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ABSTRACT 

 

Karr, Gavin Michael 

M.S.E.E 

Rose-Hulman Institute of Technology 

July 2020 

Inter-slice Compression and Reconstruction of Glioma Magnetic Resonance Imaging (MRI) 

Data Using Encoder-Decoder Neural Networks 

Thesis Advisor: Dr. Michael McInerney 

 

Magnetic Resonance Imaging (MRI) scans of patients with brain tumors are an important 

source of pre-surgical medical information. These three-dimensional image volumes can be 

represented as a stack of two-dimensional image slices.  

The objective of this thesis is to compress the size of these image volumes by removing 

the odd-numbered slices and reconstruct the image volume using an encoder-decoder 

convolutional neural network. This neural network architecture is based on a modified form of 

the U-net segmentation network, which has been adjusted to allow for multiple image inputs and 

to support a network capable of generating new image slices. A novel method of performing 

slice interpolation is introduced in which the image features extracted by the neural network are 

averaged at each network layer to form the intermediary slice from the two input slices. 

The MRI volume reconstruction performed by the encoder-decoder neural network is 

compared against linear interpolation of the image slices, and the metric used is the peak signal-

to-noise-ratio. The reconstruction of the volume by the neural network slightly underperforms 

the linear interpolation baseline due to both methods being close to optimal in performance. 

Overall, the reconstruction quality of both methods is high since the initial slice distance causes 
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little variation between adjacent slices. This thesis concludes that the neural network method of 

compression and reconstruction has potential in cases where inter-slice resolution is initially 

poor, such as at 4 millimeters and higher, while linear interpolation is sufficient at resolutions 

below 4 millimeters. 

Keywords: Deep Learning, Compression, Medical Imaging, Convolutional Neural Networks 
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1. INTRODUCTION 

 

The field of medical imaging is dependent on affordable access to high-quality imaging, 

often with limited time and financial resources. Magnetic Resonance Imaging (MRI) technology 

highlights these qualities due to the relatively long scan times, high cost of the imaging 

equipment, and the trained professionals necessary to interpret and make decisions. Due to the 

difficulty of preoperative diagnosis and the risk associated with brain surgery, pre-treatment 

patients with gliomas were selected as the subject for this thesis. 

Compressing and then later reconstructing the images from an MRI scan in high quality 

has the potential to lower the resource utilization of acquiring and maintaining databases of 

patient scans. This thesis explores the use of deep learning algorithms to perform the 

reconstruction of compressed MRI scans. The performance of the implemented encoder-decoder 

deep learning model is compared against linear averaging and evaluated by the amount of 

information lost in the reconstruction process. Additionally, an established deep learning 

algorithm that performs segmentation analysis of MRI scans is reproduced and used to study 

how the compression and reconstruction process impacts the performance of segmentation 

models that derive their performance metrics from image content rather than just image quality. 

In order to provide a foundation for discussing the impact of modern advancements in the 

rapidly evolving field of deep learning, this thesis also discusses the impact on performance and 

efficiency of modern methods in the deep learning modeling and training process. 
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2. BACKGROUND 

 

2.1 Overview of Gliomas 

 

Gliomas are a type of fast-growing brain tumor which arise from the glial cells in the 

brain. As one of the most common cells in the central nervous system, glial cells support and 

protect neurons throughout the brain and spinal cord. Due to the abundance of these cells, 

gliomas are defined by their diffuse infiltration of the brain tissue and high vascularization [1]. 

Therefore, they are usually difficult to access surgically when compared to other cancers. In the 

late stage, gliomas tend to form tendrils of malignant tissue that can span the cranium. Gliomas 

are graded on a scale of one to four, which describes the presence of faster growing and 

malignant cells within the tumor [2]. Grade I and II tumors are called low-grade gliomas which 

show lower growth rate and well-defined tumor boundaries. Grade III and IV tumors are further 

categorized as high-grade gliomas, which show the presence of highly malignant tissue and often 

have poorly defined tumor boundaries, creating and spreading along blood vessels in the brain 

and spinal cord. Additionally, high-grade gliomas nearly always reoccur, even after surgical 

resection and accompanying standard of care treatments. Overall survival time for these patients 

is typically between 12 and 18 months, with less than one in twenty patients surviving longer 

than five years [1]. Due to the incurable nature of the disease and the fast progression of the 

disease, patients require regular and frequent monitoring to identify reoccurrences and plan 

interventions [3]. 

2.2 Overview of Medical Imaging 

 

A non-invasive imaging technique used for pre-surgical diagnosis and post-treatment 

monitoring is magnetic resonance imaging. MRI technology allows healthcare professionals to 
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form a volume model of the brain from a series of image slices. A typical scan of the brain lasts 

45 minutes, after which the results are sent to a radiologist for annotation, often taking several 

days [4]. MRI scans for a 1.5 to 3 Tesla scanner have typical resolutions of 1.5 mm by 1.5 mm in 

the image plane, and 4 mm in the inter-slice direction [5]. Note that the resolution between each 

slice is poorer than the resolution between pixels in the image slice itself. 

The image plane in which a 2D slice resides depends on how the sampled information is 

viewed. The three standard 2D views are the axial, coronal, and sagittal views.    

Medical MRI data is usually stored as a volume from which 2D views are sampled. 

However, differences in the anatomies of individual patients as well as how the scans are 

acquired can complicate the reconstruction of the volume from the slices, as well as comparison 

between patients. As raw data, the scans cannot be compared point-by-point and there is no 

guarantee that the scans of two patients are geometrically aligned [6].  

A process to overcome this variance and create a coordinate system supporting scans 

taken at different times and from different patients is known as image registration. Using MRI 

 
Figure 1: The above three images are slices of a brain MRI volume from the BraTS2018 

dataset, take from a different 2D view. The yellow axes indicate the point in origin in 3D 

space. From left to right, the views are axial, coronal, and sagittal. 
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scans of brains as an example, registration allows for a common coordinate system to be drawn 

for an individual scan so that the scan of one patient’s brain can be geometrically and 

anatomically compared to the brain scans of other patients who may have been tested at another 

time or location. This professionally standardized knowledge is referred to as an anatomical 

atlas, which produces a standardized coordinate system allowing for comparison of anatomical 

structures between institutions [6]. 

A key part of the tumor grading and diagnosis process is determining the tissue makeup 

of the tumor. The final tumor grading is done post-surgery, however, it is important to identify 

the size, shape, and tissue makeup of gliomas prior to surgery [3]. The tumor shape and location 

in the image volumes are used to identify possible complications and map out boundaries for 

computer-assisted surgical devices. Segmenting the image into categories such as whole tumor, 

tumor core, and enhancing tumor core further aids medical professionals in this decision-making 

process. 

 

Figure 2: Segmented labels for peritumoral edema (ED - yellow), non-enhancing tumor 

core (ET – red), and enhancing tumor (NCR/NET – Blue/Green) 
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The manual segmentation of the MR image is aided by the different imaging modalities 

used in the data collection process. An example collection of modalities would be an imaging 

sequence taken and used by the BraTS data challenge gathered by the University of Pennsylvania 

School of Medicine: pre-contrast T1 (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2), 

and Fluid Attenuated Inversion Recovery (FLAIR) [7]. Together, the multimodal scans can be 

used to highlight different types of tissue features [8]. Pre-contrast T1 images indicate high-

intensity pixels as blood products, mineralization, fat, and melanin. T1Gd images indicate a 

breakdown of the blood-brain barrier. T2 images highlight non-enhancing tumor, while FLAIR 

indicates both non-enhancing tumor and peritumoral edema. 

 

2.3 Overview of Classification Convolutional Neural Networks (CNN) 

 

The basic principles of CNNs is to combine the ability of convolution to summarize 

spatially related quantities, such as locations on a graph or pixels in an image, with the feature 

extraction capabilities of neural networks. A simple supervised CNN used for image 

classification will consist of a convolutional layer, a pooling layer, and a fully connected layer. 

Figure 3: A diagram showing the reduction of dimensions across a classic classification 

CNN with labels identifying the filter depth and resolution respectively 
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The aforementioned CNN works as follows: An input is first selected and fed into the 

initial convolutional layer where a small convolutional mask is applied across the image at each 

pixel. The output of this layer now consists of distinct features that describe the original image 

based on the weights of the convolutional mask.  

This feature map is then fed into a pooling layer, which serves to downsample the image. 

Additional convolutional and pooling layers can be applied to further reduce the dimension of 

the feature map. This also serves to increase the receptive field of the network as the original 

convolutional mask is only able to extract features from a small local region around each pixel. 

However, following each pooling layer the same sized mask will be able to effectively 

summarize a larger portion of the original input image through application to the smaller feature 

map. 

This process can be repeated, and eventually, the feature map will be fed into a fully 

connected neural network in which the neuron of each layer is connected to every neuron in the 

following layers. This last portion of the network then performs the desired image classification 

by choosing the classification with the highest activation value in a final activation layer, often 

using the softmax function. 

Back-propagation is commonly used to train such a network, finding effective weights 

and biases which allow for adequate classification performance.  Back-propagation is based on 

stochastic gradient descent. In this method, initial values for the weights and biases (parameters) 

are randomly chosen and then a batch of images is fed through the network. The output is 

collected and compared to the expected output through the use of a loss function such as cross-

entropy. This loss is then used to calculate how “wrong” the network was so that the parameters 
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can be updated accordingly to minimize the loss function. The selection of the training set is 

stochastic.  Using the entire set of training images at once places a large memory burden on the 

computer. This memory footprint can be lowered by selecting a small random batch of images 

from the training set and performing the gradient descent process with each of these “mini-

batches”. Mini-batches are selected and run through the training process until all images have 

been used, concluding one epoch of training. Many epochs may be run depending on the learning 

rate of the training hyperparameters as well as the desire to avoid overfitting the model to the 

training data. Although each mini-batch does not represent the entire population of data, over the 

course of a full epoch the average adjustments to the network caused by training on each mini-

batch will approximate training on all of the data at once [9]. 

2.4 Relation to Image Segmentation 

 

The manual segmentation process is performed by a radiologist and is used as an expert 

annotation of a scan to inform the treatment team of the relevant information present in a scan, as 

well as to point out any anomalies. A significant amount of work has been done in the past to 

automate this process using machine learning and computer vision techniques with the goal of 

augmenting the radiologist’s work and increasing the accuracy of the reports. Public 

competitions such as the BRATS challenge from the University of Pennsylvania seek to not only 

identify the state of the art segmentation algorithms for brain tumor MRIs, but also to estimate 

patient survival given the information present in a series of MRI scans. The preeminent work 

towards this task is increasingly done by convolutional neural networks (CNNs) [10]. 

The previously described classification network is capable of making a single decision on 

the topic or contents of a single image, however, it does not describe specific locations or pixels 

in the image. The separate task of segmenting an image by classifying individual pixels in the 
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image allows for further analysis of the results. However, the fully connected network at the end 

of the described simple CNN incorporates dimensionality reduction, and by design, cannot 

classify each pixel due to the downsampling process as not enough information remains to 

describe individual pixels. 

A network architecture presented in 2015 by the University of Freiburg, called U-net, has 

tackled this issue and become one of the state of the art segmentation CNN architectures [11]. 

Developed for use in biomedical imaging, the authors take the basic architecture of a CNN and 

remove the fully connected network at the output layer. The remaining network is referred to as 

an “encoder”. This leaves a refined feature map as the remaining layer in the network, known as 

the “bottleneck layer”. Then, the preceding convolutional and downsampling layers are mirrored 

in a series of upsampling and deconvolutional layers of the same dimension as the original CNN. 

This mirrored network is the “decoder”, which is responsible for recovering or generating data 

given the features from the bottleneck layer. At the output of the decoder is a map matching the 

dimensions of the input image. The original purpose of this architecture was to generate an entire 

segmented image using a single end-to-end model, rather than operating a model on single pixels 

or small groups of pixels. 
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Figure 4: Diagram of the U-net architecture [11]. Each group of boxes represents a 

convolutional layer in the network and the corresponding change in resolution. The dashed 

lines indicate the layer being passed over the skip connection and concatenated. The 

concatenation is identified by the joining of the white and blue boxes.  

 

The information lost due to downsampling in the encoder cannot be recovered using 

upsampling alone in the decoder stage. In order to address this lost information, skip connections 

are used, shown as grey arrows in Figure 3. These skip connections pull forward the output of a 

hidden layer from the first convolutional layers and concatenate the extracted information with 

the corresponding deconvolution, skipping one or more hidden layers. The skip connections then 

preserve some of the spatial information between layers, allowing both global and local 

information from the input image to be included in the image reconstruction. 
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While the training process is the same as the simple CNN, the loss function must be 

changed to account for the change in the objective of the network from classification to 

segmentation. The goal of segmentation is to classify individual pixels, so a loss function which 

compares pixel values directly between the segmented output and the ground truth is desired. 

Additionally, it can be advantageous to normalize this comparison over the number of pixels in 

the segmented image. This prevents disproportionately sized object classes from being heavily 

prioritized by the network. A common loss function in medical image segmentation which 

accomplishes these goals is based on the Dice coefficient [12]: 

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
 

The Dice Coefficient is calculated from two sets of data points or images, the segmented 

set and the ground truth set. These sets are denoted by X and Y in the equation above. The 

intersection of the two sets is calculated and divided by the sum of the number of pixels in each 

set. The intersection is scaled by a factor of two to allow the coefficient to range from 0 to 1. 

This coefficient then represents the percentage of pixels in the segmented output, which overlap 

with the ground truth data. A score of one indicates perfect agreement with the ground truth label 

while a score of zero indicates that no points of the segmented image were correctly classified. 

In order to segment images with more than two classes, new methods must be developed 

to handle the increase in classifications. Due to the availability of multiple image modalities for 

each patient scan, segmentation networks for medical MRI scans can take advantage of this 

additional information in one of two approaches. The first is to include each modality as an 

additional dimension in the image input, acting in the same manner that color channels would for 

a standard photographic image. This has the side effect of simplifying the number of networks 
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and training needed while increasing the memory and computational requirements of the neural 

network. 

The second approach is to train separate neural network models for each desired 

segmentation label. This would result in a single network for a single segmentation label. The 

networks would then act as an ensemble to layer the final outputs and create a multi-label 

segmented image output. This method can also take advantage of previously known features of 

the different imaging modalities. A network developed by Wang et al. uses this approach and 

additionally trains the network separately on each of the axial, sagittal, and coronal perspectives 

[13, 14]. Implementing network design and training in this manner reduces the technical and 

training overhead of developing the network while also increasing the interpretability of the 

neural network by relying on standard practices for segmenting the image. However, the 

potential overlap of the available information in each modality is lost by separating the 

segmentation into unique networks, potentially limiting the performance of the network through 

a limitation of the available data. 

 

 

2.5 Detailed Neural Network Techniques 

 

Batch Normalization 

 Batch normalization is an additional step at each layer of a deep learning model which 

seeks to reduce training time and improve performance by solving an issue with the statistical 

distribution of input data known as internal covariate shift [15]. When ordered data such as an 

image is used as input to the first layer of a deep neural network, the layer learns something from 



12 
 

the distribution of values in the image and passes that information along to the following layer. 

However, the data which is passed on does not necessarily have the same distribution as the 

previous layer due to non-linear functions common in deep neural network layers. Therefore, the 

following layer has to learn features based on a new statistical distribution. The issue arises 

during the training process as the parameters of the network are updated. These changing 

parameters cause the outputs of each following layer to change and thus also cause a change in 

the distribution from what the layer was previously learning. As the target distribution for each 

layer is constantly changing during the training process, the speed at which the model trains 

decreases [16]. 

 The process of batch normalization is used to lessen this effect by normalizing the input 

mini-batch at each layer of the network. Normalization is calculated for each mini-batch and 

along each dimension as follows: 

�̂� =
𝑥 −  𝜇

√𝜎2 + 𝜖
 

In the above equation, �̂� is the normalized data point, 𝑥 is the original data point, 𝜇 is the 

mean of the data array, 𝜎 is the variance of the data array, and 𝜖 is a small positive constant to 

provide stability in cases where the variance is zero or close to zero. This normalization process 

ensures that the distribution of data is more consistent throughout the training process. 

Additionally, the normalization of data has the added effect of regularizing the data and reducing 

the need for dropout layers [16]. 
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Dropout 

The dropout layer within each convolutional and deconvolutional block serves as an 

additional point of neural network regularization. The dropout layers have a probability hyper-

parameter which governs their influence on the training process. During each mini-batch, a 

percentage of the nodes in the neural network are forced to a zero output based on the 

hyperparameter of the dropout layer. In the interpolation network model, this is set to 10%. By 

forcing some of the nodes in the network to zero, the contribution of those nodes towards 

reconstructing the in-between slice is ignored. This forces the network to generalize a small 

amount of the feature extraction across all of the nodes in the network. This has the result of 

making the network more resilient to overtraining on the input data. 

Activation Function 

The convolutional layers of the network alone are a series of linear functions. In order to 

allow the neural network to model non-linear functions accurately, introduction of nonlinear 

layers between each of the convolutional layers is necessary [17]. A common method of 

incorporating this into a network is to add nonlinear activation functions, also called transfer 

functions, between the hidden layers of the network. An example of one common activation 

function is the Rectified Linear Unit (ReLU) which is defined as the following: 

𝑓(𝑥) = {
𝑥, 𝑥 > 0
0, 𝑥 ≤ 0

 

The activation function at the output of each internal convolutional block was selected to 

be a LeakyReLU layer. The LeakyReLU function is a modification of the basic ReLU and is 

defined as follows: 
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𝑓(𝑥) = {
𝑥, 𝑥 > 0

 𝑎𝑥, 𝑥 ≤ 0
 

For this function, 𝑎 is a small positive constant, in the case of this paper, 𝑎=0.3. 

 

 

Building upon the principals of the ReLU activation function, the LeakyReLU has a 

small positive gradient for input values below zero. The activation function was designed in this 

manner in order to protect against the “dying ReLU problem” [18]. The dying ReLU problem 

occurs when the output of a node using the ReLU activation function is negative, causing the 

gradient returned during back propagation to be zero indefinitely. This results in the neuron 

sticking in an off state since a gradient of zero will cause no change in the weights and biases 

feeding into the activation function. Maintaining a small positive slope for negative inputs allows 

nodes activated using LeakyReLU an opportunity to recover from this issue. 

The output layer of the interpolation network simply uses a ReLU activation layer with 

an unsigned 15-bit input and output as this matches the range of values possible in a slice of the 

MRI volume. Because the network is generative, selecting an activation function that weights 

  Figure 6: ReLU Activation Function Figure 5: LeakyReLU Actication Function 
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possible pixel values evenly based on input and spans the full range of necessary outputs 

simplifies the reconstruction process as the output and ground truth slices can be compared 

directly without transformations or mapping functions. 

 

2.6 Reason for Selecting the Encoder-Decoder Structure for the Neural Network 

 

The reason for selecting the structure of an encoder-decoder with skip connections as the 

general structure for the slice interpolation neural network was due to several inherent qualities 

of this architecture.  

The first supportive quality is that the encoder-decoder structure is a generative network 

designed to reconstruct a set of data based on a lower-dimensional set of features. MRI volumes 

are a good candidate for this form of compression and feature-based reconstruction because the 

image volumes all contain the same type of content. In this case the, brains of patients 

undergoing treatment for brain tumors. The encoder-decoder can identify common structures 

within the image slices and describe them with a smaller number of latent features than the 

original set of pixel data. 

The network utilizes the features found by the decoder in a reconstruction of the input, 

which is cognizant of the common structure of a brain MRI volume. The decoder learns unique 

convolutional masks and biases which rebuild the input image from the latent features. 

Finally, the skip connections of this architecture enable the network to use features 

extracted earlier in the encoder half of the network to aid in reconstructing the input. Applying 

additional mathematical functions to the skip connection data, such as averaging the pair of input 
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slices as they move through the skip connection, allows the decoder to work with dense features 

in the same dimensions as the eventual output slice. 

A significant drawback to this architecture is the memory required to store and process 

the model during training. With each downsampling stage in the network, the number of 

convolutional filters need to double in order to minimize the amount of information lost in the 

process. Deep networks also need to be built to extract a high level, abstract feature map of the 

underlying data. Therefore, the number of convolutional filters combined with the requisite 

number of stages for a deep network quickly inflates the number of trainable parameters in the 

network. Likewise, the number of input slices contributes a multiplicative effect to the memory 

requirements for the encoder half of the network. 
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3. PROPOSAL FOR INVESTIGATING SLICE INTERPOLATION 

 

As mentioned in Section 1.2, the resolution between slices is greater than the resolution 

of pixels in the slice itself. This results in less availability of information along the depth axis of 

the image volume. I conducted an exploration of the impact of this lower slice resolution on the 

accuracy of medical imaging analysis algorithms, such as image segmentation. The experiment 

involves down-sampling the number of slices available in an image volume for MRI scans of 

patients with gliomas and reconstructing the lost slices through various methods. Reconstruction 

methods include a simple linear interpolation between neighboring slices as the baseline 

performance method, and a new proposal of a U-net based CNN to reconstruct the missing slice 

given the neighboring slices.  

This is accomplished by modifying the general U-net architecture to utilize a two image 

input and one image output setup. The network receives the pair of input slices as a two-channel 

image, with the first channel indicating the bottom slice and the second channel the top slice. At 

some point in the network, these channels must be merged so that a single channel image slice is 

given as the output of the network. This is accomplished by averaging the channels together at 

each point where information transfers from the encoder half of the network to the decoder half. 

Therefore, the channels are averaged together into a single-channel matrix at each of the skip 

connections and in the transition from the bottleneck layer to the first deconvolution block of the 

decoder. 

A similar area of research to the proposed slice interpolation issue has been explored by 

many others for the purpose of interpolating between frames of digital video to achieve digital 

video data compression and picture quality enhancement. Video frames capture motion across 

time, whereas typical MRI slices strictly capture changes across a volume space. Therefore, 
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current methods used to interpolate between frames of digital video may be applicable to an MRI 

scan as the format of the data is similar. However, the content reflected by changes in the frame 

or slice depth (time vs. volume location) reflects a different set of learnable features within the 

data. 

A method of video frame interpolation using CNNs called Deep Voxel Flow was 

proposed by a team from the University of Illinois at Urbana-Champaign and Google Research 

which used a general form of U-net in tandem with a technique of following motion between 

images known as optical flow [19]. Deep Voxel Flow utilizes the Encoder-Decoder structure to 

produce a 3D voxel flow field from the pair of input images. Then, by assuming the data in the 

voxel flow field is locally linear, they were able to resample using trilinear interpolation between 

the frames to create an estimation of the restored video frame. 

 

3.1 Data Set Selection and Preprocessing 

 

The dataset used for this research is the BraTS 2018 dataset [20, 21, 22]. This dataset 

includes the scans from 285 patients collected from 2012 to 2013 and labeled in 2017. The image 

volumes were gathered from 19 different institutions and resampled to a voxel size of 1 mm x 1 

mm x 1 mm. The skulls had been removed from the image volumes in the pre-processing stage 

before the dataset being made publicly available. In addition, all of the images were registered to 

the same anatomical template to ensure that the images could be related under a shared 

coordinate system. 

The pre-processing actions performed in the completion of this thesis were conducted to 

preserve the integrity of the information stored within the image. In order to down-sample along 
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the slice axis, odd-numbered slices, using a 0-based indexing system, were discarded for each of 

the four modalities and the resulting compressed image volume saved as a separate dataset. The 

purpose of discarding the odd-numbered slices was to ensure that the first and last image slices 

were preserved to ensure that the restored image volume would match the original dimensions of 

the original data. 

Additionally, in any case where the width or height of the image slice needed to be 

reduced, such as for performance purposes during testing, a crop function was performed instead 

of a zoom or resampling function. Using a crop preserves the physical dimensions of the image 

volume and does not alter any of the remaining data, such as would be done in a linear or 

nearest-neighbor interpolation. 

All image volumes are stored in the NIfTI format specified by the National Institute of 

Health. Image loading and saving were performed using the Python library SimpleITK. Matrix 

operations on the loaded image volumes were performed using NumPy methods and matrix 

arithmetic. 
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4. INTERPOLATION NEURAL NETWORK ARCHITECTURE 

 

My attempt to improve the reconstruction of the intermediary MRI slice is performed 

using a convolutional encoder-decoder neural network. This network follows a similar 

architecture to U-net by employing several convolution and max-pooling layers to reduce the 

dimension in three steps from 240 by 240 pixels with 16 convolutional filters to 120 by 120 with 

32 filters, 60 x 60 with 64 filters, 30 x 30 with 128 filters, and finally 15 x 15 with 256 filters. 

This process is then mirrored with the corresponding deconvolution and upsampling layers to 

return to the original 240 x 240 slice resolution. Two slices, the paired top and bottom slices, are 

fed into the network together. The same filters are applied to each slice at each layer. However, 

after each downsampling layer, the output feature map pair for the slices are averaged into a 

single feature map and, using a skip connection, are concatenated to the corresponding resolution 

deconvolution layer. The resulting overall architecture takes the same general shape as U-net. 

The model architecture is shown in Figure 7 to demonstrate how averaging the pair of input 

slices across the skip connections is modeled in the architecture. Both slices could be subject to 

independently valued convolution filters, however, fixing the filters to apply identically to both 

input slices greatly reduces the memory requirement and enables the model to be efficiently 

trained on current generation hardware. 
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Figure 7: Example layout of interpolation model architecture with channel averaging residual 
skip connections 

 

In each convolutional block is a dropout layer set to a dropout probability of 10%, a batch 

normalization layer, and a Leaky ReLU as the activation layer. The loss function for training is 

the Mean Square Error (MSE) and the optimizer is Adamax with a learning rate of 0.0001.  

Batch normalization is an included layer in each convolutional and deconvolutional block 

of this encoder-decoder model. The purpose of this layer is to normalize the input data along 

each mini-batch to prevent or lessen the impact of internal covariate shift. The issue of internal 

covariate shift is caused by the differences in data distribution between inputs. This is expressed 

in the MRI volumes by the large fluctuations in pixel intensity throughout each slice. Some 

slices, especially those in the beginning and the end of the volume have a constant zero value, 

whereas the maximum pixel value in other slices ranges from 1 to the maximum value of an 

unsigned 15-bit integer of 32,767 as shown in Figure 8: 
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Figure 8: Histogram of maximum pixel intensities in the BraTS dataset with a log y-axis 

and linear x-axis 

 

Figure 8 is scaled logarithmically along the y-axis to demonstrate that although the higher 

valued pixels are not especially common in slices, there is a wide range of maximum values. 

Therefore, using my chosen mini-batch size of 4, it is possible that a group of slices may be 

dominated by one slice containing these high-intensity pixels. This outlier slice would then shift 

the representative distribution of pixel data disproportionately toward itself. Normalizing across 

batches lessens the impact of this outlier behavior and thus allows the network to train towards a 

more generalizable latent representation of the underlying data features. 

The 10% parameter for dropout is lower than the 20% from the video frame interpolator 

in X. Mao’s image restoration encoder-decoder [23]. This lower hyperparameter was selected 

due to the consistent nature of the MRI dataset. Since each MRI volume is viewed from the same 
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perspective, centered within the volume, and registered to a common brain atlas, there is less 

need to regularize based on the size and location of the information and, therefore, a small 

amount of dropout results in a similar impact. 

 

4.1 Interpolation Network Experimental Configurations 

 

Depending on the version of interpolation network being tested, the network contains 

either 500,000 or 7,500,000 trainable parameters. The difference in trainable parameters arises 

from altering the number of convolutional filters in each block with the smallest network 

containing one quarter the number of filters as the largest network. A third version of the 

network was tested in which the bottleneck was doubled in size to 30 x 30, an additional 

convolutional block was added without downsampling, and the number of convolutional filters 

was half of the amount in the largest network described previously. These changes resulted in a 

model that also has 7,500,000 trainable parameters.  

The presented configurations represent the models that were most stable during smoke 

tests and short training sessions on a reduced sized dataset. Other configurations were tested but 

were not selected for a full training session due to unstable training loss, slow training speed 

regardless of the learning rate, or no convincing signs of potential improvement in the training 

set. 

These smaller experimental configurations were executed on a small reduced training set 

of 15 MRI volumes. The experimental model changes include using the Adam optimizer instead 

of Adamax, increasing the dropout probability hyperparameter to 20%, removing the skip 

connection from the first convolutional block, removing batch normalization, using average 
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pooling instead of max pooling, and using a stride on the convolution filters as opposed to 

pooling of any sort for the downsampling step. The changes in the optimizer, the inclusion of 

batch normalization, and pooling or stride type made no discernable difference or a small loss in 

performance on the training set and, as such, did not pass screening to be utilized in the 24 hour 

or greater full dataset tests. Removing dropout altogether made training less stable and decreased 

the speed at which the network trained, similar to how a network with too high of a learning rate 

performs. Removing the first skip connection drastically reduced performance and failed to 

reconstruct the intermediary slices even when over-trained on a single MRI volume in an 

additional test. Each of the described modifications were not chosen to be tested further not only 

based upon poor or negligible performance, but additionally due to the techniques not aligning 

with standard modern practices in model design. The examples of such modern practices were 

drawn from the literature describing and introducing Deep Voxel Flow, the BRATS 2018 

segmentation network by A. Myronenko, and the image restoration encoder-decoder by X. Mao 

et al., which all contain some form of batch normalization, dropout, first block skip connections, 

max pooling, and Adamax [19, 23-24]. 

All final model training and inference tasks were performed using a local Nvidia RTX 

2080S GPU with 8GB of GDDR6 VRAM with a 5% overclock on core and memory speeds. The 

dataset was additionally stored on a local solid-state drive. Initial segmentation and interpolation 

model experiments were performed on an Nvidia P100 GPU with 16 GB of GDDR5 VRAM 

located on a pre-emptible Google Cloud instance. The formerly described local machine was 

chosen as the final training solution due to faster training speed, higher training stability, faster 

disk access times, and lower long term costs. This choice of computing solution came at the cost 

of lower memory and thus constrained the maximum possible model size to 8GB. 
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The network on the upper limit of trainable parameters required training of 36 hours a 

network before the validation loss stabilized around a nearly constant value. The smaller network 

of 500,000 parameters only trained for 24 hours before a similar stable loss on the validation set 

was achieved. 

However, despite the hit to accuracy, the smaller network was much quicker to train and 

use. The overall compressed model weights and bias storage requirement of 9.0 MB vs 93 MB 

for the larger network using the HDF5 storage format. 
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5. INTERPOLATION RESULTS 

 

The trained interpolation models were tested against the MRI slices from 105 patient 

image volumes across all imaging modalities. This test set of 105 patients is independent of the 

training and validation sets. Image slice pairs were predicted by the model in batches of 20. This 

is an increase from the batch size of 4 used in training. Since predicting an output using a trained 

neural network requires less memory than the training phase, the batch size was increased to 

increase prediction throughput several-fold. The average prediction speed for each interpolation 

was 10 milliseconds, independent of the model configuration.  

The metric for evaluating the final performance of each interpolation method is the peak 

signal-to-noise ratio (PSNR) measured in decibels (dB). The PSNR is calculated as follows: 

𝑃𝑆𝑁𝑅 = 20 ∙ log10 (
𝑀𝐴𝑋𝐼

√𝑀𝑆𝐸
) 

In this case, MSE is the mean square error of the entire interpolated image slice and 

𝑀𝐴𝑋𝐼 is the maximum image pixel value. In order to allow comparability with the more 

common unsigned 16-bit data type, all images were scaled to fit in a 16-bit format by 

multiplying the unsigned 15-bit images by 2. This makes 𝑀𝐴𝑋𝐼 in this study equal to 65,535. 

The PSNR image quality metric attempts to quantify how much of the original image slice 

information is retained after noise and data loss is introduced by the reconstruction algorithm. 

The signal is the original intermediary slice and the noise is the image artifacts and data 

corruption due to the interpolation. An image pair with an MSE of just 1 gives a PSNR of 96 dB 

and an image pair in which each pixel has the maximum possible error of 65,535 gives a 

resulting PSNR of 0 dB. 
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The average PSNR for the standard model, the reduced parameter model, and the wide 

bottleneck model are given as Models A, B, and C respectively, and compared against linear 

interpolation in Table 1: 

Table 1: Slice Reconstruction PSNR of Tested Interpolation Methods 

Interpolation Method PSNR (dB) 

Model A 65.28 

Model B 62.88 

Model C 65.33 

Linear Interpolation 65.97 

 

These results for all models initially indicate performance slightly worse than the linear 

interpolation. The markedly worse performance of Model B can be attributed to its inability to 

learn and retain enough features from the dataset.  Model B differs from Model A by having a 

narrower bottleneck layer and fewer convolutional filters at each layer. Model B differs from 

Model C by containing one fewer convolutional block and half the number of convolutional 

filters. Therefore, Model B is constructed in such a way as to have an order of magnitude fewer 

trainable parameters than Models A and C. Given that all three were trained on the same data 

with the same data randomizing seed, we can conclude that Model B was not able to extract 

enough features from the data to enable an accurate reconstruction when compared to the other 

models and the linear interpolation method. 

Model A and C were roughly equivalent in performance with only a 0.05 dB difference in 

their average PSNR. However, they were both over half a decibel below the performance of the 
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linear interpolation method indicating a small but clear shortfall of the baseline interpolation 

method. 

One point of concern regarding the result of the encoder-decoder output is that it does not 

seem that the neural network models are learning a latent representation of the brain structure in 

order to perform the interpolation. When comparing results visually, the errors of the network are 

extremely similar to those errors produced by linear interpolation, namely that discontinuities in 

the brain shape are not filtered or reduced in size, but instead simply average to an intermediate 

grey value. This is shown by the two dots in the top left and right of the brain stem in the slices 

depicted in Figure 9: 

 

Figure 9: MRI Volume slices showing, from left to right, the first input slice, the linear 

interpolated result, the neural network predicted intermediary slice, the ground truth 

intermediary slice, and the second input slice. 

 

Figure 9 shows an early slice in the image volume, along the base of the skull where the 

brain stem leads into the middle of the head. Going from the bottom slice in the image in the 

direction of the top slice, the front of the brain behind the eyes begins to enter the view as an 

overhanging mass, with the very bottom tips of it represented by the two dots which appear in 

the Top Slice of Figure 9. The Ground Truth image is the true slice between the bottom and top 

input slices, the predicted image is the slice generated by the neural network, and the interpolated 

image is the slice generated by simply averaging the top and bottom slices. 
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In order to investigate how the neural network model is interpolating the image slices, 

two further experiments were conducted in which the slices used as input were not directly 

adjacent to the interpolated slice, but further out. The past experiment used a distance between 

input slices of 1. The next two experiments used a distance of 3 and 5 slices, respectively. The 

goal of each experiment is still to interpolate only the center slice between the pair of input MRI 

slices. These increased slice distance experiments were performed using Models A and C. The 

reduced size interpolation configuration of Model B was not selected as the performance was 

significantly poorer than the other model configurations. The results of Models A and C in this 

experiment are presented in Table 2. 

Table 2: PSNR of Interpolation Methods at Varying Input Slice Distances 

Interpolation Method 1-Slice Distance 

PSNR (dB) 

3-Slice Distance 

PSNR (dB) 

5-Slice Distance 

PSNR (dB) 

Model A 65.28 61.34 59.64 

Model C 65.33 61.45 59.83 

Linear Interpolation 65.97 61.11 59.39 

 

The results of this experiment show a slightly higher performance of the neural network 

interpolator over the linear averaging method. Overall interpolation performance decreases 

significantly as the slice distance grows. Despite this, the neural network interpolators increase in 

interpolation performance relative to the linear method accordingly to the progression of the 

trials. The neural networks perform relative to the linear method by an average of -0.665 dB at a 

slice distance of 1, +0.285 dB at a slice distance of 3, and +0.345 dB at a slice distance of 5.  
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Figure 10: Sample results of Model C at 1-Slice Distance. MRI Volume slices showing, from 

left to right, the first input slice, the linear interpolated result, the neural network 

predicted intermediary slice, the ground truth intermediary slice, and the second input 

slice. 

 

 

Figure 11: Sample results of Model C at 5-Slice Distance. MRI Volume slices showing, from 

left to right, the first input slice, the linear interpolated result, the neural network 

predicted intermediary slice, the ground truth intermediary slice, and the second input 

slice. 

 

 The image slices shown in Figures 10 and 11 are centered on the same middle slice. This 

is to demonstrate the differences in reconstruction between the different slice distances given the 

same target. In particular, there is a small visual difference between all three middle slices in 

Figure 10. However, in Figure 11 the linear interpolated slice has distinct ringing around the core 

of the image. This ringing effect is significantly muted in the neural network reconstructed image 

slice. 

Intuitively these results seem reasonable due to how each method is performing the 

interpolation. The linear averaging method works best when both input slices are quite similar, 

which occurs when the distance between the slices is small. As the distance between the input 
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slices increases, the similarities between the contents of the input slices decreases and methods 

which takes into account shared features in brain structure should improve in relative 

performance. 

 

5.1 Segmentation Results of the Interpolated MRI Volumes 

 

I implemented the segmentation model introduced by Wang, Li, Ourselin, and 

Vercauteren developed for the BraTS 2017 challenge and modified it to operate with the BraTS 

2018 data. In an attempt to evaluate how this model performs on the original data compared to 

the interpolated MRI volumes, the model was run on the complete 2018 dataset of 285 image 

volumes and calculated the Dice Coefficients for the original data, the data reconstructed by 

linear interpolation, and the volumes reconstructed using Model C. The segmentation results for 

each interpolation method are presented in Table 3. 

Table 3: Dice Coefficient for Tumor Segmentation of Processed Datasets 

 Dice Coefficient Standard Deviation 

Experiment ET ED NCR/NET ET ED NCR/NET 

Original Data 0.718 0.800 0.784 0.197 0.132 0.242 

Linear Interpolation 0.708 0.797 0.786 0.202 0.130 0.233 

Neural Network 

Interpolation 

0.707 0.799 0.782 0.205 0.135 0.224 
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The results of this experiment show that the loss of information throughout the 

reconstruction process does not significantly impact the performance of this model. Scores for 

each were well within one standard deviation of the original data segmentation. 

A likely cause of this stable performance is due to Wang et al.’s implementation of the 

segmentation model as a cascading ensemble of convolutional models. Rather than segmenting 

from a single volume or single anatomical perspective, the creator of this segmentation model 

chose to implement 9 separate models. These 9 models are trained separately on the three 

anatomical axes for each targeted segmentation class. For instance, there is a specific model for 

MRI slices obtained in the coronal view and producing segmentation of the tumor core. Each 

output of the model trios for each segmentation class are averaged and then contribute their 

findings to a final deep learning model which produces the complete segmentation. This multi-

perspective ensemble approach likely lends the model resistance to information degradation 

along a single axis, such as that produced by my interpolation experiments. 
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6. POTENTIAL ISSUES WITH PROPOSED INTERPOLATION APPROACH 

 

The proposed method of reconstructing intermediary MRI slices using convolutional 

neural networks is based on several assumptions that may have limited the potential performance 

of this approach. These assumptions consist of the overall encoder-decoder design, the practical 

implementation of the model, and the dataset used for training. 

The primary goal of using the encoder-decoder architecture was to investigate if a simple 

interpolation technique, such as linear interpolation, could be improved by using an algorithm 

that takes into consideration the local features of images with a shared topic. In this case, a 

convolutional encoder-decoder will be able to account for local features in the images, while the 

shared topic is a well-studied dataset of MRI volumes. Therefore, the neural network should be 

capable of learning an abstract representation of the pixel features and use this representation to 

reconstruct a compressed volume of MRI slices. This is opposed to an approach like linear 

interpolation which ignores the relationship between neighboring pixels and thus cannot take 

advantage of features in a dataset with a common topic. However, due to the semi-supervised 

nature of training an encoder-decoder neural network, regression of the model towards linear 

methods is always a possibility as higher-performing representations are not guaranteed to exist. 

This is because a non-linear neural network, such as the proposed encoder-decoder architecture, 

is guaranteed to have poor local minima [25]. In addition, due to the large number of parameters 

in all of the researched model configurations and that only a few parameters are needed to mimic 

a linear averaging of MRI slices, there must exist at least one local minimum in the training loss 

function in which the model approximates linear interpolation of the input frames. This ability 

for a neural network to approximate any function is known as the Universal Approximation 

Theorem and has been proven to extend to deep CNNs [26]. The conclusion regarding the 
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assumed architecture then is that a model which ignores the abstract features of the subject and 

instead utilizes a nearly linear interpolation method is always a possible outcome of the model 

training process. 

The potential for the network to arrive at the nearly trivial linear interpolation solution is 

further realized by the existence of the skip connections. The skip connections allow features 

from shallow layers to be used in the reconstruction taking place in the decoder section of the 

model. The features of the shallow layers have not yet been parsed through the full range of 

convolutional layers and thus may represent a subset of features which are similar to the original 

input. This quality of skip connections is useful in recovering lost spatial information, however, 

the novel method introduced in this thesis of averaging together input features along the skip 

connection may reinforce the tendency of the network to reproduce a linear method of 

interpolation. 

The dataset used for training and validation consisted of 41,000 pairs of MRI volume 

slices taken from 285 patients. The main point of concern is the number of patients included in 

this dataset compared to the overall size of datasets used to train similar neural network 

architectures in domains outside of healthcare. For instance, the authors of the Deep Voxel Flow 

video frame synthesis model trained their model on the UCF101 dataset which consists of 13,000 

videos. At the stated 25 frames per second, this video dataset consists of 2.4 million frame pairs. 

Datasets of comparable size in the medical field are extraordinarily rare [27]. With fewer 

examples of key spatial features available, these smaller healthcare datasets may not contain 

enough data to accommodate the architectures of generalized encoder models developed and 

proven on much larger datasets. 
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7. CONCLUSION 

 

 Acquiring and analyzing medical images is a critical step in working with difficult to 

treat diseases such as brain tumors. Modern techniques for automated segmentation of brain 

tumors have increased dramatically and may soon see use in a clinical setting. Among these 

techniques, we examined the construction and implementation of convolutional neural networks 

for segmentation tasks. These neural network models have been incrementally improved over the 

last decade due to breakthroughs in model training methodology and model architecture. In this 

thesis, we explored how these breakthrough technologies in segmentation models can be applied 

to generative models of neural networks within the same data topic. 

 The generative model introduced aimed to interpolate intermediate slices from an MRI 

volume along a single axis and in the process compare the generated slices against a linear 

method. The generative neural network, based on a modification of the U-net segmentation 

model, incorporated newer modeling techniques such as batch normalization, LeakyReLU 

activation functions, and dropout. 

 Using the peak signal-to-noise ratio metric, the performance of the interpolation neural 

network did not exceed that of the linear method. However, further experiments using an 

exaggerated form of the initial trials in which the slice interpolation occurs over an extended 

distance provided some indication that the neural network interpolation method is capable of 

using intrinsic features of the dataset to reconstruct an intermediary slice. 

 Although the performance of the interpolating neural network is not yet superior to the 

linear interpolation method, the experiments do indicate that linear averaging of MRI slices does 

not stand as the upper limit of interpolation performance in this imaging domain. Also, as the 
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initial inter-slice resolution decreases, the performance of a neural network-based solution 

improves relative to linear interpolation. 
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8. FUTURE IMPROVEMENTS 

 

Due to the large processing requirements of deep learning, not all considered 

improvements and alterations to the experiments could be examined during the development 

process. Therefore, I will provide several avenues for further research which could be explored 

given additional time and computing resources, or advancements in computing technology. 

A considerably more complex but potentially fruitful approach to improving the 

interpolation ability of the neural network model is to expand the number of input slices. Rather 

than using only the adjacent slices, additional pairs of slices from deeper in the MRI volume 

could be included in the encoder stage of the model. However, the drawback to this approach is 

that adding only a single extra pair of slices doubles the memory footprint of the encoder half of 

the network. Additionally, a linear interpolation is no longer an appropriate baseline as B-spline 

interpolation is a proven efficient method for interpolating between multiple MRI slices [28]. 

The dataset used for this research is significantly smaller than would be found in a non-

healthcare commercial setting where neural networks have seen greater success in engineering 

applications. Therefore, a simpler improvement would be to augment the dataset with either 

transformed image slice pairs or introducing synthetic data. Examples of common 

transformations are flipping and rotating random images along an axis, performing image 

rotations, and introducing an intensity shift to the image. Rotating or flipping image slices along 

any axis that is not aligned with the edges of the volume is not advisable due to the necessary 

interpolation or averaging of pixels to achieve rotation angles such as 30° or 60°. The dataset can 

also be expanded through the use of automatically generated synthetic data to allow for a more 
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diverse dataset, which still contains accurate ground truth labels. A method for generating 

synthetic MRI volumes of glioblastoma occurrences was developed and implemented using a 

computational network [29]. 

In addition to dataset augmentation, transfer learning from model optimized on a large 

dataset could be utilized to lower the number of parameters that need to be trained on the smaller 

healthcare dataset. Video data would be an intuitive starting point to pre-train the model, 

however, one concern is that the information and objects in video frames represent changes in 

time and space. A purely spatial dataset would be preferable, such as geological survey data, in 

which learned spatial features may translate more appropriately to a similarly volumetric MRI 

dataset. 
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Appendix A: Neural Network Model A Code 

 

1. import tensorflow.keras   
2. from tensorflow.keras import backend as K   
3. import numpy as np   
4. import os   
5.    
6.    
7. # # Model   
8.    
9.    
10. import tensorflow.keras.layers as layers   
11. import tensorflow.keras.models as models   
12. from tensorflow.keras.initializers import orthogonal   
13.    
14.    
15. def Conv3DLayer(x, filters, kernel, strides, padding, block_id, kernel_init=orthogonal(

)):   
16.     prefix = f'block_{block_id}_'   
17.     x = layers.Conv3D(filters, kernel_size=kernel, strides=1, padding=padding,   
18.                       kernel_initializer=kernel_init, name=prefix+'conv')(x)   
19.     x = layers.LeakyReLU(name=prefix+'lrelu')(x)   
20.     x = layers.MaxPooling3D(pool_size=(strides[0], strides[0], 1))(x)   
21.     x = layers.Dropout(0.1, name=prefix+'drop')((x))   
22.     x = layers.BatchNormalization(name=prefix+'conv_bn')(x)   
23.     return x   
24.    
25. def Conv2DLayer(x, filters, kernel, strides, padding, block_id, kernel_init=orthogonal(

)):   
26.     prefix = f'block_{block_id}_'   
27.     x = layers.Conv2D(filters, kernel_size=kernel, strides=1, padding=padding,   
28.                       kernel_initializer=kernel_init, name=prefix+'conv')(x)   
29.     x = layers.LeakyReLU(name=prefix+'lrelu')(x)   
30.     x = layers.MaxPooling2D(pool_size=(strides[0], strides[0]))(x)   
31.     x = layers.Dropout(0.1, name=prefix+'drop')((x))   
32.     x = layers.BatchNormalization(name=prefix+'conv_bn')(x)   
33.     return x   
34.    
35. def Transpose_Conv2D(x, filters, kernel, strides, padding, block_id, kernel_init=orthog

onal()):   
36.     prefix = f'block_{block_id}_'   
37.     x = layers.Conv2DTranspose(filters, kernel_size=kernel, strides=strides, padding=pa

dding,   
38.                                kernel_initializer=kernel_init, name=prefix+'de-

conv')(x)   
39.     x = layers.LeakyReLU(name=prefix+'lrelu')(x)   
40.     x = layers.Dropout(0.1, name=prefix+'drop')((x))   
41.     x = layers.BatchNormalization(name=prefix+'conv_bn')(x)   
42.     return x   
43.    
44.    
45.    
46. def AutoEncoder(input_shape):   
47.     inputs = layers.Input(shape=input_shape)   
48.        
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49.     # 240 x 240   
50.     conv1 = Conv3DLayer(inputs, 16, (3,3,1), strides=(1,1,1), padding='same', block_id=

1)   
51.     conv2 = Conv3DLayer(conv1, 16, (3,3,1), strides=(2,2,1), padding='same', block_id=2

)   
52.        
53.     # 120 x 120   
54.     conv3 = Conv3DLayer(conv2, 32, (5,5,1), strides=(2,2,1), padding='same', block_id=3

)   
55.        
56.     # 60 x 60   
57.     conv4 = Conv3DLayer(conv3, 32, (3,3,1), strides=(1,1,1), padding='same', block_id=4

)   
58.     conv5 = Conv3DLayer(conv4, 64, (5,5,1), strides=(2,2,1), padding='same', block_id=5

)   
59.        
60.     # 30 x 30   
61.     conv6 = Conv3DLayer(conv5, 128, (3,3,1), strides=(2,2,1), padding='same', block_id=

6)   
62.     print("c1:",conv1.shape)   
63.     print("c2:",conv2.shape)   
64.     print("c3:",conv3.shape)   
65.     print("c4:",conv4.shape)   
66.     # 15 x 15   
67.     meaner1=layers.Lambda(lambda x: K.mean(x, axis=3) )   
68.     agglayer1 = meaner1(conv6)    
69.     print(agglayer1.shape)   
70.     deconv1 = Transpose_Conv2D(agglayer1, 128, 3, strides=2, padding='same', block_id=7

)   
71.        
72.     # 30 x 30   
73.     meaner2=layers.Lambda(lambda x: K.mean(x, axis=3) )   
74.     agglayer2 = meaner2(conv5)    
75.     print(agglayer2.shape)   
76.     skip1 = layers.concatenate([deconv1, agglayer2], name='skip1')   
77.     conv7 = Conv2DLayer(skip1, 64, 3, strides=(1,1,1), padding='same', block_id=8)   
78.     deconv2 = Transpose_Conv2D(conv7, 32, 3, strides=2, padding='same', block_id=9)   
79.        
80.     # 60 x 60   
81.     meaner3=layers.Lambda(lambda x: K.mean(x, axis=3) )   
82.     agglayer3 = meaner3(conv3)    
83.     print(agglayer3.shape)   
84.     skip2 = layers.concatenate([deconv2, agglayer3], name='skip2')   
85.     conv8 = Conv2DLayer(skip2, 32, 5, strides=(1,1,1), padding='same', block_id=10)   
86.     deconv3 = Transpose_Conv2D(conv8, 16, 3, strides=2, padding='same', block_id=11)   
87.        
88.     # 120 x 120   
89.     meaner4=layers.Lambda(lambda x: K.mean(x, axis=3) )   
90.     agglayer4 = meaner4(conv2)    
91.     print(agglayer4.shape)   
92.     skip3 = layers.concatenate([deconv3, agglayer4], name='skip3')   
93.     conv9 = Conv2DLayer(skip3, 16, 5, strides=(1,1,1), padding='same', block_id=12)   
94.     deconv4 = Transpose_Conv2D(conv9, 16, 3, strides=2, padding='same', block_id=13)   
95.        
96.     # 240 x 240   
97.     meaner5=layers.Lambda(lambda x: K.mean(x, axis=3) )   
98.     agglayer5 = meaner5(conv1)    
99.     print(agglayer5.shape)   
100.     skip3 = layers.concatenate([deconv4, agglayer5])   
101.     conv10 = layers.Conv2D(1, 3, strides=1, padding='same', activation='relu',   
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102.                        kernel_initializer=orthogonal(), name='final_conv')(skip3
)   

103.        
104.     return models.Model(inputs=inputs, outputs=conv10)   
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Appendix B: Neural Network Model C Code 

 

1. #!/usr/bin/env python   
2. # coding: utf-8   
3.    
4.    
5.    
6. import tensorflow.keras   
7. from tensorflow.keras import backend as K   
8. import numpy as np   
9. import os   
10.    
11.    
12. # # Model   
13.    
14.    
15. import tensorflow.keras.layers as layers   
16. import tensorflow.keras.models as models   
17. from tensorflow.keras.initializers import orthogonal   
18.    
19.    
20. def Conv3DLayer(x, filters, kernel, strides, padding, block_id, kernel_init=orthogonal(

)):   
21.     prefix = f'block_{block_id}_'   
22.     x = layers.Conv3D(filters, kernel_size=kernel, strides=1, padding=padding,   
23.                       kernel_initializer=kernel_init, name=prefix+'conv')(x)   
24.     x = layers.LeakyReLU(name=prefix+'lrelu')(x)   
25.     x = layers.MaxPooling3D(pool_size=(strides[0], strides[0], 1))(x)   
26.     x = layers.Dropout(0.1, name=prefix+'drop')((x))   
27.     x = layers.BatchNormalization(name=prefix+'conv_bn')(x)   
28.     return x   
29.    
30. def Conv2DLayer(x, filters, kernel, strides, padding, block_id, kernel_init=orthogonal(

)):   
31.     prefix = f'block_{block_id}_'   
32.     x = layers.Conv2D(filters, kernel_size=kernel, strides=1, padding=padding,   
33.                       kernel_initializer=kernel_init, name=prefix+'conv')(x)   
34.     x = layers.LeakyReLU(name=prefix+'lrelu')(x)   
35.     x = layers.MaxPooling2D(pool_size=(strides[0], strides[0]))(x)   
36.     x = layers.Dropout(0.1, name=prefix+'drop')((x))   
37.     x = layers.BatchNormalization(name=prefix+'conv_bn')(x)   
38.     return x   
39.    
40. def Transpose_Conv2D(x, filters, kernel, strides, padding, block_id, kernel_init=orthog

onal()):   
41.     prefix = f'block_{block_id}_'   
42.     x = layers.Conv2DTranspose(filters, kernel_size=kernel, strides=strides, padding=pa

dding,   
43.                                kernel_initializer=kernel_init, name=prefix+'de-

conv')(x)   
44.     x = layers.LeakyReLU(name=prefix+'lrelu')(x)   
45.     x = layers.Dropout(0.1, name=prefix+'drop')((x))   
46.     x = layers.BatchNormalization(name=prefix+'conv_bn')(x)   
47.     return x   
48.    
49.    
50.    
51. def AutoEncoder(input_shape):   
52.     inputs = layers.Input(shape=input_shape)   
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53.        
54.     # 240 x 240   
55.     conv1 = Conv3DLayer(inputs, 32, (3,3,1), strides=(1,1,1), padding='same', block_id=

1)   
56.     conv2 = Conv3DLayer(conv1, 32, (3,3,1), strides=(2,2,1), padding='same', block_id=2

)   
57.        
58.     # 120 x 120   
59.     conv3 = Conv3DLayer(conv2, 64, (5,5,1), strides=(2,2,1), padding='same', block_id=3

)   
60.        
61.     # 60 x 60   
62.     conv4 = Conv3DLayer(conv3, 64, (3,3,1), strides=(1,1,1), padding='same', block_id=4

)   
63.     conv5 = Conv3DLayer(conv4, 128, (5,5,1), strides=(2,2,1), padding='same', block_id=

5)   
64.        
65.     # 30 x 30   
66.     conv6 = Conv3DLayer(conv5, 256, (3,3,1), strides=(1,1,1), padding='same', block_id=

6)   
67.     print("c1:",conv1.shape)   
68.     print("c2:",conv2.shape)   
69.     print("c3:",conv3.shape)   
70.     print("c4:",conv4.shape)   
71.     # 30 x 30   
72.     meaner1=layers.Lambda(lambda x: K.mean(x, axis=3) )   
73.     agglayer1 = meaner1(conv6)    
74.     print(agglayer1.shape)   
75.     deconv1 = Transpose_Conv2D(agglayer1, 256, 3, strides=1, padding='same', block_id=7

)   
76.        
77.     # 30 x 30   
78.     meaner2=layers.Lambda(lambda x: K.mean(x, axis=3) )   
79.     agglayer2 = meaner2(conv5)    
80.     print(agglayer2.shape)   
81.     skip1 = layers.concatenate([deconv1, agglayer2], name='skip1')   
82.     conv7 = Conv2DLayer(skip1, 128, 3, strides=(1,1,1), padding='same', block_id=8)   
83.     deconv2 = Transpose_Conv2D(conv7, 64, 3, strides=2, padding='same', block_id=9)   
84.        
85.     # 60 x 60   
86.     meaner3=layers.Lambda(lambda x: K.mean(x, axis=3) )   
87.     agglayer3 = meaner3(conv3)    
88.     print(agglayer3.shape)   
89.     skip2 = layers.concatenate([deconv2, agglayer3], name='skip2')   
90.     conv8 = Conv2DLayer(skip2, 64, 5, strides=(1,1,1), padding='same', block_id=10)   
91.     deconv3 = Transpose_Conv2D(conv8, 32, 3, strides=2, padding='same', block_id=11)   
92.        
93.     # 120 x 120   
94.     meaner4=layers.Lambda(lambda x: K.mean(x, axis=3) )   
95.     agglayer4 = meaner4(conv2)    
96.     print(agglayer4.shape)   
97.     skip3 = layers.concatenate([deconv3, agglayer4], name='skip3')   
98.     conv9 = Conv2DLayer(skip3, 32, 5, strides=(1,1,1), padding='same', block_id=12)   
99.     deconv4 = Transpose_Conv2D(conv9, 32, 3, strides=2, padding='same', block_id=13)   
100.        
101.     # 240 x 240   
102.     meaner5=layers.Lambda(lambda x: K.mean(x, axis=3) )   
103.     agglayer5 = meaner5(conv1)    
104.     print(agglayer5.shape)   
105.     skip3 = layers.concatenate([deconv4, agglayer5])   
106.     conv10 = layers.Conv2D(1, 3, strides=1, padding='same', activation='relu',   
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107.                        kernel_initializer=orthogonal(), name='final_conv')(skip3
)   

108.        
109.     return models.Model(inputs=inputs, outputs=conv10)   
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Appendix C: Neural Network Training Code (Jupyter Notebook Format) 

 

1. Train Interpolation Neural Network   
2. import os   
3. os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'   
4. os.environ['CUDA_VISIBLE_DEVICES'] = '0'   
5. os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'   
6. import tensorflow.keras   
7. from tensorflow.keras import backend as K   
8. import numpy as np   
9. import matplotlib.pylab as plt   
10. from tensorflow.keras.optimizers import SGD, Adamax   
11. import Interp_Model_Long   
12.    
13. import Utilities   
14. import SimpleITK as sitk  # For loading the dataset   
15. import glob  # For populating the list of files   
16. from scipy.ndimage import zoom  # For resizing   
17. import re  # For parsing the filenames (to know their modality)   
18. import random   
19.     
20. Load Data   
21. # Get a list of files for all modalities individually   
22. t1 = glob.glob('./original_data/*GG/*/*t1.nii.gz')   
23. t2 = glob.glob('./original_data/*GG/*/*t2.nii.gz')   
24. flair = glob.glob('./original_data/*GG/*/*flair.nii.gz')   
25. t1ce = glob.glob('./original_data/*GG/*/*t1ce.nii.gz')   
26. seg = glob.glob('./original_data/*GG/*/*seg.nii.gz')  # Ground Truth   
27. pat = re.compile('.*_(\w*)\.nii\.gz')   
28.    
29. data_paths_orig = [{   
30.     pat.findall(item)[0]:item   
31.     for item in items   
32. }   
33. for items in list(zip(t1, t2, t1ce, flair, seg))]   
34. np.size(data_paths_orig)   
35. NumScans = 180   
36. depthShrink = 7   
37. wShrink= 0   
38. hShrink= 0   
39. inputData = np.zeros((NumScans*4*(77-depthShrink), 240-2*wShrink, 240-

2*hShrink, 2), dtype='float32')   
40. outputData = np.zeros((NumScans*4*(77-depthShrink), 240-2*wShrink, 240-

2*hShrink), dtype='float32')   
41. i = 0   
42.    
43. for j in range(NumScans):   
44.     for k in (data_paths_orig[1]):   
45.         if k not in 'seg':   
46.             im_path1 = data_paths_orig[j][k]   
47.             img1 = sitk.ReadImage(im_path1)   
48.             arr1 = sitk.GetArrayFromImage(img1)   
49.             if(arr1.shape[0] != 155):   
50.                 print(arr1.shape)   
51.                 print(im_path1)   
52.                 continue   
53.             outputData[i:i+77-depthShrink:1] = arr1[1+depthShrink:155-

depthShrink:2, wShrink:240-wShrink, hShrink:240-hShrink]   
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54.             inputData[i:i+77-depthShrink:1,:,:,0] = arr1[0+depthShrink:154-
depthShrink:2, wShrink:240-wShrink, hShrink:240-hShrink]   

55.             inputData[i:i+77-depthShrink:1,:,:,1] = arr1[2+depthShrink:155-
depthShrink:2, wShrink:240-wShrink, hShrink:240-hShrink]   

56.             i += 77-depthShrink   
57.     print(j)   
58. inputData = np.expand_dims(inputData, axis=-1)   
59. outputData = np.expand_dims(outputData, axis=-1)   
60. Randomize Data   
61. random.Random(4).shuffle(inputData)   
62. random.Random(4).shuffle(outputData)   
63. Compile Model   
64. model = Interp_Model_Long.AutoEncoder((240-2*wShrink,240-2*hShrink, 2, 1))   
65. # model_opt = SGD(lr=0.005, decay=1-0.995, momentum=0.7, nesterov=False)   
66. model_opt = Adamax(lr=0.0001)   
67.    
68. model.compile(optimizer=model_opt, loss='mse', metrics=['msle'])   
69. %%capture cap --no-stderr   
70. model.summary()   
71. with open('output.txt', 'w') as f:   
72.     f.write(cap.stdout)   
73. Load Weights if restarting from interrupted training   
74. model.load_weights('C:/Users/Gavin Karr/Programming/masters_research/dev/networks/scanN

um180LongMod.hdf5')   
75. Callbacks   
76. modelchk = tensorflow.keras.callbacks.ModelCheckpoint('C:/Users/Gavin Karr/Programming/

masters_research/dev/networks/scanNum180LongMod.hdf5',   
77.                                       verbose=2,   
78.                                       save_best_only=True,    
79.                                       save_weights_only=False)   
80.    
81. tensorboard = tensorflow.keras.callbacks.TensorBoard(log_dir='logs',   
82.                                           histogram_freq=0,   
83.                                           write_graph=True,   
84.                                           write_images=True)   
85.    
86. csv_logger = tensorflow.keras.callbacks.CSVLogger('./logs/keras_180LongMod.csv',   
87.                                        append=True)   
88. Train Model   
89. hist = model.fit(x=inputData, y=outputData, batch_size=4, epochs=300, validation_split=

0.2, callbacks=[modelchk, tensorboard, csv_logger])   
90. # save learning curves data   
91. import pandas as pd   
92. learning_curves = pd.DataFrame()   
93. learning_curves['epoch'] = hist.epoch   
94. learning_curves['loss'] = hist.history['loss']   
95. learning_curves['val_loss'] = hist.history['val_loss']   
96.    
97. #learning_curves.to_csv('./RemovingNoiseFromMusic.csv')   
98. Utilities.PlotLearningCurves(learning_curves)   
99. Quick Test Results   
100. tesOut = np.zeros((240-2*wShrink, 240-2*hShrink), dtype='uint16')   
101. tesIn1 = np.zeros((240-2*wShrink, 240-2*hShrink, 2), dtype='uint16')   
102. sliceNum = 25   
103. patNum = 162   
104. modal = 't1'   
105.    
106. im_path1 = data_paths_orig[patNum][modal]   
107. img1 = sitk.ReadImage(im_path1)   
108. arr1 = sitk.GetArrayFromImage(img1)   
109.    
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110. tesOut = arr1[sliceNum, wShrink:240-wShrink, hShrink:240-hShrink]   
111. tesIn1[:,:,0] = arr1[sliceNum-3, wShrink:240-wShrink, hShrink:240-hShrink]   
112. tesIn1[:,:,1] = arr1[sliceNum+3, wShrink:240-wShrink, hShrink:240-hShrink]   
113. outD = np.expand_dims(tesIn1, axis=0)   
114. outD = np.expand_dims(outD, axis=-1)   
115. gtD = tesOut   
116.    
117. in1 = outD[0,:,:,0,0]   
118. in2 = outD[0,:,:,1,0]   
119.    
120. outT= model.predict(outD)   
121.    
122. import scipy.ndimage as ndimage   
123.    
124. # given 2 arrays arr1, arr2   
125. arr1 = tesIn1[:,:,0]   
126. arr2 = tesIn1[:,:,1]   
127.    
128. # rejoin arr1, arr2 into a single array of shape (2, 10, 10)   
129. arrn = np.r_['0,3', arr1, arr2]   
130.    
131. # define the grid coordinates where you want to interpolate   
132. X, Y = np.meshgrid(np.arange(240-2*wShrink), np.arange(240-2*wShrink))   
133. # 0.5 corresponds to half way between arr1 and arr2   
134. coordinates = np.ones((240-2*wShrink,240-2*hShrink))*0.5, X, Y   
135.    
136. # given arr interpolate at coordinates   
137. newarr = ndimage.map_coordinates(arrn, coordinates, order=2).T   
138.    
139.    
140. finIm = outT[0,:,:,0]   
141. # Plot new array   
142. fig, ax = plt.subplots(ncols=5)   
143. cmap = plt.get_cmap('Greys')   
144.    
145. vmin = np.min([in1.min(), finIm.min(), in2.min()])   
146. vmax = np.max([in1.max(), finIm.max(), in2.max()])   
147. ax[0].imshow(in1, interpolation='nearest', cmap=cmap, vmin=vmin, vmax=vmax)   
148. ax[1].imshow(newarr, interpolation='nearest', cmap=cmap, vmin=vmin, vmax=vmax)   
149. ax[2].imshow(finIm, interpolation='nearest', cmap=cmap, vmin=vmin, vmax=vmax)   
150. ax[3].imshow(gtD, interpolation='nearest', cmap=cmap, vmin=vmin, vmax=vmax)   
151. ax[4].imshow(in2, interpolation='nearest', cmap=cmap, vmin=vmin, vmax=vmax)   
152. ax[0].set_xlabel('Bottom Slice')   
153. ax[1].set_xlabel('Interpolated')   
154. ax[2].set_xlabel('Predicted')   
155. ax[3].set_xlabel('Ground Truth')   
156. ax[4].set_xlabel('Top Slice')   
157. plt.show()   
158. print("linear interp is:", Utilities.MSE(newarr, gtD))   
159. print("CNN predicted is:", Utilities.MSE(finIm, gtD))   
160. imNum = 1579   
161. outD = np.expand_dims(inputData[imNum], axis=0)   
162. gtD = outputData[imNum,:,:,0]   
163.    
164. in1 = outD[0,:,:,0,0]   
165. in2 = outD[0,:,:,1,0]   
166.    
167. outT= model.predict(outD)   
168.    
169. finIm = outT[0,:,:,0]   
170. # Plot new array   
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171. fig, ax = plt.subplots(ncols=4)   
172. cmap = plt.get_cmap('Greys')   
173.    
174. vmin = np.min([in1.min(), finIm.min(), in2.min()])   
175. vmax = np.max([in1.max(), finIm.max(), in2.max()])   
176. ax[0].imshow(in1, interpolation='nearest', cmap=cmap, vmin=vmin, vmax=vmax)   
177. ax[1].imshow(finIm, interpolation='nearest', cmap=cmap, vmin=vmin, vmax=vmax)   
178. ax[2].imshow(gtD, interpolation='nearest', cmap=cmap, vmin=vmin, vmax=vmax)   
179. ax[3].imshow(in2, interpolation='nearest', cmap=cmap, vmin=vmin, vmax=vmax)   
180. ax[0].set_xlabel('arr1')   
181. ax[1].set_xlabel('interpolated')   
182. ax[2].set_xlabel('Ground Truth')   
183. ax[3].set_xlabel('arr2')   
184. plt.show()   
185. Generate Model Summary   
186. model.summary()   
187. %%capture cap --no-stderr   
188. print(model.summary())   
189. Generate Model Graph   
190. from tensorflow.keras.utils import plot_model   
191. plot_model(model, to_file='model.png')   
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Appendix D: Test Neural Network Performance (Jupyter Notebook Format) 

 

1. Test_CNN   
2. Test Neural Net Performance¶   
3. In [ ]:   
4. import os   
5. os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'   
6. os.environ['CUDA_VISIBLE_DEVICES'] = '0'   
7. os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'   
8. import tensorflow.keras   
9. from tensorflow.keras import backend as K   
10. import numpy as np   
11. import matplotlib.pylab as plt   
12. from tensorflow.keras.optimizers import SGD, Adamax   
13. import Interp_Model_WBN_L   
14. import Interp_Model   
15. import Interp_Model_Long   
16.    
17. import Utilities   
18. import SimpleITK as sitk  # For loading the dataset   
19. import glob  # For populating the list of files   
20. from scipy.ndimage import zoom  # For resizing   
21. import re  # For parsing the filenames (to know their modality)   
22. import random   
23. In [ ]:   
24. import numpy as np   
25. def calculate_psnr(img1, img2, max_value=255):   
26.     """"Calculating peak signal-to-noise ratio (PSNR) between two images."""   
27.     mse = np.mean((np.array(img1, dtype=np.float32) - np.array(img2, dtype=np.float32))

 ** 2)   
28.     if mse == 0:   
29.         return 1000   
30.     return 20 * np.log10(max_value / (np.sqrt(mse)))   
31. Load Data¶   
32. In [ ]:   
33. # Get a list of files for all modalities individually   
34. t1 = glob.glob('./original_data/*GG/*/*t1.nii.gz')   
35. t2 = glob.glob('./original_data/*GG/*/*t2.nii.gz')   
36. flair = glob.glob('./original_data/*GG/*/*flair.nii.gz')   
37. t1ce = glob.glob('./original_data/*GG/*/*t1ce.nii.gz')   
38. seg = glob.glob('./original_data/*GG/*/*seg.nii.gz')  # Ground Truth   
39. In [ ]:   
40. pat = re.compile('.*_(\w*)\.nii\.gz')   
41.    
42. data_paths_orig = [{   
43.     pat.findall(item)[0]:item   
44.     for item in items   
45. }   
46. for items in list(zip(t1, t2, t1ce, flair, seg))]   
47. In [ ]:   
48. NumScans = 5   
49. depthShrink = 0   
50. wShrink= 0   
51. hShrink= 0   
52. In [ ]:   
53. inputData = np.zeros((NumScans*4*(77-depthShrink), 240-2*wShrink, 240-

2*hShrink, 2), dtype='uint16')   
54. outputData = np.zeros((NumScans*4*(77-depthShrink), 240-2*wShrink, 240-

2*hShrink), dtype='uint16')   
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55. In [ ]:   
56. i = 0   
57.    
58. for j in range(180,185):   
59.     for k in (data_paths_orig[1]):   
60.         if k not in 'seg':   
61.             im_path1 = data_paths_orig[j][k]   
62.             img1 = sitk.ReadImage(im_path1)   
63.             arr1 = sitk.GetArrayFromImage(img1)   
64.             if(arr1.shape[0] != 155):   
65.                 print(arr1.shape)   
66.                 print(im_path1)   
67.                 continue   
68.             outputData[i:i+77-depthShrink:1] = arr1[1+depthShrink:155-

depthShrink:2, wShrink:240-wShrink, hShrink:240-hShrink]   
69.             inputData[i:i+77-depthShrink:1,:,:,0] = arr1[0+depthShrink:154-

depthShrink:2, wShrink:240-wShrink, hShrink:240-hShrink]   
70.             inputData[i:i+77-depthShrink:1,:,:,1] = arr1[2+depthShrink:155-

depthShrink:2, wShrink:240-wShrink, hShrink:240-hShrink]   
71.             i += 77-depthShrink   
72.     print(j)   
73. In [ ]:   
74. inputData = np.expand_dims(inputData, axis=-1)   
75. outputData = np.expand_dims(outputData, axis=-1)   
76. Load and Run Model¶   
77. In [ ]:   
78. model = Interp_Model_Long.AutoEncoder((240-2*wShrink,240-2*hShrink, 2, 1))   
79. In [ ]:   
80. model.load_weights('./networks/scanNum180LongMod.hdf5')   
81. In [ ]:   
82. outT= model.predict(inputData, batch_size=20)   
83. Perform Linear Interpolation and Calculate MSE¶   
84. In [ ]:   
85. lin_interpMSE = 0   
86. CNN_interpMSE = 0   
87.    
88. for i in range(inputData.shape[0]):   
89.    # im_path1 = data_paths_orig[patNum][modal]   
90.     #img1 = sitk.ReadImage(im_path1)   
91.    # imArray = sitk.GetArrayFromImage(img1)   
92.     #for j in range(1, 154):   
93.     tesOut = np.zeros((240-2*wShrink, 240-2*hShrink), dtype='uint16')   
94.     tesIn1 = np.zeros((240-2*wShrink, 240-2*hShrink, 2), dtype='uint16')   
95.     #sliceNum = j   
96.     #patNum = i   
97.    # modal = 't1'   
98.    
99.    
100.     tesOut = outputData[i, wShrink:240-wShrink, hShrink:240-hShrink, 0]   
101.     tesIn1[:,:,0] = inputData[i, wShrink:240-wShrink, hShrink:240-

hShrink, 0, 0]   
102.     tesIn1[:,:,1] = inputData[i, wShrink:240-wShrink, hShrink:240-

hShrink, 1, 0]   
103.    
104.     outD = np.expand_dims(tesIn1, axis=0)   
105.     outD = np.expand_dims(outD, axis=-1)   
106.     gtD = tesOut   
107.    
108.     in1 = outD[0,:,:,0,0]   
109.     in2 = outD[0,:,:,1,0]   
110.    
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111.    
112.     import scipy.ndimage as ndimage   
113.    
114.     # given 2 arrays arr1, arr2   
115.     arr1 = tesIn1[:,:,0]   
116.     arr2 = tesIn1[:,:,1]   
117.    
118.     # rejoin arr1, arr2 into a single array of shape (2, 10, 10)   
119.     arrn = np.r_['0,3', arr1, arr2]   
120.    
121.     # define the grid coordinates where you want to interpolate   
122.     X, Y = np.meshgrid(np.arange(240-2*wShrink), np.arange(240-2*wShrink))   
123.     # 0.5 corresponds to half way between arr1 and arr2   
124.     coordinates = np.ones((240-2*wShrink,240-2*hShrink))*0.5, X, Y   
125.    
126.     # given arr interpolate at coordinates   
127.     newarr = ndimage.map_coordinates(arrn, coordinates, order=2).T   
128.     finIm = outT[i,:,:,0]   
129.    
130.     lin_interpMSE += Utilities.MSE(newarr, gtD)   
131.     CNN_interpMSE += Utilities.MSE(finIm, gtD)   
132.     if(i % 1000 == 0):   
133.         print(i)   
134. In [ ]:   
135. print("linear interp is:", lin_interpMSE)   
136. print("CNN predicted is:", CNN_interpMSE)   
137. Graphically Display Results¶   
138. In [ ]:   
139. i=860   
140. tesIn1 = np.zeros((240-2*wShrink, 240-2*hShrink, 2), dtype='uint16')   
141. tesIn1[:,:,0] = inputData[i, wShrink:240-wShrink, hShrink:240-hShrink, 0, 0]   
142. tesIn1[:,:,1] = inputData[i, wShrink:240-wShrink, hShrink:240-hShrink, 1, 0]   
143.    
144. outD = np.expand_dims(tesIn1, axis=0)   
145. outD = np.expand_dims(outD, axis=-1)   
146. gtD = tesOut   
147.    
148. in1 = outD[0,:,:,0,0]   
149. in2 = outD[0,:,:,1,0]   
150.    
151.    
152. import scipy.ndimage as ndimage   
153.    
154. # given 2 arrays arr1, arr2   
155. arr1 = tesIn1[:,:,0]   
156. arr2 = tesIn1[:,:,1]   
157.    
158. # rejoin arr1, arr2 into a single array of shape (2, 10, 10)   
159. arrn = np.r_['0,3', arr1, arr2]   
160.    
161. # define the grid coordinates where you want to interpolate   
162. X, Y = np.meshgrid(np.arange(240-2*wShrink), np.arange(240-2*wShrink))   
163. # 0.5 corresponds to half way between arr1 and arr2   
164. coordinates = np.ones((240-2*wShrink,240-2*hShrink))*0.5, X, Y   
165. newarr = ndimage.map_coordinates(arrn, coordinates, order=2).T   
166.    
167. fig, ax = plt.subplots(ncols=5, figsize=(18, 20))   
168. cmap = plt.get_cmap('Greys')   
169. for a in ax:   
170.     a.set_xticks([])   
171.     a.set_yticks([])   
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172.    
173.    
174. vmin = np.min([in1.min(), finIm.min(), in2.min()])   
175. vmax = np.max([in1.max(), finIm.max(), in2.max()])   
176. ax[0].imshow(inputData[i, wShrink:240-wShrink, hShrink:240-

hShrink, 0, 0], interpolation='nearest', cmap=cmap, vmin=vmin, vmax=vmax)   
177. ax[1].imshow(newarr, interpolation='nearest', cmap=cmap, vmin=vmin, vmax=vmax)   
178. ax[2].imshow(outT[i,:,:,0], interpolation='nearest', cmap=cmap, vmin=vmin, vmax=

vmax)   
179. ax[3].imshow(outputData[i, wShrink:240-wShrink, hShrink:240-

hShrink, 0], interpolation='nearest', cmap=cmap, vmin=vmin, vmax=vmax)   
180. #ax[3].imshow(newarr - outT[i,:,:,0], interpolation='nearest', cmap=cmap, vmin=v

min, vmax=vmax)   
181. ax[4].imshow(inputData[i, wShrink:240-wShrink, hShrink:240-

hShrink, 1, 0], interpolation='nearest', cmap=cmap, vmin=vmin, vmax=vmax)   
182. ax[0].set_xlabel('Bottom Slice')   
183. ax[1].set_xlabel('Interpolated')   
184. ax[2].set_xlabel('Predicted')   
185. ax[3].set_xlabel('Ground Truth')   
186. ax[4].set_xlabel('Top Slice')   
187. plt.show()   
188. Calculate PSNR¶   
189. In [ ]:   
190. lin_interpPSNR = 0   
191. CNN_interpPSNR = 0   
192.    
193. for i in range(inputData.shape[0]):   
194.    # im_path1 = data_paths_orig[patNum][modal]   
195.     #img1 = sitk.ReadImage(im_path1)   
196.    # imArray = sitk.GetArrayFromImage(img1)   
197.     #for j in range(1, 154):   
198.     tesOut = np.zeros((240-2*wShrink, 240-2*hShrink), dtype='uint16')   
199.     tesIn1 = np.zeros((240-2*wShrink, 240-2*hShrink, 2), dtype='uint16')   
200.     #sliceNum = j   
201.     #patNum = i   
202.    # modal = 't1'   
203.    
204.    
205.     tesOut = outputData[i, wShrink:240-wShrink, hShrink:240-hShrink, 0]   
206.     tesIn1[:,:,0] = inputData[i, wShrink:240-wShrink, hShrink:240-

hShrink, 0, 0]   
207.     tesIn1[:,:,1] = inputData[i, wShrink:240-wShrink, hShrink:240-

hShrink, 1, 0]   
208.    
209.     outD = np.expand_dims(tesIn1, axis=0)   
210.     outD = np.expand_dims(outD, axis=-1)   
211.     gtD = tesOut   
212.    
213.     in1 = outD[0,:,:,0,0]   
214.     in2 = outD[0,:,:,1,0]   
215.    
216.    
217.     import scipy.ndimage as ndimage   
218.    
219.     # given 2 arrays arr1, arr2   
220.     arr1 = tesIn1[:,:,0]   
221.     arr2 = tesIn1[:,:,1]   
222.    
223.     # rejoin arr1, arr2 into a single array of shape (2, 10, 10)   
224.     arrn = np.r_['0,3', arr1, arr2]   
225.    
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226.     # define the grid coordinates where you want to interpolate   
227.     X, Y = np.meshgrid(np.arange(240-2*wShrink), np.arange(240-2*wShrink))   
228.     # 0.5 corresponds to half way between arr1 and arr2   
229.     coordinates = np.ones((240-2*wShrink,240-2*hShrink))*0.5, X, Y   
230.    
231.     # given arr interpolate at coordinates   
232.     newarr = ndimage.map_coordinates(arrn, coordinates, order=2).T   
233.     finIm = outT[i,:,:,0]   
234.     ps1 = calculate_psnr(gtD, newarr, max_value=65535)   
235.     ps2 = calculate_psnr(gtD, finIm, max_value=65535)   
236.    
237.     if(ps1 < 1000 and ps1 > -100):   
238.         lin_interpPSNR+= ps1   
239.     if(ps2 < 1000 and ps2 > -100):   
240.         CNN_interpPSNR+= ps2   
241.     if(i % 1000 == 0):   
242.         print(i)   
243. In [ ]:   
244. print("linear interp PSNR is:", lin_interpPSNR/inputData.shape[0])   
245. print("CNN predicted PSNR is:", CNN_interpPSNR/inputData.shape[0])   
246. In [ ]:   
247.     
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