able to bring the DUT from a full RX error-passive mode

38

to standard error-active mode. To do this, 127 valid frames must be sent before it is possible for

any error-passive nodes to transmit and be forced into bus-off mode. By doing so, the receive

error counter for the DUT is dropped to zero from 127. This reasoning is also why the process of

increasing an error-passive node to bus-off is performed over a much longer time period than the

transition from error-active to error-passive. Care must be taken with the devices entering bus-off

mode as the increase in received error count for the DUT when non-desired devices are

transitioning to bus-off is the same as the initial error out sequence to force the non-desired

devices to error-passive mode. If all devices were to enter bus-off with the DUT having entered

error-passive mode and immediately transmitting a message, it would pass the sole device check,

but would not produce an error frame to measure the delay.

Compared to minimizing the RX error count, minimizing the TX error count is much

easier. The transmit error count, which is only increased when a DUT transmitted frame

experiences an error state, is easy to prevent. The process of minimizing this for the DUT

requires two rules to be followed: the DUT frame is never overwritten, and the DUT frame is

always acknowledged. The second rule requires that only a part of the ACK bit for the DUT is

recorded and analyzed, as the tester must still output an ACK for the DUT. By using the relative

sample point measurement, the amount of information lost from prematurely ending the

recording is minimized and should, with a properly configured CAN network, be more than

enough for an accurate bus occupancy determination.

The usage and the makeup of the Bad CRC signal was guided by the goal of minimizing

external factors in the final measurement of the delay. A CRC error was chosen over the other

defined CAN error types since it is agnostic to the knowledge of the device’s sample point. This

decision is counterintuitive for a setup where much is known about the sample point. However,

39

all the other errors have quick responses to the error occurring, usually the next bit period. This

quick response could lead to a mismatch between the ideal sample point of the controller, which

is what the controller is configured to have, and the actual sample point of the controller due to

synchronization and phase error.

The reasoning for utilizing a CRC error to measure the temporal delay instead of other

CAN errors originates from the uniqueness in signaling of the CRC error compared to the

signaling of all other errors. The CRC error is signaled three bit periods after the error is

detected, and up to 18 bits after the error occurred. This is in comparison to all other error

signaling which occurs the bit after the error is detected [2]. With such a long time frame, there

are multiple opportunities to force a hard synchronization to minimize phase and time quanta

offsets that could occur in a stuff bit error. The bit error cannot occur during our own

transmission, and the stuff error requires a long period of time in which the nodes may become

out of sync. That leaves the ACK error to which the transmitter is required to respond and the

form error, which would leave the sample point issue from earlier.

The deliberate sequence of pulses at the end of the CRC is designed to provide multiple

hard synchronizations for the DUT. The sequence also provides a unique view into the driver and

receiver characteristics of the tester. By measuring the length of time that the recessive and

dominant bits are detected, the effect of the nonideal components on the network can be factored

into the temporal length of the signals. This permits a correction factor for the bus measured

value to be found and applied without using bench testing.

3.4.2 TDS Constraints

 This subsystem does have some constraints that conflict with features of CAN as laid out

in ISO 11898-1. These constraints are directed towards the handling of a bus-off CAN controller

40

and its recovery method. ISO 11898-1 13.1.4.4 on bus-off management states that a node in the

bus-off state may become error-active after monitoring 128 occurrences of 11 consecutive

recessive bits [2]. Such a recovery speed would severely limit the number of nodes this

subsystem would work with to 16 nodes in the best case, much less in a realistic case.

 The first constraint placed on the system is that all nodes on the network must be

configured to ignore the automatic bus-off recovery method provided in the LLC and instead use

driver bus-off recovery methods. The basis for this constraint comes from multiple sources,

including the Linux Kernel [14], a major CAN system manufacturer [15], and by ISO 11898-1

itself. The standard states in the diagram for section 13.1.4 that bus-off can only be restored to

error-active with the auto-recovery method and a user request. Along with this, the standard also

states in the basic concepts of CAN, that a node shall only start recovery upon a user request.

 The second constraint is that the network must allow bus-off recovery, but that the

recovery period is greater than twice the transmission period of the least frequent device on the

CAN bus. This constraint is required for nodes already in the bus-off state to remain there until

all nodes other than the DUT are in the bus-off state. This constraint has its basis in simple

recording theory, where a recording must occur above the Nyquist rate for all information to be

retained. If devices recover faster than twice the slowest frequency, then the algorithm will never

correctly resolve all temporal delay measurements.

3.4.3 TDS Connection to ISO Standards

 As with the sample point subsystem, the procedure given for the temporal delay

subsystem is also similar in nature to a measurement procedure given in 11898-2 section 6.7 [9].

The ISO procedure provides a method for determining the internal delay for a node using the

delay at which a bit stuffing is signaled by the DUT using a known point created by the tester.

41

The ISO procedure employs the SOF bit as the known point and allows the bus to enter a

recessive state. This recessive state continues until the DUT signals that it has determined that a

bit stuffing error has occurred. The delay between the DUT signaling the error and the known

time at which the error occurred is the recessive to dominant output delay of a node. This, along

with the values from the calculation performed in the procedure described in the sample point

algorithm, can be calculated to the internal delay of the node.

3.5 Experimental Test Setups

 For the implementation of both subsystems, a set of test benches was made to provide

nonideal scenarios with which the system could work. These systems were made with long

transmission lines, multiple nodes, and non-standard sampling points. They were designed to test

potential edge cases for the system that were viewed as possible sticking points in the procedure.

3.5.1 Testing Constraints

 For the following implementation and test benches, some constraints had to be placed on

the test setups. The first constraint was that devices would only utilize standard data frames and

not extended ID CAN frames. Early in the design process, there were doubts as to whether the

hardware for testing was able to handle extended CAN frames. With the inclusion of extended

CAN frames breaking the ID detection logic already implemented, the choice was made to limit

each node to utilize a standard-length CAN ID.

 The next constraint on the system was to permit only one CAN ID to be allocated to each

node. This is impractical and not done in the actual CAN implementations, where an ID

functions closer to an IP/port pair than a MAC address. With real systems, a single node may

communicate across dozens or hundreds of IDs depending on the system encoding scheme.

Allowing for this in the implementation would have required the creation and usage of content

42

addressable memory. This modification to the subsystem and implementation would be

extensive, but worth it, and will be discussed in more detail in the conclusions.

 The final constraint on the system is the restriction of stuff bits located in the data and

CRC segments. The removal of stuff bits in CAN networks would be handled at the application

layer, as bit stuffs will always be inserted where required in the LLC to maintain clock

synchronization. If, however, data is encapsulated before being provided to the CAN controller,

bit stuffing can be avoided within the data and CRC segments. This has been shown to reduce

the magnitude of errors occurring on the network and reduce clock jitters as well. With this in

mind, I chose the restriction to limit stuff bits to only the arbitration and DLC segments for all

devices on the network.

3.5.2 Experiment 1 Setup

 Experiment one utilized two CAN nodes, both placed 10m from the tester and 20m from

each other. A figure demonstrating this setup is shown in Figure 16. The nodes were designed to

handle the worst-case scenario for a network of this size. Both nodes used Arduinos

communicating with MCP2515 CAN Controllers. The CAN Controllers for both DUTs used

high jitter 8 MHz crystal oscillators for their clock signal. During testing, it was found that while

the software for these devices was designed to work and configure the nodes for 1 Mbps

transmission, the sample point values were out of spec and barely allowed the two nodes to

communicate with each other. This occurs without intervention from the tester and is a limitation

from the DUTs themselves. It proved an excellent test for the bus-off detection mechanism and

the sample point detection subsystem. Any mistakes during implementation in either of the

subsystems would be easy to detect during the data recording as these devices should have

identical measurements to each other.

43

Figure 16 Design for Experiment 1 Test Bench

3.5.3 Experiment 2 Setup

 Experiment two utilized three CAN nodes communicating at 500 kbps. These three CAN

nodes were set up as shown in Figure 17. The test bench was designed to validate the 500 kbps

speed on the tester. This demonstrates that the system can work at multiple bit speeds, not just

the 1 Mbps speed for which the design was created. The nodes still use the same high jitter

Arduino setups as before, but with half the required bit speed, they are better suited to the task.

This also tested the ability to work with nodes on separate grounds, as all nodes were

independently powered by separate household power adapters. As these power adapters did not

use grounded connectors, and as each node was connected to outlets on separate breakers, these

nodes had different dominant and recessive voltages in reference to the tester’s ground. All the

DUTs are an asymmetric distance from the tester to validate if a correlation between temporal

delay measurement and distance can be determined by the data returned from the tester.

44

Figure 17 Design for Experiment 2 Test Bench

3.5.4 Experiment 3 Setup

 Experiment three tests the linearity of the tester in response to bus length. Throughout

earlier tests, oscilloscope readings showed that the bus behaved differently at extreme bus

distances. Oddities such as greatly increased settling time and possible signal reflections were

observed by placing an oscilloscope at the input to the tester’s differential comparator. These

oddities are caused by the bus becoming a transmission line at increasing distances, with

capacitance between the lines and inductances leading to the wave reflections and less than

optimal switching times. With this in mind, I wanted to view how the results from the bus would

change with the distance from the tester to the DUT being the only variable.

 A BeagleBone Black was used to communicate with the tester at 1 Mbps across the

varying transmission line lengths. Seven distances: negligible; five meters; seven meters; seven

and a half meters; 10 meters; 20 meters; and 30 meters were tested for ten iterations at each

distance. The bus length was made up of precut ethernet wires, with CANH and CANL both

being a twister pair. This wire was routed and placed in the test environment in such a way so as

to minimize coupling with other sections of the wire.

45

3.6 Verification Test Bench Setup

 The verification setup was designed to be the initial test setup for the system and would

utilize bench testing to evaluate the accuracy of the measured data. The configuration of this

setup is shown in Figure 18. The setup used two devices, a Beagleboard Black using a Bosch

CAN IP in the SoC and an MCP 2551 transceiver, and an Arduino using an isolated MCP 2515

CAN Controller running at 16 MHz also using an MCP 2551 transceiver. The tester in this setup

utilized the standard driver circuitry and the same CAN transceiver as the Beagle for reading

data on the CAN bus. The use of a common transceiver reduced the number of bench tests and

calculations required to calculate the percent error calculations.

Figure 18 Design for Verification Test Bench

46

3.6.1 Physical Verification of Unit Delay

 The physical verification of the input and output delays for each IC was performed using

an arbitrary signal generator and a 5 GS/s oscilloscope with a 1 GHz bandwidth. The arbitrary

waveform generator was set to generate a square wave pulse with a 5 ns rise time to maximize

the measurement resolution. All measurements were taken at the 5 GS/s sampling rate and were

scaled to maximize voltage accuracy without over ranging the oscilloscope inputs.

 Measurements were taken at key points according to the datasheet for each device, except

for the driver circuitry. In the table below are the measurement values for the four major

transitions for the CAN transceiver. The transitions measured are the dominant to recessive

driver delay; the recessive to dominant driver delay; the dominant to recessive receiver delay;

and the recessive to dominant receiver delay. Each measurement has a matching waveform

approximation with the points of measurement that are used in the table.

The driver was found to have a maximum switching time of 9.8 ns, and as this system

can only measure at 10ns intervals, it was treated as a 10ns switching time.

47

Figure 19 MCP2551 Receiver Recessive to Dominant Delay Waveform

Dark Waveform: Receiver Output. Bright Waveform: Bus Differential Voltage

Table 1 Values for Marked Waveform in Figure 19

Label Description Voltage Time(ns)

A Start of measurement 2.3V 0

B 90% Input Edge 2.05V 0.4

C Input Minimum Dominant Voltage Threshold 890mV 4.32

D Input Maximum Recessive Voltage Threshold 500mV 5.76

E 10% Input Edge 220mV 6.6

F Input reaches 0V 0V 7.92

G Output Voltage Rise Initial Point 10mV 64.6

H Output Voltage VIL Max Threshold 810mV 66.44

I Output Voltage VIH Min Threshold 2.01V 69.28

J First Output Peak 3.03V 73.64

48

K Output Settled 2.73V 106.8

Figure 20 MCP2551 Receiver Dominant to Recessive Delay Waveform

Dark Waveform: Receiver Output. Bright Waveform: Bus Differential Voltage

Table 2 Values for Marked Waveform in Figure 20

Label Description Voltage Time(ns)

A Start of measurement -400mV 0

B 10% Input Edge 0V 2

C Input Maximum Recessive Voltage Threshold 540mV 3.4

D Input Minimum Dominant Voltage Threshold 900mV 4.2

E 90% Input Edge 3.06V 7.6

F Input Peak Voltage 4.96V 14

G Output Voltage Drop Initial Point 2.56V 44.8

H Output Voltage VIH Min Threshold 2V 45.6

49

I Output Voltage VIL Max Threshold 820mV 48.2

J First Output Peak -340mV 55

K Output Settled 20mV 86.4

Figure 21 MCP2551 Dominant Driver Delay Waveform

Y-Axis: Voltage X-Axis: Time

Table 3 Values for Marked Waveform in Figure 21

Label Description Voltage Time(ns)

A Start of Measurement 3.56 0

B Input Voltage Logic High Minimum 3.5 0.48

C Input Voltage 90% 3.304 0.76

D Input Voltage Logic Low Maximum 1.5 4.28

E Input Voltage 10% 1.26 4.8

F Input Voltage Lowest Peak .52 8.48

G Input Voltage at Stable Differential Bus 1.02 100.8

50

H CANH Rise Initial Measurement 2.47 23.6

I Transceiver CANH Minimum Dominant Voltage 2.76 30.4

J Transceiver CANH Maximum Recessive Voltage 3 32.1

K CANH Voltage at Stable Differential Bus 3.5 100.8

L CANL Rise Initial Measurement 2.33 23.6

M Transceiver CANL Maximum Dominant Voltage 2.25 33.5

N Transceiver CANL Minimum Recessive Voltage 2 39.2

O CANL Voltage at Stable Differential Bus 1.44 100.8

P CANH Differential Recessive Maximum Voltage 2.65 28.44

Q CANL Differential Recessive Maximum Voltage 2.52 28.44

R CANH Differential Dominant Minimum Voltage 3.55 35.8

S CANL Differential Dominant Minimum Voltage 2.06 35.8

3.6.2 TI SoC Datasheet Minima and Maxima

 The last remaining piece of information required to obtain a full evaluation of the sub-bit

timing of the BeagleBone was the delays inherent to the Bosch CAN IP. This proved difficult as

this information is not presented in the operating system or within the BeagleBone or TI

AM3358-Sierra SOC. The information from these datasheets was sufficient to make an educated

guess as to internal delay structure. The datasheet revealed that the delay from the expected bit

time was ±5ns for the upper and lower datasheet limits. Assuming the worst-case scenario, this

would result in the internal delays for the SOC being equivalent to 10ns. The internal jitter from

the SOC clock is rated at a maximum of ±1% with a tolerance of 50ppm. On the 24 MHz clock,

this results in a total error of ±1.2 kHz [16].

51

3.6.3 Calculation of Expected Values for Temporal Delay

 Below in Figure 22 is the timing path that a signal produced by the tester, in this case a

Zynq Z70-20 FPGA, must take. Each delay is marked with a reference letter that denotes what

causes the delay at the marked subpath.

Figure 22 Labeled Signal Delay Path

 Delay A is the delay for a signal being selected for playback to the signal appearing on

the output of the FPGA due to internal routing delays. Delays C and D are the delay due to the

driver switching from forcing a recessive to forcing a dominant signal on the bus, and the delay

due to the driver switching from forcing a dominant to forcing a recessive signal on the bus,

respectively. Delays F and G are respectively the delays in the RX line of the receiver switching

from high to low due to a recessive signal on the CAN bus switching to a dominant signal, and

the delay for the transition from low to high on the RX line due to the dominant signal becoming

a recessive signal on the CAN bus.

 Delay J is the internal routing delay inside the TI AM3358-Sierra SoC for the CAN RX

line. Delay K is the internal delay error due to clock jitter in the TI SoC. Delay L is the internal

52

routing delay inside the SoC for the CAN TX line. Delays N and O are the delays between

switching from driving a recessive to a dominant state on the CAN bus and between switching

from driving a dominant to recessive state on the CAN bus. Delay Q is the internal receiver delay

for the FPGA, due to clock domain crossing, internal routing, and recording logic. Finally,

Delays B, E, H, I, M, and P are all delays due to the propagation of a signal over wires.

 There are three delay calculations that must be made for the three expected bus

transitions in the verification experiment. The first is the delay from the tester asserting a

recessive pulse on the CAN bus, shown in Equation 2. The second, shown in Equation 3, is the

tester asserting a dominant pulse on the CAN bus as seen by the tester. The third is the delay for

the tester asserting the recessive CRC delimiter as seen by the DUT and the delay for the

assertion of the dominant signal by the DUT as seen by the FPGA. This is shown in Equation 4.

𝜏𝑅𝑃𝑢𝑙𝑠𝑒 = 𝜏𝐴 + 𝜏𝐵 + 𝜏𝐷 + 𝜏𝐸 + 𝜏𝐺 + 𝜏𝐼 + 𝜏𝑄 (2)

𝜏𝐷𝑃𝑢𝑙𝑠𝑒 = 𝜏𝐴 + 𝜏𝐵 + 𝜏𝐶 + 𝜏𝐸 + 𝜏𝐹 + 𝜏𝐼 + 𝜏𝑄 (3)

𝜏𝑅𝐷𝑈𝑇 = 𝜏𝐴 + 𝜏𝐵 + 𝜏𝐷 + 𝜏𝐸 + 𝜏𝐺 + 𝜏𝐻 + 𝜏𝐽 + 𝜏𝐾 + 𝜏𝐿 + 𝜏𝑀 + 𝜏𝑁 + 𝜏𝑃 + 𝜏𝐹 + 𝜏𝐼 + 𝜏𝑄 (4)

 All of these delays are measured by the tester and used in the calculation of the

approximation to 𝜏𝑅𝐷𝑈𝑇. This equation set can be simplified down utilizing knowledge of the

setup. All wires in this setup are less than 15cm and can be assumed to have a total propagation

delay of less than 5ns, which is ignored because it is less than our sampling rate. The result of

this is shown in Equations 5, 6, and 7.

53

𝜏𝑅𝑃𝑢𝑙𝑠𝑒 = 𝜏𝐴 + 𝜏𝐷 + 𝜏𝐺 + 𝜏𝑄 (5)

𝜏𝐷𝑃𝑢𝑙𝑠𝑒 = 𝜏𝐴 + 𝜏𝐶 + 𝜏𝐹 + 𝜏𝑄 (6)

𝜏𝑅𝐷𝑈𝑇 = 𝜏𝐴 + 𝜏𝐷 + 𝜏𝐺 + 𝜏𝐽 + 𝜏𝐾 + 𝜏𝐿 + 𝜏𝑁 + 𝜏𝐹 + 𝜏𝑄 (7)

 As shown in Equation 7, the delay for the DUT has components originating from the

final dominant bit of the CRC, becoming a recessive bit for the EOF. These components are

characterized by the difference between the expected recessive signal length and the measured

signal length. This difference originates from the capacitance and inductance of the bus

increasing the length of the previous dominant signal. The tester has already recorded the signal

length of the recessive bits in the ending CRC pulse sequence and knows the expected length of

these signals. By calculating the offset between the expected length of the recessive bits and the

recorded length, 𝜏𝑅𝑃𝑢𝑙𝑠𝑒 can be fixed to a measured value. While all variables in 𝜏𝑅𝑃𝑢𝑙𝑠𝑒 ,

𝜏𝐷𝑃𝑢𝑙𝑠𝑒, and 𝜏𝑅𝐷𝑈𝑇 were calculated in bench testing, the delay values for the FPGA driver

circuitry are heavily dependent on physical bus load. By determining these values at run time

instead of at design time, the final calculation can be better approximated. This is shown in

Equation 8.

 𝜏𝑅𝑃𝑢𝑙𝑠𝑒 = 𝜏𝐴 + 𝜏𝐷 + 𝜏𝐺 + 𝜏𝑄

𝜏𝑅𝑃𝑢𝑙𝑠𝑒 = 𝜏𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝜏𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 (8)

𝜏𝑅𝐷𝑈𝑇 = 𝜏𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 − 𝜏𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + 𝜏𝐽 + 𝜏𝐾 + 𝜏𝐿 + 𝜏𝑁 + 𝜏𝐹

54

 With the calculation of the delay of the DUT simplified to remove as much dependency

from the bench test readings as possible, the estimated 𝜏𝑅𝐷𝑈𝑇 can be calculated. The definitions

for the τ values are given in Equation 9. While 𝜏𝐹 and 𝜏𝑁 can be described with the oscilloscope

bench values, 𝜏𝐽, 𝜏𝐾, and 𝜏𝐿 are obtained from values given in the datasheet for the BeagleBone

SoC. Due to the low jitter of the clock of the TI SoC, 𝜏𝐾 can be assumed to equal zero. The other

internal SoC delays introduce some complexity. They were defined as a range of ±5ns from the

perspective of the SoC at terms of arrival into the controller. As we are external to the system, a

negative delay is impossible, so the range is fixed to have the lowest term as zero ns of delay.

This brings the range to 0 to 10ns for both the input and the output signals combined. As this

produces a range of values, the median of the range is chosen, 5ns, with an error term of ±5ns.

𝜏𝐾 = 0𝑛𝑠

𝜏𝐽 = 5𝑛𝑠 ± 5𝑛𝑠

𝜏𝐿 = 5𝑛𝑠 ± 5𝑛𝑠 (9)

𝜏𝐹 = 𝑆𝑐𝑜𝑝𝑒2𝐹 − 𝑆𝑐𝑜𝑝𝑒2𝐷 = 34.2𝑛𝑠

𝜏𝑁 = 𝑆𝑐𝑜𝑝𝑒3𝑆 − 𝑆𝑐𝑜𝑝𝑒3𝐸 = 31𝑛𝑠

 For the verification testing, all communication is performed at a baud rate of 1 Mbps

corresponding to an expected bit period of 1000ns. With the bit period and τ variables having their

values fixed, the equation for the delay of the verification unit is simplified to the following

calculation.

𝜏𝑅𝐷𝑈𝑇 = 1000𝑛𝑠 − 𝜏𝑀𝑒𝑠𝑢𝑟𝑒𝑑 + 75.2𝑛𝑠 ± 10𝑛𝑠 (10)

55

CHAPTER 4: SAMPLE POINT SUBSYSTEM

 The sample point subsystem is designed to brute force the sample point for a DUT on the

CAN Bus through signal playback. The sample point subsystem was developed using

hardware/software co-design principles. Using these principles, the data-intensive workloads

were handled in software on the ARM core, while the timing-sensitive workloads were

implemented in the FPGA fabric in SystemVerilog. On top of the timing-sensitive workloads,

the FPGA fabric also requires some supporting hardware to permit communications with the

ARM core. These principles also hold true for the implementation of the Temporal Delay

subsystem shown in the next chapter.

 This principle is based on those utilized for the CAERUS system [17]. This thesis started

as an evolution of the CAERUS system with a complete redesign of the system from earlier

implementations, providing the basis for the hybrid architecture. Unlike CAERUS, the tester

implementation is designed to run without a controlling computer commanding the FPGA. These

differences are due to the fundamental way CAERUS was designed to be primarily software with

some Verilog modules for playback, while the implementation given in this paper places most of

the work on the Verilog modules.

When designing an implementation using hardware/software co-design, low latency and

parallelization are the two main driving principles. Throughout the implementation of this thesis,

however, parallelization was never a concern for this algorithm. With the desire for accurate

timing, a much faster out-of-order processor could be proposed as a better platform for

development rather than a slower clocked FPGA. However, with this thesis, an accurate and

deterministic clock and logic timing are paramount for repeatable measurements.

56

 With an out-of-order processor, for example a standard x86_64 processor, standard

operating clock speeds would be easily above 2.5 GHz. 2.5GHz results in at least 12 operations

occurring on the processor as compared to an FPGA clocked at 200 MHz. These 12 operations,

however, do not have deterministic timing. With any processor, a fetch to cache or memory

results in a system delay. Even when writing directly in assembly, the timing of CPU instructions

cannot be nailed down to the single clock precision like an FPGA can.

 Using an FPGA, all calculations on received data can happen in parallel with control

decisions, allowing complex decision trees to be traversed in far fewer than 12 desktop

instructions. For the number of concurrent tasks being performed with high clock accuracy, a

processor would need to have its cache fully deterministic at the assembly level and would

require utilizing multiple cores for the implementation. With all of this in mind, the design

decision to use an FPGA, with an ARM core providing large dataset creation was the clear

choice in terms of accuracy of results and implementation effort.

4.1 FPGA HDL Implementation

 The HDL was developed in a modular approach. A great deal of care was taken to create

individual modules for all common and separate tasks. Some modules, like one-shot units, and

clock dividers, are utilized heavily but will not be discussed in this paper due to their simplicity.

Some common functionalities like counters were not made modularized due to the varying

requirements for how stimuli and parameters of each counter.

 The initialization of the subsystem is mainly handled through automatically generated

AXI-4 Lite interfaces [18]. These AXI modules permit PGA registers to be mapped to the ARM

57

memory space allowing for simple transfers of 32-bit messages between the two components.

For large transfers, such as generated signals, direct memory addressing, and block memory are

used. To the programmable logic, all signals are available in BRAM units with only a 2-clock

cycle delay upon requesting data from the BRAM. Key aspects to note for the implementation

are that all resets in the HDL are active low as per Xilinx recommendations. Along with this, all

state machines are implemented using SystemVerilog enumerators to enable the synthesizer to

optimize all state machine logic.

 Multiple HDL modules were created to handle certain MAC level CAN controller

functionalities. Modules were designed to signal the device entering the IF, the signal if an error

message is transmitted on the bus, and to decode CAN IDs. These modules were controlled by a

top-level state machine that determined the overall state for the sample point subsystem. This

top-level state machine was assisted by a synchronization unit, which would keep the system in

time with a transmitting node through mechanisms similar to those utilized in CAN Controllers.

Without synchronization to the transmitting node, the high accuracy FPGA would eventually

become desynchronized to the bus because all other nodes on the bus have less accurate clocks.

 During design, care was taken to keep the HDL in a single clock domain. The

asynchronous CAN signal enters the FPGA and goes through a dual flip flop clock domain

synchronizer before being analyzed by the sample point subsystem. The dual flip flop design was

used due to its ability to remove metastability from the input logic and to factor out any noise

less than the setup time of the flip flops. In the rest of the system pulses are used to signal actions

occurring at predetermined times which are slower than a clock cycle. The system was clocked at

5 ns period, with the fastest pulse speed possible for the system being generated at a 10ns period

per pulse.

58

 The playback unit in the implementation takes a sequence of 16 two-bit samples and

produced these signals on the output of the FPGA at a configurable rate. The sequence of 16

signals is provided through the block memory with the signals being generated in the ARM core.

The signals have three states, with one bit specifying whether the physical driver should be in

high impedance mode, and the other bit specifying if the system should force a dominant or

recessive bit on the bus.

4.2 ARM Software Implementation

 The processor code’s main function is to produce the signals required for either

beginning aligned playback or end aligned playback. These signals need to be generated at run

time, because of the need for information regarding the baud rate of the bus. Besides the duty to

generate the signals, the software must also configure the HDL system through memory-mapped

registers and must also store the returned signal number in the CAN target data structure.

 The algorithms used for the generation of the beginning and end aligned signals are

designed to ensure proper byte and word alignment. While the signals themselves are represented

as two bits, the C code necessitates that bytes are the smallest data size. The algorithm then has

to translate these groups of four signals into groups of 16 signals, as the HDL requires full 32-bit

words to be passed to the playback unit.

 The algorithms were also designed to work around the shortcomings of the

implementation of the playback unit. The playback unit will hold the last signal sent to the unit

on the output of the device. This requires that the last signal sent from the device be a high

impedance signal. If this last signal was not high impedance, then the FPGA driver would hold

59

either a recessive or dominant bit on the bus, at a time at which the system is not intended to

force the signal on the bus.

60

4.3 Experimental Data

4.3.1 Verification Test Bench

 The verification experiment was run over four separate known sample points from the

BeagleBone Black. The four sample points from the BeagleBone were chosen to give a snapshot

of the typical sample range as defined by the CiA. These sample points were 62.5%, 75%,

83.3%, and 87.5% relative to the bit transition from the BeagleBone. Those times were validated

by viewing the configured sample point value provided by the CAN drivers in the Linux kernel

[14]. All four sample points were individually tested for 30 iterations for both the beginning and

the end of the sample point zone. The results are shown in Figures 23 and 24. The expected

values are based on a 200ns round trip delay found by measuring the Temporal Delay, in Chapter

5. The data in Figure 23 has an additional 80ns of delay attributed to internal playback delays.

61

Figure 23 BeagleBone Black Beginning of Sample Point Zone Distribution

Expected Value .75: 470 ns, .833: 550ns, .625: 350ns, .875: 600ns

62

Figure 24 BeagleBone Black End of Sample Point Zone Distribution

Expected Value .75: 550 ns, .833: 630ns, .625: 420ns, .875: 670ns

 For the beginning aligned signals each measurement except for the .625 sample point had

a maximum standard deviation of 10.5ns, which is close to the sampling rate of 10ns. This

standard deviation is equivalent to 1.05% of the bit period for the experiment and is considered

excellent for a test in which values can differ based on environmental changes. These

environmental changes could result in up to 30-40ns off offset, as the bench measurements of the

DUT transceiver were found to have a third of the maximum delay per datasheet specs. These

tests were performed over three hours per sample point, so for the deviation to be nearly a single

sample is a testament to the consistency of the FPGA implementation.

63

 For the end aligned signals, each measurement except for the .625 sample point had a

maximum standard deviation of less than 7ns. The standard deviation being less than a sample

shows how the recessive to dominant transition occurs in a much shorter time frame as compared

to the dominant to recessive transition of the beginning aligned signal. The mean of these values

closely align with a 200ns round trip delay from the tester to the DUT.

 The beginning and end aligned sample point measurements for the .625 sample point

range seem to be the odd ones out. This test was run twice to validate that an issue had not

occurred with the initial experimental run that provided such strange behavior. For the beginning

aligned data the standard deviation of 20ns, twice the standard deviation of the other sample

points, and the much wider range of outliers is difficult to explain but could be caused by the

Bosch CAN IP in the Beagle being unstable at this low of a sample point. The instability at low

sample point values is possibly due to the sample point registering the edge as a delayed rise and

synchronizing to this value [12].

In addition to the oddities of Figure 23, there is the shockingly consistent end-aligned

data as shown in Figure 24. Only three different values were measured across the 30

experimental runs per configuration. This tight grouping of data results in a standard deviation of

only 3.9ns, 1ns less than the next closest sample point. For this test to produce two diametrically

opposed data sets is quite unexpected. However, I would place the beginning aligned signal as

the more erroneous measurement, as the mean of the end aligned .625 measurement, 429ns,

follows the pattern shown in the other end aligned measurements of being close to 200ns earlier

than the known sample point.

64

4.3.2 Experiment 1 Results

 The goal of the first experiment is to demonstrate the tester’s measurement validity for

nonideal systems. As such, two nonideal Arduino systems were used with a 10m wire connecting

both devices to the tester circuitry as shown in Figure 16. By communicating at a speed of 1

Mbps and utilizing an 8 MHz crystal oscillator, the DUTs were running beyond rated datasheet

limits. This was intentional, as these devices highlight the fact that software developed for these

devices allowed for this rate, but the controllers would be running at an unvalidated rate. This

would be the worst-case scenario for CAN transmission, both devices running beyond their

stated limits, operating in undefined behavior. Luckily, the devices did work, and the FPGA

produced the results graphed in Figures 25 and 26. The expected values are based on a 290ns

round trip delay found in the Temporal Delay Data collection.

Figure 25 Experiment 1 Beginning of Sample Point Zone Distribution

65

Expected Values: Both Devices: 335ns

Figure 26 Experiment 1 End of Sample Point Zone Distribution

Expected Values: Both Devices: 425ns

 With both DUTs being equidistant to the FPGA tester, any differences between the

distribution of the two units is due to physical differences, with clock drift from the crystal, and

nonidealities in the transceivers being the two main causes of difference. Figure 25 shows a tight

grouping of measurements, with device one having a standard deviation of 4.5ns and device two

having a standard deviation of 4ns. This close grouping shows how the transceiver on the

Arduino was not heavily dependent on environmental factors.

 The much higher grouping of the end-aligned signals in Figure 26 is evidence of the

poorly configured Arduino, with a crystal unsuitable for such fast communication. Both devices

66

show an apparent maximum of 500ns, which when combined with the data from the Temporal

Delay subsection gives a relative sample point of 790ns. This is 4% of a nominal bit timing and

could be due to the clock drift and jitter caused by the low-cost crystal and oscillator circuitry in

the CAN controller.

4.3.3 Experiment 2 Results

 The goal for experiment two was to validate the operation at lower bit rates than 1 Mbps.

With the drop to 500 kbps, a bit would be made up of twice as many signal samples. This

increase in samples produced measurements with twice the relative accuracy. This rise in

accuracy is offset by the usage of the Arduino DUTs. At half the bit speed, the DUTs ran in a

higher stability configuration, but were still left running with few configuration options. With

these configuration options it was chosen to select two sample points for the devices on the

network. Devices one and two would use a 75% sample point, while device three uses a 62.5%

sample point. The measurements provided by the system are shown in Figures 27 and 28. The

expected values are based on the measured temporal delay values for Experiment 2.

67

Figure 27 Experiment 2 Beginning of Sample Point Zone Distribution

Expected Values: Device 1: 1320ns, Device2: 1250ns, Device 3: 1000ns

68

Figure 28 Experiment 2 End of Sample Point Zone Distribution

Expected Values: Device 1: 1395ns, Device2: 1325ns, Device 3: 1040ns

 The data gathered from this experiment shows some unexpected deviations from the

expected values in both Figure 27 and Figure 28. In the beginning distribution, Device 1 is

almost 200ns earlier than the expected range. Such a difference is beyond the error caused by the

transceiver but was verified using an oscilloscope. This could be the result of the controller being

improperly configured for this device, but no physical phenomenon would produce such an

offset from the expected value. Device 2 has a measurement much closer to the expected value

and that offset could be caused by the nonideality of the transceiver. Device 3 is later than

expected by 40ns, with this difference being due to synchronization. As the delay is later rather

than earlier than expected it cannot be caused by transceiver issues and must be caused by

controller issues. Device 3 is using a 62.5% sample point as required in the test plan, which as

69

shown in the Verification experiment, could differ from the expected values due to the

resynchronization window.

 The data shown in Figure 28 again shows some unexpected deviations. Device one is

only 125ns earlier than the expected range, much closer than in the beginning aligned signal. An

offset of 125ns in the end aligned signal lines up perfectly with a synchronization jump having

occurred in the measurement. The signal could have been forcibly resynchronized on the

recessive to dominant edge caused by the tester. This would have caused a jump of one time

quanta, which at this transmission speed would be 125ns. That would account for the offset in

the measured sample point. Device 3 is 200ns earlier than expected. Such a delay is unexpected,

and like the measurement for Device 1, must be caused by an issue in the controller. The length

of the measurement was validated again using an oscilloscope, and its cause would be a

misconfiguration of the controller.

4.3.4 Experiment 3 Results

 Experiment three was designed to investigate the nonidealities involved in CAN

communication with respect to distance. While performing experiment two, I noticed

transmission line echoes in the analog component of the driver circuitry. These echoes appeared

to increase the communication delay of the network, especially during any overwriting action.

For a better understanding of the nonidealities of the bus when performing the overwrite action, I

modified this experiment to investigate the correlation between bus length and sample point

measurement. In Figures 29 and 30, I have a plot comparing the measured sample point zone to

the distance between the tester and the DUT.

70

Figure 29 Experiment 3 Beginning of Sample Zone Distribution

Figure 30 Experiment 3 End of Sample Zone Distribution

y = -8.3116x + 466.54
R² = 0.7191

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35

B
eg

in
n

in
g

A
lg

in
ed

 S
am

p
le

 Z
o

n
e

(n
s)

Communication Distance (m)

y = -10.096x + 560
R² = 0.7243

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35

En
d

 A
lg

in
ed

 S
am

p
le

 Z
o

n
e

(n
s)

Communication Distance (m)

71

 The data shown in Figure 29 shows a decrease in the beginning aligned signal that can

best be described as roughly linear. The measurement at 0m is designed to show the sample point

measurement when there is no propagation delay. All other measurements demonstrate how bus

length affects the sample point measurement. The sample point measurement at 7.5m was found

to be later than the measurement at 7m, which should not occur due to the fundamentals of

propagation delay. This irregularity is most likely due to the node at 7.5m not being directly

attached to a terminating resistor, unlike all other measurements. This difference could result in

the voltage on the bus taking longer to settle at a dominant signal leading to a later than expected

measurement. Apart from the 7.5m measurement, between 5m and 30m a decrease in early

sample point of around 5ns/m is visible. This rate is important as it is the propagation delay of

signals in the CAT5 wire used in this experiment.

 The results in Figure 30 are less than ideal considering the quality provided from the data

in Figure 29. Although it looks as if it is incorrect, the measurement for the 20m distance is most

likely the most accurate measurement of the end-aligned signal. With the known propagation

delay of the system, 5ns/m, the measurement at 20m being around 100ns less than the ideal case

shows this measurement to be of higher quality than the other measurements. This is due to the

termination of this node, which was placed next to the node for this test, instead of further down

the transmission line like the 7m and 10m nodes.

One concerning aspect is the 30m node, which was also closely terminated. I believe this

measurement suffered from its extreme length, not due to any issues in the BeagleBone Black,

but with the Arduino. The Arduino was ACKing messages from the BeagleBone. The Arduino

may have been configured to have its synchronization occur after the point at which the tester

would overwrite the signal. This would possibly lead to the Arduino reporting bit stuffing errors

72

if the tester overwrote a signal in a stuff bit. Such an occurrence would explain the large offset

the 30m measurement has from the 20m measurement.

73

CHAPTER 5: TEMPORAL DELAY SUBSYSTEM

 The temporal delay subsystem is designed to determine the temporal delay measurement

between a DUT and the tester. This measurement summarizes all nonidealities that occur

between a DUT signaling a bit on the bus to the DUT receiving a signal produced on the bus.

The tester must manage the error states for all devices on the network simultaneously and

perform high temporal accuracy recordings to correctly determine the temporal delay

measurement.

5.1 FPGA HDL Implementation

 The HDL for the temporal delay subsystem was made to be independent from the HDL

of the sample point algorithm while still reusing code where possible. At synthesis time, the

entire temporal delay subsystem is generated along with the entire sample point algorithm. Any

shared modules between the two subsystems are synthesized separately to minimize potential

issues during the experiment. Both units are disabled at the state machine level and are initialized

and enabled at runtime by the ARM core.

 In the TDS, multiple modules were reused from the SPS. Due to the modular design of

these SystemVerilog modules, there was no need to modify modules that implemented CAN

Controller features. The modules that did not have to be remade are the synchronization unit, the

interframe detector, the error detector, the ID comparator, the playback unit, the clock divider,

and the one-shot modules. This led to a much faster development cycle for this subsystem

because of the presence of verified modules at the beginning of the design process for the TDS.

 Because this unit requires knowledge of the status of the ACK bit, a module was created

to decode the data length section and convert it into remaining bits in the CAN frame. This unit

74

had to be aware of stuff bits occurring between the ID value and the data length value as a stuff

bit frequently occurs here due to the large number of fixed zeroes.

 The BRAM had to be updated for this unit to allow for the return of the recorded signal

for calculating the error delay. Previously only reading from the BRAM was allowed, but in the

temporal delay subsystem, both reading from and writing to BRAM is supported. As Vivado

only has two input connections to the BRAM module, only a single BRAM connection could be

made to the HDL. The other connection was used for communication with the ARM core.

Having only a single BRAM connection required the implementation of a half-duplex BRAM

controller.

 An advanced recording unit with built-in signal storage and analysis was created to allow

for both high accuracy recording and quick analysis. The recording unit permitted the bit value

after going through clock domain crossing to be saved for HDL and CPU analysis. When

determining if an ACK was sent by another node, the tester performs analysis on the recorded

bus signal prior to the unit sending an ACK. If there is a run of 32 dominant samples within the

unit at any point, or if there is sequence of six dominant samples in the last thirty-two samples,

then it is determined that another node on the bus still has the ability to ACK and is not in the

bus-off state. This analysis is performed in the HDL and saves clock cycles that would be

required to send the signal to the ARM core for analysis.

5.2 ARM Software Implementation

 Much of the processor code for this algorithm generates the signals for the HDL to

playback. The method creatingthese signals involves numerous array writes that store the

specific sequences for the signals into the RAM block allocated for the storage of signals to be

played by the HDL. This process uses C macro functions to maximize code reuse in the signal

75

generation, as hardcoding around 100 microseconds worth of signals with individual 10ns

samples would create a sizeable surface in which errors could occur.

5.2.1 Configuration of HDL

 The required signals for the algorithm are generated in the ARM core using C. Each

signal has been hardcoded for ease of debugging. For both the 1 Mbps and 500 kbps runs, the

HDL was set to record signals at 10ns per sample. The TDS was configured to play back the

overwrite and ACK signals at 10ns per sample and the valid and invalid CRC signals at 250ns

per sample. This allowed the resolution to be maintained for the high-speed actions on both bus

bit rates while keeping the very long entire CAN frame signals at a small size in the BRAM.

5.2.2 Handling Returned Data

 When handling the returned signal, multiple stages of analysis are taken to ensure that the

measured delay value is valid. The recorded data includes the pulsing pattern in the CRC, which

can be used to validate the current physical conditions of the bus in terms of irregularities from

the expected bit periods the tester is playing onto the bus. Along with this information, the time

between the last bit of the CRC and the error signal must always be greater than three times the

bit period. If a value is measured at less than this length, the CPU will set a flag and rerun the

test after a waiting period to get an accurate value. The same is true for values too long to be a

valid recorded signal, which in this system is anything more than 500ns beyond the expected

three-bit period.

5.3 Experimental Data

5.3.1 Verification Test Bench Results

 The verification experiment was run for both the BeagleBone Black and the Arduino as

described in the verification setup section. A single test run consisted of measuring the temporal

76

delay to the BeagleBone, then measuring the temporal delay to the Arduino, with a delay of one

minute between measurements to allow the network to return to normal operating conditions.

The experiment consisted of 30 test runs, with their results given in Figures 31 and 32.

Figure 31 Arduino Calculated Propogation Delay Distribution

Estimated Value: ~100ns

77

Figure 32 BeagleBone Calculated Propogation Delay Distribution

Estimated Value: 105.2ns

 For the verification test bench, I expected that the data in Figures 31 and 32 should both

be similar, with any differences being due to transceiver and controller idiosyncrasies. This was

observed with the mean of the two measurements only being 7ns different from each other. The

real use of this experiment is to validate Equation 10 in §3.6.3 Calculation of Expected Values

for Temporal Delay. Using the measurement of the known length final and penultimate CRC

bits, I was able to calculate 𝜏𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 .

𝜏𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑃𝑒𝑛𝑛𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝐵𝑖𝑡

𝜏𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 970𝑛𝑠

 With this, the expected value for Figure 37 can be calculated.

𝜏𝑅𝐷𝑈𝑇 = 1000𝑛𝑠 − 970𝑛𝑠 + 75.2𝑛𝑠 ± 10𝑛𝑠 (11)

78

𝜏𝑅𝐷𝑈𝑇 = 30𝑛𝑠 + 75.2𝑛𝑠 ± 10𝑛𝑠

𝜏𝑅𝐷𝑈𝑇 = 105.2𝑛𝑠 ± 10𝑛𝑠

 The value of 105.2± 10ns is almost exactly equal to our calculated mean of 103.914ns.

Our measured value can prove the validity of Equation 10. This measured value is used as the

one-way temporal delay for measurements in the sample point zone to demonstrate their

accuracy.

5.3.2 Experiment 1 Results

 The temporal delay tests for experiment 1 were similar in scope to the tests for the sample

point zone for experiment 1. A key feature for this test is the demonstration of the effect

transmission line delay has on the temporal delay measurement. As these nodes are completely

isolated from the DUT, the temporal delays capture not only the delays of the DUT, but also the

line delay and the delay of the tester. The tester delay is slightly mitigated with the inclusion of

the correction factor based on known vs. expected bit timing generated by the tester. This is

shown in Figure 33.

79

Figure 33 Experiment 1 Temporal Delay Measurements

Expected Values: 250ns< Measured < 350ns

 These measurements show the large increase in temporal delay measurement once the

nonidealities of a transmission line are taken into effect. For this test, two 10m lines were

utilized. This gives each node a 50ns delay added upon its measurement. By factoring out this

delay, we get around a 200ns measured temporal delay. Using the knowledge from the

verification experiment that 100ns of transceiver delay is expected solely for IC delays,

accounting for both the delays associated with the DUT and the tester, 200ns is a reasonable

temporal delay measurement. Again, the slight differences in the measurements are most likely

due to the individual transceivers having different parameters from each other, just like in the

sample point experiments.

80

5.3.3 Experiment 2 Results

 With the devices in experiment 2 running at half the speed of Experiment 1 and

verification test benches, some modifications had to occur in the calculation of temporal delay.

The main modification was changing the bit period from 100 samples to 200 samples while

maintaining the sample rate. Unlike the sample point measurement, which had a doubling of

resolution with the decrease in transmission speed, the temporal delay’s accuracy is based on the

recording rate. The measured values are shown in Figure 34.

Figure 34 Experiment 2 Temporal Delay Measurements

 As can be seen in Figure 34, there is a clear distinction between all nodes. Device 1,

being 5 meters away from the tester, should have a 25ns delay. This would calculate down to a

75ns delay, which is possible if the device’s transceiver was very well binned. The temporal

delay associated with Device 2 is higher than would be expected for a 7.5m delay. I believe this

81

is due to the node being unterminated at this unit, and is instead terminated at Device 3, 10

meters away. This would explain why the two devices have much closer temporal delay

measurements even though device two is half the distance to the tester that Device 3 is. With the

almost 20m delay between the tester and device 3, a temporal delay in the mid 100ns is expected.

The inconsistency between expected temporal delay and measured temporal delay is possibly

from transmission line capacitance, causing a settling time up to 100ns longer than expected. The

data shown in Figure 34 was validated to be the temporal delay value through oscilloscope

testing, validating the result produced by the tester.

5.3.4 Experiment 3 Results

 Experiment three was focused on the linearity of the measurements. While the sample

point zone measurement dealt with the controller which may have brought in extra error due to

clock rates, the temporal delay measurement is geared towards the measurement of physical

values rather than software-defined values. As for this experiment the DUT under all distances

was constant, any inconsistency would be due to transmission line nonidealities and termination.

This experiment was performed over 30 minutes for all runs, and therefore should not suffer

greatly from environmental changes. The results are shown in Figure 35.

82

Figure 35 Experiment 3 Temporal Delay vs. Transmission Line Length

 This measurement has a much closer linear correlation between the transmission line

length and the temporal delay compared to the sample point measurements for this experiment.

There are two groupings of signals, the 5-10m signals and the 20 and 30m signals. The 5-10m

signals were tested using a simple bus configuration, with the second group tested using an

extension on top of the bus to add the extra length. Inside each grouping, temporal delay seems

to match with the expected rise more closely, with around 50ns separating 20m and 30m, and

only 50ns separating 5m and 10m. I believe that any nonideal increase in temporal delay

measurement could be from the different bus topologies. This experiment, therefore, shows that a

temporal delay measurement is not just dependent on the physical bus length between the DUT

and the tester, but also the total length of the bus.

y = 14.339x + 88
R² = 0.9454

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35

Te
m

p
o

ra
l D

el
ay

(n
s)

Communication Distance (m)

83

CHAPTER 6: BROADCAST CONFUSION ATTACK AND SECURITY IMPLICATIONS

 The analysis method presented in the previous chapters provides critical information for a

new theoretical spoofing attack, dubbed the Broadcast Confusion Attack. This attack utilizes the

information gathered on the temporal makeup of the bus to generate a CAN signal which the

target of the attack cannot detect, but the other devices on the network can detect. Such an attack

has the benefit of not alerting an intrusion detection system of a targeted node while still

affecting the state of the overall system. In addition, I hypothesize that with enough

development, a Targeted Broadcast Confusion Attack could be developed to overwrite only the

payload of a targeted device, unlike the Bus-Off Attack [1].

 The Broadcast Confusion Attack relies on knowledge of the timing parameters for the

nodes on the attached bus. Once a network has been fully classified, the attack can commence. A

target node is chosen, and a rouge message is crafted to spoof a valid message format for one of

the target node’s IDs. The rouge message is created to avoid the sample point zone of the target

node, while being seen by as many other nodes on the network as possible. This rouge message

starts at the data segment of the target’s frame to maximize the possibility of the target’s ACK

location matching with our own. If the ACK for the attack message does not line up with the

targeted device, the transmission may be interpreted as an error by nodes on the network. This

specific variant of the attack would be best described as a Targeted Broadcast Confusion Attack.

 This attack is similar in scope to the attack presented in Cho and Shin [1]. That attack

scenario, called the Bus-Off attack, utilizes the passive error response of a CAN node to produce

an overwrite attack on the node. The Bus-Off attack ensures that a given node cannot transmit on

the bus, and an attacking device can transmit in its place. One of the difficulties in the Bus-Off

attack is the requirement for transmission synchronization as both the target and the attacker

84

must transmit their SOF simultaneously. To perform this action, statistical models were utilized

to find patterns in transmission before the target CAN ID. Such a requirement is not needed for

the Targeted Broadcast Confusion attack as its playback synchronizes on the target’s data

segment, not the SOF segment. This difference allows the target node itself to gain arbitration on

the bus, and thus not produce any timing differences that could be picked up by a timing analysis

intrusion detection system.

6.1 Broadcast Confusion Attack Setup

 A proof of concept for a standard Broadcast Confusion Attack was developed to

demonstrate the attack’s feasibility. The experiment is designed to show that two devices could

receive different information on the state of the network from a single signal. This is the

fundamental aspect of the Broadcast Confusion Attack. The ability to overwrite a signal and

insert a new signal, which is required to perform the much more powerful Targeted Broadcast

Confusion Attack, is not performed here due to the complexity of the creation of a driver that

allows signals to be asserted by the tester at 100 MHz speeds while the target is trying to force

the bus to either a dominant or recessive value. The current driver is not capable of this and fails

to produce a forced recessive overwriting a dominant bit in adequate timing.

To demonstrate the viability of the Broadcast Confusion Attack, a setup using the ideal

network, Figure 18 in §3.6 Verification Test Bench Setup, was used to minimize any variability

in the network timing. On the tester, a signal was crafted in software to present two different

remote information requests on the CAN bus depending on when the message was sampled. The

device with the earlier sample point, the BeagleBone, would see a request to ID 0x09B request 4

bytes of information, and the later device, the Arduino, would see the request instead go to

0x523 for 8 bytes of information. Both ID values and data lengths requested were chosen

85

arbitrarily but were ensured to have the same frame size. Remote requests only contain the ID

and the data length, minimizing the number of samples needed to define a full frame. These two

devices were configured to have highly different sample points, with the Arduino at a sample

point of 85% and the BeagleBone at a sample point of 62.5%.

6.2 Broadcast Confusion Attack Outcome

 The Broadcast Confusion Attack was performed over 5 minutes on a BeagleBone Black

and over 2 minutes on an Arduino. The message played by the FPGA was not changed during

this time, and both devices were present on the network at the same time. The Arduino ran for a

shorter amount of time due to the slow write of output information from the Arduino to the

recording computer.

 The BeagleBone Black reported that it received 1,021,657 frames. Out of the over 1

million frames, only 45 frames were treated by the BeagleBone as an error and did not match the

planned 0x09B ID for the device. The Arduino received 64,000 frames in its 2-minute run. The

Arduino received the same number of frames as the BeagleBone, but the Arduino only reported

64,000 frames. This is most likely due to the internal registers of the MCP2515 on the Arduino

overfilling due to the tester transmitting frames nearly constantly. Out of the 64,000 frames, 10

were reported as errors. A larger number of errors was expected for the Arduino, as the delay

between signal switching from the tester to the sample point of the Arduino was much shorter

than the delay for the BeagleBone. While both devices received messages other than the desired

remote frame, neither device interpreted the data intended for the other device, with all erroneous

messages being treated as standard CAN error frames. In total, out of the 1,085,657 frames

interpreted by both devices, only 55 were erroneous, resulting in a 99.994% effectivity rate.

86

 Overall, this experiment showed a great deal of promise of a successful Broadcast

Confusion Attack. This attack was able to send two separate messages in the same frame. If a

driver is developed that can overwrite data on the bus at fast enough speeds, the Targeted

Broadcast Confusion Attack could become a serious threat to the security of CAN.

6.3 Security Implications

 The Broadcast Confusion Attack has multiple security implications for CAN. With the

standard Broadcast Confusion Attack signals could be crafted to send data updates only to

devices which have no method of reporting the erroneous information. The security implications

on CAN would be much greater if the attack could be developed enough to utilize overwrite

methods to engage the attack on a frame transmitted by a single target device. The Targeted

Broadcast Confusion Attack could bypass frame and timing analysis intrusion detection

networks. As the attacker is overwriting the data from the target device and not presenting a

CAN ID on the bus at any time, the target cannot detect the presence of an unauthorized use of

its ID. Along with this, as the frequency of the attack is determined by the target node, a

frequency-based intrusion detection analysis would not detect this attack type. This leaves only

the physical parameter analysis intrusion detectors, which would be able to warn of this attack.

6.3.1 Loss of Data Integrity

 The most serious consequence of this attack is the loss of data integrity on the network.

CAN is designed to ensure data integrity. This means that all nodes receiving the same message

is integral to the proper functionality of a CAN network. With this attack, nodes can receive a

different message than is transmitted. This can lead to uncertainty over the true state of a

network, which in a large metallic object traveling at highway speeds, could be life-threatening.

87

 With this attack there can exist a discrepancy between the truth and the recorded truth

and could result in blame falsely being placed on innocent parties, whether they be devices or

persons. A frontal collision warning system having its messages being overwritten could result in

the loss of safety-critical functionality, leading to an accident. At the investigation for the

analysis, recorded data would show no such collision was ever detected, possibly misplacing the

blame on one of the drivers.

6.3.2 Loss of Confidentiality

 Controller Area Networks have historically used IDs as the sole means of authentication.

As a safety-critical, and low-power network, authentication and encryption were considered too

costly to require in CAN. Even to this day, production CAN buses are under no obligation to

require authentication of a node’s identity. Authentication is to be handled at the network level

and higher. With the speed limitations of CAN, and with most cars having up to 60 nodes [1],

network capacity is at a premium. The additional space that authentication methods would need

to ensure the confidentiality of the bus would congest the network.

 The Broadcast Confusion Attack cannot lead to a loss of confidentiality of the network on

its own. This is because the attack has no foreknowledge of the application layer and working at

layers below which confidentiality is ensured. If a loss of confidentiality is desired, it would need

to be handled as an addition to the Broadcast Confusion Attack. An implementation could

modify the generation of the overwrite data, where data that has been encrypted or formatted to a

specification required by the higher layer implementation for a network is turned into the

overwrite signal.

88

6.3.3 Loss of Availability

 The CAN network has had many attacks on the availability of the network, with those

being the most common form of attack against CAN. Attacks such as shorting CANH and CANL

to ground can instantly disable an internal network and would require physical maintenance to

undo. Through software, denial of service attacks have proven to exhaust the CAN network,

leading to all devices lacking the ability to communicate [19].

 The Targeted Broadcast Confusion Attack permits normal bus availability for all nodes

except for the target node. The target node is effectively removed from transmitting on the bus

and cannot update the system on its status through a given range of CAN IDs. The target would

not know about its loss of availability unless this is assured through higher networking layers.

For the standard Broadcast Confusion Attack, a node could be thought to be removed from

receiving the data intended for other nodes, thereby reducing its availability to receive a set of

information communicated on the bus.

89

CHAPTER 7: CONCLUSIONS

7.1 Improvements to the Timing Analysis Procedure

 The current implementation of the analysis procedure works heavily under the

assumption that each CAN device has only a single ID. This knowledge is incorrect throughout

most implementations of CAN, and stems from the initial limitations on testing hardware. While

much of the procedure can be changed to work on a per-node basis, this cannot be done without

foreknowledge of a CAN network’s makeup. There is no method of determining if two IDs are

shared by a single node conclusively and thus would require configuration by the user. Testing

each ID and comparing their temporal delay measurements would not be viable, as the process of

attempting to disable all IDs except for the target ID would also cause the other IDs for the target

node to be placed into bus-off mode.

 To modify the implementation to work on a per node basis, a memory structure similar to

a routing table would be required to be implemented on the FPGA. The structure would correlate

a given ID to a node number, and then the node number would be the activator for the

subsystems instead of the ID value. Such a design would considerably increase the complexity of

the FPGA side, as the determination of remote frames and extended IDs would need to be

considered for full CAN viability.

 The node detection methodology could be augmented by a system similar to the

methodology given in the CANvas [20]. The detection system in CANvas used ECU fingerprints

to match frame IDs to their origination node. By performing the CANvas detection procedure

90

prior to the SPS, the restriction on the number of IDs per node can be removed, and total analysis

time reduced.

7.2 Viability of the Attack on CAN FD

 In 2016, the ISO formalized the Controller Area Network Flexible Data-Rate, CAN FD,

standard. CAN FD has multiple advantages over standard CAN, such as up to 64 bytes of data

transfer per frame improved from the 8 bytes for CAN, and with data bandwidths of up to 8

Mbps compared to the 1Mbps of standard CAN. CAN FD has become more ubiquitous over the

years, as the requirements for more data to be sent over the internal network of a car have

increased.

 The updated standard has many features that would actually improve the viability of both

the algorithm and the theoretical attack. The first feature being that CAN FD does not support

remotely requested data frames. This feature was not supported by the algorithm, and was not

included in the standard as the CiA who helped create the first white papers for the CAN FD

protocol had previously recommended against their usage [7]. The second feature is the design of

an error state indicator in the header for the CAN frame. Every CAN FD node will communicate

in a CAN frame if it is error-active or error-passive. This could lead to reduced complexity for

the temporal delay algorithm if paired with content-addressable memory. This reduced

complexity would lead to a reduction in the transmission rates of valid frames, lowering the bus

utilization during the analysis period.

 The most significant advantage with CAN FD for the timing analysis is the reworking of

bit stuffing. Bit stuffing in CAN FD is still not able to be predetermined regarding the data

segment. However, the total number of bit stuffs in a data segment is gray coded and given as a

counter value before the CRC sequence. This rework goes along with the removal of non-

91

deterministic bit stuffing in the CRC. In the CRC, every four bits are followed by a forced bit

stuff. This leads to the CRC segment always being a fixed number of bits long in contrast to

standard CAN, which can have its length changed based on the data segment.

 That is not to say that a system implementing the procedure for CAN FD would not

require a complete redesign. The increase in speeds during the data segment would require more

analysis to determine the data transmission rate and would require a system with a faster clock

for higher accuracy measurements. Aside from those design considerations, overall stability of

the readings and the theoretical attack would increase due to fewer assumptions needing to be

made about the network.

This thesis started with the parameterization of the CAN bus. It seemed to be an

interesting topic which I believed would lead during its development to a hypothetical attack. I

based my entire focus of the thesis for the first few months on the old idiom “knowledge is

power.” I have always felt that there is never a thing as too much knowledge. So many CAN

attacks are performed without in-depth knowledge of the CAN bus, focusing on information

produced by the CAN controller. By diving into the knowledge inherent in the CAN

communication I discovered the Broadcast Confusion Attack. A similar attack could be

performed on any shared bus multi-master system, but CAN seems the most applicable. In the

future, this attack could be improved with greater amounts of analysis on the network to paint a

better picture of the network. Gaining as much knowledge of the system can only improve the

feasibility and impact of attacks derived on the Broadcast Confusion Attack.

92

LIST OF REFERENCES

[1] K.-T. Cho and K. G. Shin, "Error Handling of In-vehicle Networks Makes

Them Vulnerable," in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, 2016 2016,

BUSOFF: ACM, pp. 1044-1055, doi: 10.1145/2976749.2978302. [Online].

Available: https://dx.doi.org/10.1145/2976749.2978302

[2] Road vehicles - Controller area network (CAN) - Part 1: Data link layer and
physical signaling, 11898-1, ISO, 2003.

[3] On-board diagnostics, EPA 40 CFR 86.005-17 (h)(3), 2010.

[4] J. Ferreira, A. Oliveira, P. Fonseca, and J. A. Fonseca, "An experiment to

assess bit error rate in CAN," in Proceedings of 3rd International Workshop
of Real-Time Networks (RTN2004), 2004, pp. 15-18.

[5] J. Yee and H. Pezeshki-Esfahani, "Understanding wireless LAN performance

trade-offs," Communication systems design, vol. 11, pp. 32-35, 2002.

[6] C. Young, J. Zambreno, H. Olufowobi, and G. Bloom, "Survey of Automotive

Controller Area Network Intrusion Detection Systems," (in English), IEEE
Design & Test, Article vol. 36, no. 6, pp. 48-55, Dec 2019, doi:

10.1109/mdat.2019.2899062.

[7] CiA, "CAN remote frames – Avoiding of usage," in "CANopen," Application

Note 802, 2005.

[8] M. D. Natale, H. Zeng, P. Giusto, and A. Ghosal, "Worst-Case Time Analysis

of CAN Messages," in Understanding and Using the Controller Area Network
Communication Protocol: Springer New York, 2012, ch. Chapter 3, pp. 43-65.

[9] Road vehicles - Controller area network (CAN) - Part 2: High-speed medium
access unit, 11898-2, ISO, 2003.

[10] "Maxim MAX4618 Datasheet," [ONLINE].

[11] "TI SNx5HVD251 Datasheet," [ONLINE].

[12] T. Ziermann, S. Wildermann, and J. Teich, "CAN+: A new backward-

compatible Controller Area Network (CAN) protocol with up to 16× higher

data rates," in 2009 Design, Automation & Test in Europe Conference &
Exhibition, 2009: IEEE, pp. 1088-1093, doi: 10.1109/DATE.2009.5090826.

[13] J. Novák, "New measurement method of sample point position in controller

area network nodes," (in English), Measurement, vol. 41, no. 3, pp. 300-306,

Apr 2008, doi: 10.1016/j.measurement.2006.11.004.

[14] "SocketCAN - Controller Area Network," in Linux Documentation vol.

Networking, L. Torvalds, Ed., ed. Kernel.org: Linux Foundation, 2020.

[15] O. Pfeiffer, A. Ayre, and C. Keydel, Embedded networking with CAN and
CANopen, First ed. Copperhill Media, 2008. 2003.

[16] "TI AM336x Sitara Processors," [ONLINE].

[17] A. Seitz, A. Satar, B. Burke, and Z. Estrada, "CAERUS: Chronoscopic

assessment engine for recovering undocumented specifications," 2018.

https://dx.doi.org/10.1145/2976749.2978302

93

[18] S. S. Math and V. Math, "Design and Analysis of Xilinx Verified AMBA

Bridge for SoC Systems," 2013.

[19] ICS Alert (ICS-ALERT-17-209-01) [Online] Available: us-cert.cisa.gov

[20] S. Kulandaivel, T. Goyal, A. K. Agrawal, and V. Sekar, "CANvas: fast and

inexpensive automotive network mapping," in 28th {USENIX} Security
Symposium ({USENIX} Security 19), 2019, pp. 389-405.

94

APPENDIX

All code for this thesis is available at: github.com/caerus-timing/CANTimingAnalysis

github.com/caerus-timing/CANTimingAnalysis

	A Novel Technique for Sample Point Discovery and Its Use in a Proposed Broadcast Confusion Attack on High-Speed Controller Area Networks
	tmp.1628536635.pdf.U5wUq

