
Rose-Hulman Institute of Technology Rose-Hulman Institute of Technology 

Rose-Hulman Scholar Rose-Hulman Scholar 

Graduate Theses - Electrical and Computer 
Engineering Electrical and Computer Engineering 

Summer 8-2020 

Negative-Triangularity Configuration on EAST: Analysis of Negative-Triangularity Configuration on EAST: Analysis of 

engineering limitations on superconducting, D-shaped, target-engineering limitations on superconducting, D-shaped, target-

diverted plasmas diverted plasmas 

David A. Weldon 

Follow this and additional works at: https://scholar.rose-hulman.edu/dept_electrical 

 Part of the Electrical and Electronics Commons 

https://scholar.rose-hulman.edu/
https://scholar.rose-hulman.edu/dept_electrical
https://scholar.rose-hulman.edu/dept_electrical
https://scholar.rose-hulman.edu/electrical_engineering
https://scholar.rose-hulman.edu/dept_electrical?utm_source=scholar.rose-hulman.edu%2Fdept_electrical%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=scholar.rose-hulman.edu%2Fdept_electrical%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages


Negative-Triangularity Configuration on EAST:

Analysis of engineering limitations on superconducting, D-shaped, target-diverted plasmas

A thesis

Submitted to the Factulty

of

Rose-Hulman Institute of Technology

by

David A. Weldon

In Partial Fulfillment of the Requirements for the Degree

of

Masters of Science in Electrical Engineering

August 2020

©2020 David A. Weldon



Final Examination Report

ROSE-HULMAN INSTITUTE OF TECHNOLOGY

 Name  Graduate Major

Thesis Title ____________________________________________________  

Thesis Advisory Committee Department

Thesis Advisor:

______________________________________________________________ 

 EXAMINATION COMMITTEE:

 DATE OF EXAM:

 PASSED   ___________  FAILED  ___________

David Weldon Electrical Engineering

Clifford Grigg ECE

Robert Throne ECE

Edward Wheeler ECE

Scott Kirkpatrick PHOE

Negative-Triangularity Configuration on EAST: Analysis of Engineering Limitations on 

Superconducting, D-Shaped, Target-Diverted Plasma

August 21, 2020

        X



ABSTRACT

Weldon, David A.

M.S.E.E

Rose-Hulman Institute of Technology

August 2020

Negative-Triangularity Configuration on EAST: Analysis of engineering limitations on supercon-

ducting, D-shaped, target-diverted plasma

Thesis Advisor: Dr. Cliff Grigg

Thermonuclear fusion is so named because of the high temperature that the majority of the

fuel must maintain such that nuclei can overcome the electrostatic force, fuse, and produce energy.

However, the ions and electrons (plasma) are so hot that any material used to confine them would

be destroyed. To achieve confinement while maintaining the 50,000,000 K temperature needed for

self-sustaining fusion, magnetic confinement is needed. As of 2019, the tokamak is the leading

candidate for a practical fusion reactor.

In recent years, tokamak research has repeatedly shown that the edge magneto-hydrodynamic

stability is critical for handling the power to the walls and the divertor plates which is now and

will most likely continue to be a limiting factor in the International Thermonuclear Experimental

Reactor (ITER) and the DEMOnstration Power Station (DEMO). Recent experiments at Tokamak à

Configuration Variable (TCV) and DIII-D have shown that a Negative-Triangularity Configuration

(NTC) has a larger power handling area on the Low-Field-Side (LFS) divertor target plate and

improved edge stability. However, there have been relatively few NTC experiments performed so

far and none of them have been performed on a superconducting tokamak with shaping capabilities

similar to ITER. To expand upon the previous experiments on TCV and DIII-D this thesis addresses

an initial test of the NTC capability of the Experimental Advanced Superconducting Tokamak

(EAST) which has achieved a > 6 s ohmic discharge Upper Singular Null (USN) target-diverted

plasma with a lower triangularity of X! ≤ −0.09.
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Chapter 1

Introduction

1.1 The future of world energy consumption

1.1.1 Current energy consumption

The human population and its technologies continue to grow at an astounding rate. The rapid

population growth in concert with the ever-increasing standard of living, especially in developing

countries, now presents humanity with one of its greatest challenges to date: sustainable energy

production. Worldwide electricity consumption has grown from 10.9 petawatt-hours (1 PWh =

1015 Wh) in 1990 to more than 23.7 PWh in 2017 [1] and is expected to continue on this trend for

the foreseeable future. Traditionally, fossil fuels i.e. coal, oil, and natural gas have been the primary

energy source to meet the ever-growing energy demand. However, the combustion of these fuels

come at ever-growing costs: air pollution, diminishing fuel reserves, harmful mining practices, and

increasingly likely an irrevocable negative impact on the global climate. An approach to mitigating

these costs is to replace fossil fuels with renewable energy sources such as wind and solar, and

while they do show promise for power generation many questions remain unanswered concerning

efficiency, storage, regional availability, and reliability for producing sufficient baseload electricity.

Another alternative is nuclear fission which produces energy by splitting the large nuclei of

heavy elements into smaller, lighter elements. In 2017 nuclear fission provided 2.6 PWh of energy

1
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worldwide [1] and is expected to grow. In comparison to conventional fossil fuels, the energy

density of a nuclear reaction is staggering: the fission of U-235 releases 8e13 J/kg while a typical

chemical reaction only yields 5 × 107 J/kg. The incredible energy density of fission reactors

makes them an attractive alternative to fossil fuel power plants. However, fission is not without

its negative aspects as well. Three Mile Island (1979), Chernobyl (1986), Tokaimura (1999), and

most recently Fukushima Daiichi (2011) have all been major nuclear disasters that released large

amounts of radioactive materials despite the advances made in safety technology. On top of the

concerns of future disasters, there is the question of how to handle nuclear waste which is highly

radioactive with a half-life on the order of 1 million years. The proposals for deep underground

storage or developing and using fast-fission reactors for disposal have yet to find favor with all those

concerned, leaving the waste to accumulate at its respective nuclear power plant in most cases.

Another important consideration is that of nuclear proliferation. The technology used to enrich

naturally occurring uranium (∼ 0.7% U-235) to reactor-grade (∼ 5% U-235) is, in principle, the

same as that used for enriching uranium to weapons-grade (∼ 85% U-235). To encourage the world

to use fission energy as the main replacement for fossil fuels may also encourage an unacceptable

risk of nuclear weapons proliferation.

1.1.2 Fusion energy

Since 1942, when a discussion with Enrico Fermi prompted Edward Teller to perform the first

investigation into fusing two deuterium nuclei, the dream of nuclear fusion producing clean, cheap

energy has driven thousands of man-years of research. When realized, fusion power will supply

much of the world’s energy demand without the severe downsides of the previously discussed energy

sources. In contrast to fission, fusion produces energy by taking light elements with small nuclei

and combines them to form a larger, heavier nucleus. The best example of this is the sun, which is

essentially an ongoing fusion reaction producing approximately 4×1026 watts of continuous power.

The particular breed of fusion that the sun utilizes is a simple proton-proton reaction which is not

particularly efficient, at least among fusion reactions, even in the most active regions of the sun the
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power density is only about 270 W/m3 [2]. The sun also relies on its enormous mass (∼ 2 × 1030

kg) which creates enough gravity to sufficiently confine the protons to keep the reaction going.

This proton-proton reaction and gravitational confinement are obviously not suitable for terrestrial

fusion reactors. Fortunately, the proton-proton reaction is not the only reaction available to us on

Earth, not only do others exist, but they are more efficient as well. The most promising of which is

the deuterium (D, hydrogen with one neutron) and tritium (T, hydrogen with two neutrons) reaction:

2
1D + 3

1T −−−→ 4
2He + 1

0n + 17.6 MeV (1.1)

This reaction has an energy density nearly three times that of the U-235 reaction, yielding 3× 1014

J/kg. To put this into power generation numbers, about 40 kg of deuterium and 60 kg of tritium

would supply a 1 GW (thermal) fusion power plant with 1 year of fuel. While deuterium occurs

naturally it is only at a concentration of 0.02% of all hydrogen atoms on earth, however that is

still a nearly unlimited supply when multiplied by the billions of cubic kilometers of water in the

world’s oceans. Tritium, on the other hand, does not occur naturally in any usable concentrations

and so it must be produced as needed as its half-life is only 12.32 years via beta decays yielding

He-3 [3]. The most promising method of producing tritium at the moment is breeding from Li-6

using neutron activation. Li-6 is a naturally occurring isotope of lithium and is just 7.4% of mined

Li but given that there are an estimated 230 billion tones of Li in the Earth’s crust and oceans, Li-6

is virtually unlimited [4]. A breeding-blanket has been proposed in many fusion reactor designs

which would require a layer of Li-6 in the reactor’s vacuum vessel that would be activated by the fast

neutrons produced in a deuterium-tritium reaction. Therefore, the fuel supply for reactors utilizing

deuterium-tritium fusion is practically unlimited. Furthermore, the relative cost of deuterium and

tritium is low compared to the amount of energy they can produce, making fusion reactors especially

promising for producing baseline power on a large scale.

If these selling points were not enough, the deuterium-tritium reaction does not emit any

greenhouse gases, air pollutants, or toxic chemicals. The main "waste" product is helium which can
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be easily captured for industrial use. Unlike fission reactions, there is no risk of a meltdown because

runaway fusion reactions are impossible, since the reaction abruptly ends once ideal conditions are

disrupted. However, the fast neutrons produced from the deuterium-tritium reaction will activate

the surrounding materials over time and will then need to be handled as radioactive waste once they

have reached the end of their life-cycle; that being said, these activated materials have a half-life

of around 50 years at most so that advanced, long-term storage is not necessary. Finally, the

technology used in a fusion reactor is entirely unrelated to the technology needed for making fusion

weapons. This unfortunately does not mean proliferation is completely negated. Fusion reactors

using the deuterium-tritium reaction produce high energy neutron beams that could be used for the

production of weapons-grade plutonium-239 from the very abundant uranium-238 [5]. This has yet

to be a significant consideration, however, since a scheme for harnessing these neutron beams has

not been fully designed, let alone tested or implemented. Furthermore, there are currently simpler

and more efficient technologies for plutonium production. Notwithstanding, this is still something

to be considered in a future where fusion plays a major role in energy production.

While the pros and cons discussed above may still make fusion sound like a relatively good

energy source, it is not without its technical issues: the prohibitive cost of a reactor and extreme

difficulty of creating a net-positive reaction. When in a plasma state, both deuterium and tritium

have a +1 electric charge, thus a large electrostatic force acts as a barrier to their fusion. By random

thermal motion at room temperature, the fusion reaction rate is nearly non-existent and only

increases to a usable level when the temperature exceeds 120 million řC. At this high temperature,

the deuterium and tritium nuclei have sufficient energy to overcome the Coulomb force to get close

enough together for the quantum tunneling effect via the strong nuclear force to bind them together.

As seen in Figure 1.1 the temperature needs to reach 10 keV; it is best to use the convention in

plasma physics which is to express temperatures in electron-volts. This energy is equivalent to

the temperature in řC mentioned above. Surprisingly enough, this is several times hotter than the

core of the sun and is achievable in both magnetic and inertial confinement fusion on Earth. This

extreme temperature is magnitudes hotter than any substance available can withstand which is why
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the aforementioned confinement methods are used to keep the plasma contained. These extreme

temperatures reduce all materials to their constituent elements, the nuclei of which are also stripped

of their electrons leaving a mix of positively-charged ions and negatively-charged electrons that

behave similarly to a quasi-neutral, electrically conductive gas. For the extent of this thesis, this

will be the definition of plasma, the fourth state of matter.

1.1.3 The triple product

Confinement of the plasma does not just mean that the particles are contained, it also means that

the energy is contained as well. Fusion reactions have been demonstrated in laboratory conditions

since Mark Oliphant first accomplished the fusion of hydrogen isotopes in 1932. However, these

types of fusion reactions consume far more energy than they produce. Fusion is said to reach

ignition when the energy from the reaction keeps the fuel energetic enough to continue the fusion

reaction, roughly speaking. The conditions necessary for ignition are different for each fusion

device so to have a comparison of their conditions, a metric of some sort is needed. John Lawson

first wrote about the minimum requirements for plasma electron density, =4, and the plasma energy

confinement time, g� , and was later expanded upon to include the plasma temperature, ) , together

known as the triple product though it is still commonly called the Lawson Criterion.

For the most common reaction of deuterium and tritium a brief derivation is given. The thermal

energy density (the energy per volume) , in the plasma is

, =
3
2
(=� + =) + =4) :�) (1.2)

where =� is the number density of the deuterium ions, =) is the number density of the tritium ions,

=4 is the number density of the electrons, :� is the Boltzmann constant, and ) is the temperature

in Kelvin. Note, for the remainder of Section 1.1.3 ) will refer to temperatures in Kelvin unless

otherwise stated. Assuming there is an equal numbers of neutral deuterium and tritium atoms to
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Figure 1.1: Volumetric reactions rates of D-T, D-D, and D-He3 as a function of plasma temperature,
where f is the ion cross-section and E is the ion velocity, and the fusion reaction rate is given as
〈fE〉 is averaged over a Maxwellian distribution [6].
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start with, then

=� = =) =
=4

2
(1.3)

and by substituting = = =4, this simplifies Equation (1.2) to

, = 3=:�). (1.4)

The energy balance of any confinement scheme then becomes

¤, = %′
5 DB + %8= − %;>BB (1.5)

where %′
5 DB

is the fraction of fusion power density that remains in the plasma system, %8= is the

power inject into the plasma system, and %;>BB represents all the power losses of the system.

The power loss can be attributed to two main causes: particle loss and brems-strahlung radiation.

The particle losses also carry with them a large amount of the thermal energy of the plasma and

are a major consideration. The bremsstrahlung radiation occurs when energetic electrons interact

with other particles in the plasma and decelerate. In general, this can be given by

%� = 1.69 × 10−38=2/2
8 :�)

1
2 (1.6)

where %� is the power loss due to bremsstrahlung radiation and /8 is the ion charge which for all

deuterium-tritium reaction is 1.

The nuclear fusion reaction produces power density as a function of the ion density and the

plasma temperature itself. If the temperature is taken to be the thermal motion of the ions then a

plasma at a higher temperature will have ions with enough energy to overcome the Coulomb force

more easily and result in more reactions. Similarly, if the density of the plasma is higher then there

will be a greater probability of a reaction occurring for a given time. Thus the reaction rate '�) is

given by

'�) = =�=) 〈fE〉 =
1
4
=2〈fE〉 (1.7)
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where f is the ion cross-section and E is the ion velocity, and the fusion reaction rate is given as

〈fE〉 is averaged over a Maxwellian distribution. The dependence of the reaction rate on the ion

temperature for various reactions is shown in Figure 1.1.

To calculate %′
5 DB

given in Equation (1.5) it is first necessary to calculate % 5 DB which is merely

the reaction rate in Equation (1.7) multiplied by the energy per reaction, � .

% 5 DB = '�)� =
1
4
=2〈fE〉� (1.8)

which represents all 17.6 MeV of energy produced per reaction. However, the 14.1 MeV neutron,

being a neutral particle, is not contained and therefore does not contribute to the plasma heating.

Only the 3.5 MeV alpha particle is expected to remain and add energy to the system. Therefore, �′

represents the energy of the alpha particle and %′
5 DB

which represents the power density added to

the plasma system from the alpha particle given by

%′
5 DB = '�)�

′ =
1
4
=2〈fE〉�′. (1.9)

This brings us back to Equation (1.5): if %′
5 DB

+ %8= > %;>BB then the total energy in the plasma

system increases, if %′
5 DB

+ %8= < %;>BB then the total energy decreases, and if they are equal then

the energy of the plasma system is constant. With this in mind, let the energy confinement time be

g� , and the amplification factor be &, also called the Q-factor. The energy confinement time is

then defined as

g� =
,

%;>BB

(1.10)

and the Q-factor is defined as

& =
% 5 DB

%8=

. (1.11)

If the power production of the nuclear fusion reaction is equal to the power injected into the plasma

then & = 1 and this is referred to as the break-even condition. In the case where the fusion reaction

produces so much energy that no power needs to be injected into the plasma then & = ∞ and is
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referred to as the ignition condition. In this condition %8= = 0 and the nuclear fusion reaction alone

is enough to sustain the plasma energy. The highest Q-factor recorded has been obtained by the

Joint European Torus (JET) using a deuterium-tritium fuel in 1997 with & = 0.67. It should be

noted that this is the Q-factor as determined strictly by the power entering and leaving the plasma.

The energy used in all the systems necessary to maintain the plasma would be used to calculate

the engineering break-even condition but such a calculation is dependent on the specifics of each

device and is seldom referenced. However, knowing that all the supporting systems i.e. cryogenic

cooling, control systems, magnetic coils, power generation systems, etc. will eventually need to be

supported by the energy harvested from the fusion reaction means that in any real reactor would

need & ≥ 30. Currently, the International Thermonuclear Experimental Reactor (ITER) is under

construction and is expected to achieve & ≥ 10.

The conditions necessary for a & = 1 or & = ∞ state are not easily compared from one

device to another. High density and low temperature in one device might be better than the higher

temperature but lower confinement time in another device. For that reason, the Lawson Criterion

is used. Assuming the plasma energy remains constant, ¤, = 0, then it is possible to recalculate

Equation (1.5) using the following relationships

%;>BB =
,

g�

%8= =
% 5 DB

&

%′
5 DB =

�′

�
% 5 DB

to get
,

g�
= % 5 DB

(
�′

�
+

1
&

)
. (1.12)

Using Equations Equation (1.2) and Equation (1.8) it is now possible to write Equation (1.12) as

=g� =
12:�)

�

(
� ′
�

+ 1
&

)
〈fE〉

(1.13)
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This is the general expression for the Lawson Criterion. However, for the case of deuterium-tritium

ignition the expression becomes

=g� ≥ 12:�)
�′〈fE〉 (1.14)

and is shown graphically in Figure 1.2a. Using the minimum of the deuterium-tritium curve in

this graph to find the temperature ) = 25 keV (which is approximately the minimum), the Lawson

Criterion becomes =g� ' 1.7 × 1020 m−3 s.

As mentioned before, the two main confinement methods are inertial and magnetic. Here it is

easy to see a major difference between the two: in inertial confinement, the energy confinement

time is quite small (10 ps ≤ g� ≤ 100 ps) and the density is quite high (∼ 1031 m−3, more than

three orders of magnitude greater than the density of solid hydrogen); conversely, in magnetic

confinement, densities are smaller (∼ 1020 m−3, significantly less than air density), so the energy

confinement time has to be larger (∼ 1 s). This gives good reasoning for using the Lawson Criterion

as a figure of merit for different machines. However, the temperature ranges of the various fusion

devices can be quite different so an extension of the Lawson Criterion is given by the triple product

which includes the temperature of the plasma, shown in Figure 1.2b.

=)g� ≥ 12:�)2

�′〈fE〉 (1.15)

The maximum attainable plasma pressure ? is a constant across the different confinement methods,

% 5 DB ∝ ?2〈fE〉/)2. Therefore, the maximum fusion power attainable, regardless of the confinement

method or machine, is temperature ) where 〈fE〉/)2 is a maximum. Again, using Figure 1.2b

to find the minimum of the deuterium-tritium curve gives a temperature ) = 14 keV (which is

approximately the minimum), the triple product then is =)g� ' 3 × 1021 keV m−3 s. To aid in

understanding just how various devices have performed in this regard, Figure 1.3a shows the triple

products achieved to date.

To give an idea of how the confinement has progressed over time, Figure 1.3b shows the same

achievements as Figure 1.3a but plotted against time so that the progress can be compared to
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(a) The Lawson Criterion for three common nuclear fusion reactions.

(b) The triple product for three common nuclear fusion reactions.

Figure 1.2: A comparison between the Lawson Criterion and the triple product. By Dstrozzi - Own
work This plot was created with Matplotlib., CC BY-SA 3.0, https://commons.wikimedia.
org/w/index.php?curid=12153588.
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(a) The triple products achieved by various magnetic confinement devices from around the world. By Alf
Köhn-Seeman, CC BY-SA 4.0

(b) Progress in plasma confinement performance compared to that of other advanced technologies, https:
//www.iter.org/newsline/53/1589

Figure 1.3: The achievements and progress of plasma confinement from around the world
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Moore’s Law and the achievements of accelerators.

Now that an understanding of the basic criterion needed for fusion energy to be achieved has

been established, the next section will focus on the magnetic confinement method. While inertial

confinement is still being researched, the fusion community has more or less reached the consensus

that magnetic confinement is the more feasible of the two methods for the near future.

1.2 Magnetic confinement

For nearly 90 years now, thousands of researchers have poured millions of hours into developing,

refining, and evaluating various methods of using magnetic fields to confine hot plasma well enough

to achieve a sustained fusion reaction. Magnetic fields have been relentlessly researched in the

field of fusion confinement because of the Lorentz force ®� = @ ®� + @®E × ®� which tends to keep

charged particles trapped in gyroscopic orbits around a particular field-line thus providing a way

for the ions to remain very energetic without coming into contact with other materials. This force

also results in a characteristic length called the gyro- or Larmor radius expressed as:

A! =
<E⊥��@�� � (1.16)

where A! is the Larmor radius, < is the mass of the particle, E⊥ is the velocity of the particle

perpendicular to the magnetic field,
��@�� is the charge of the particle (the sign of the charge is ignored

for the radius but does impact the direction of rotation), and � is the magnitude of the magnetic

field.

1.2.1 Magnetic mirrors

To make use of this force one might imagine a solenoid consisting of a series of coils, the basic

concept of which is shown in Figure 1.4. The book Introduction to Plasma Physics and Controlled

Fusion by Chen [8] is an excellent resource and gives a much more detailed explanation of how a
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Figure 1.4: With strong magnetic coils on each end, the magnetic mirror confines particles by
reflecting them with high magnetic fields. Edited from [7].
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magnetic mirror works, but in short it is all due to the dipole moment of the electric current loop

that is created any time a charged particle gyrates. This can be expressed as

` =
1
2<E2

⊥
�

(1.17)

where ` is the dipole moment, < is the mass of the particle, E⊥ is the velocity of the particle that

is perpendicular to the magnetic field, and � is the magnitude of the magnetic field. This dipole

moment is conserved for the time and length scales that are considered in magnetic confinement

fusion physics and is referred to as the first adiabatic invariant. The other invariant is well known

as it is used in many physical systems: energy.

E = @q +
1
2
<E2

‖ +
1
2
<E2

⊥ (1.18)

For simplicity, assume the electric potential energy expressed by @q is zero because the electric

field is assumed to be zero. While the derivation is not detailed here, one can imagine that if the

dipole moment is conserved and the total energy is conserved, then when the particle drifts along

the field line to either end of the magnetic bottle depicted in Figure 1.4 � increases, then to keep `

constant, E⊥ must also increase. But the energy for this increase must come from somewhere, and

since this is assumed to be a closed system, that somewhere happens to be the energy in E‖ . Thus,

this magnetic bottle can and does do a better job of keeping the particles confined than a uniform

magnetic field would. Even so, some particles will escape and so the energy and the particles of

the bottle are not sufficiently confined for fusion to occur. How to solve this confinement issue?

What if the two ends of the bottle were connected so as to bend the solenoid around into a doughnut

shape? Then the escaped particles will just go around in a circle instead of actually escaping. This

is exactly the concept that Andrei Sakharov sent to the USSR Academy of Sciences in 1950.

However, this solution adds a complication: the magnetic field is no longer cross-sectionally

uniform. This seemingly simple problem with the torus shape has led to more than 70 years of

research into solving it. When the coils are all arranged in a straight line the magnetic field can be
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very close to uniform throughout the cross-section of the solenoid and so the particles do not drift

except along their respective field lines. This is not the case when the solenoid is wrapped around

to itself to form the torus. In this geometry, the coils of the solenoid (referred to as the toroidal

field coils) will be denser on the inside of the torus than the outside of the torus which results in a

high field side and low field side, respectively. This gradient in the magnetic field is responsible for

the characteristic ∇H drift which is present in all toroidal configurations and is shown qualitatively

in Figure 1.5 Here, the magnetic field vector H is coming out of the page on the z-axis while the

Figure 1.5: Gradient-B drift taken from [8]

strength of the magnetic field increases up the page along the y-axis. This causes the ions and

electrons to have a small Larmor radius at the top of their orbit and a larger Larmor radius a the

bottom of their orbit causing a net drift in a direction that is perpendicular to both H and ∇H but

because their signs are opposite, their direction of rotation is also opposite which means their drift

directions are opposite as well. This causes yet another issue as the charge separation will cause a

non-zero K field which will also induce a drift on the particles. This ∇H is also accompanied by a

drift due to the curvature of the magnetic field. As the particles drift along the magnetic field lines

they must experience a centrifugal force outward as shown in Figure 1.6. This force also causes a

drift that is perpendicular to the force and the magnetic field. Unfortunately, this drift is always in

the same direction as the ∇H drift, exacerbating the problem. What started as a simple solution to

the problems of the magnetic bottle has clearly spawn like hydra into a myriad of other problems

with particle confinement.
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Figure 1.6: Curvature drift taken from [8]
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1.2.2 Tokamaks

There are two main branches of magnetically confined plasmas: the stellarator and the tokamak,

Figure 1.7. Of the magnetic confinement schemes, the most well researched is the tokamak which

is a Russian abbreviation for "toroidal chamber with magnetic coils" (from the transliteration of

the Russian sentence toroidal’naya kamera s aksial’nym magnitnym polem or toroidal chamber

with an axial magnetic field) and is displayed in an artistic rendering in Figure 1.7b. However,

the stellarator design is gaining in popularity thanks to the great advances made in computer

design capabilities and material science. This is because the geometry for the helical magnetic

field coils shown in Figure 1.7a is non-trivial, to say the least, but with computers to perform the

incredibly difficult calculations necessary for such complex geometry, this is less of an obstacle.

In the same way, winding a continuous helical magnetic field coil around the vacuum vessel would

be extremely difficult during the construction of a stellarator. A solution is to fabricate the coil

in sections and then connect them in place. Previously this posed a problem as the connections

would have unacceptably high resistivity. The heat dissipation would put a limit on the current and

consequently the magnetic fields. Fortunately, material science has advanced to the point that these

connections could be superconducting and heat dissipation can be overcome. Despite these recent

advances, however, the tokamak design is still the more mature of the two and is the focus of this

research though future applications to the stellarator are not improbable.

As seen in Figure 1.7b, the tokamak is a solenoid with its ends connected thus making the torus

shape which results in the magnetic field created by the solenoid to be continuous around the torus

which is referred to as the toroidal magnetic field in the figure. When the solenoid is closed in

the torus shape, the coils of the solenoid are referred to as the toroidal magnetic field coils in the

figure (also referred to as the Toroidal Field or TF coils). However, the toroidal field alone is not

enough to keep the plasma stable because of the inherent drifts as discussed in Section 1.2.1. To

combat this inherent instability, a poloidal magnetic field as labeled in the figure (also referred to

as the Poloidal Field, PF), is introduced via a plasma current that flows in the toroidal direction.

To induce this plasma current, typically an inner poloidal magnetic field coil is introduced in the

Chapter 1 David Weldon David Weldon



Negative-Triangularity Configuration on EAST Negative-Triangularity Configuration on EAST

(a) Artistic rendering of a stellarator

(b) Artistic rendering of a tokamak

Figure 1.7: A comparison between the basic design concepts of a stellarator and a tokamak, taken
from [9]
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center of the torus (through the doughnut hole) that acts as the primary side of a transformer and is

referred to as the central solenoid. While there are other schemes to drive the current in the plasma

such as neutral beams, a phenomenon known as bootstrap-current, and EM wave interactions, this

transformer method is still the primary source of plasma current in most tokamaks. The outer

poloidal magnetic field coils can also be used to drive the plasma current, but are most often used

for plasma shaping, control, and stability. This, of course, leads to an inherent pulsed operation of

the tokamak as no transformer can have a continuously increasing current and running a sinusoidal

waveform through the central solenoid would cause the plasma to die at each peak or trough of the

input current in large plasmas and therefore a near-total confinement loss. The superposition of

the toroidal and poloidal magnetic fields causes the resulting field lines to curve around the torus

in a helical path, shown in Figure 1.7b as the twisted magnetic field. These helical field lines of the

same flux create surfaces that are nested something like the layers of an onion and are referred to

as flux surfaces, in the figure only a single representative surface is shown. While this scheme is

effective in creating quasi-stable plasmas, it is not generally sufficient for shaping and controlling

the plasma. So, as stated above, additional outer poloidal magnetic field coils referred to as the

poloidal field coils (PF coils) are added both inside and outside the vacuum vessel in which the

plasma is produced.

The nested flux surfaces discussed above are generally able to contain a plasma ion for 0.1

- 1.0 seconds [10], which is far from sufficient for fusion energy production as discussed in

Section 1.1.3. Diffusion, drift, and turbulence in the plasma cause the energetic ions to escape

beyond the Last Closed Flux Surface (LCFS) and eventually hit a Plasma Facing Component (PFC)

while tracing an open field line (a magnetic field line that passes through a PFC). Typically, the

ions that escape in this way are not as energetic as those still trapped in the center of the plasma,

but they still have temperatures on the order of hundreds of eV. This not only damages the PFCs

but also causes substantial amounts of energy loss from the plasma. This leaves ample room for a

plethora of schemes for improving plasma confinement. This section builds upon the explanation

in Section 1.1.3 of plasma energy confinement time, g� , and narrows it to mean confining energy
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and particles within the LCFS of the plasma. In general, anything outside the LCFS of the plasma

is considered to not be in the plasma system insofar as the energy balance is concerned. Figure 1.8

shows the LCFS and the vacuum vessel in 2D and 3D for the Experimental Advanced Super

Conducting Tokamak (EAST), the main tokamak of this work.

Figure 1.8: The geometry of the EAST device: the 2D view in the poloidal plane is on the left and
the 3D view of one half of the tokamak is one the right. PF represents the number of Poloidal Field
Coils while TF refers to the number of Toroidal Field coils. [11]

Because the temperature, pressure, and density are not uniform throughout the plasma, various

kinds of transport move energy and particles out of the plasma. Most of these transport methods

are due to turbulence, which is the same turbulence seen in ordinary fluid hydrodynamics. This

violent and chaotic motion of the plasma can cause instabilities in the plasma that can increase

radiation losses, eject particles and energy to the Scrape-Off Layer (SOL), and eventually out of

the plasma, or cause magnetic field line disconnection. The last of which is the most violent and

energetic of the three transport modes and can easily release enough energy from the plasma to

damage the vacuum vessel and cause the plasma to cool to the point that it is lost. The specifics of

each transport mode will not be discussed in this thesis, only note that non-homogeneity leads to
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instabilities which lead to transport [8].

1.2.3 Tokamak geometry

Before going deeper into tokamak physics, it is best to introduce some more torus and tokamak

geometry. Figure 1.9 shows the / , i, and o, directions. These are the coordinates most commonly

used in toroidal geometries. Sometimes Z will be used interchangeably with i depending upon the

author. As shown in the figure, / is the vertical direction, i is the toroidal direction, and o is the

poloidal direction. ' is the major radius coordinate of the torus, '0 is the distance to the geometric

center of the poloidal cross-section, 0 is the minor radius, and A is the minor radius coordinate. In

general, tokamaks are considered to be toroidally symmetric. That is to say, the plasma parameters

are not functions of i. This, however, is not true for stellarators, though they do have toroidal

periodicity.

Figure 1.9: The geometry of a torus with a circular cross-section. This is also the geometry of the
most basic stellarator or tokamak plasma. [12]

Figure 1.9 shows the most basic shape of a plasma in a tokamak. This is from the first fusion

reactor designs from the 1950s mostly because they were easier to design and understand. In the
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1960s, the inner poloidal magnetic field coils, shown in Figure 1.7b, were used to create the plasma

current and poloidal magnetic fields to suppress instabilities and control the plasma position more

precisely. By the 1980s researchers at several devices had demonstrated that the outer poloidal

magnetic field coils in Figure 1.7b could make the twisted magnetic lines not just helical, but

also non-symmetric. In general, a non-symmetric plasma is referred to as a shaped plasma and

as research continued greater and greater advances in confinement and stability were made using

highly shaped plasma [6].

This shaping eventually led to the diverted plasma as opposed to a "limited plasma". A limited

plasma has its LCFS touching the limiter (a protrusion from the vacuum vessel wall into the plasma

area to prevent the plasma from coming into contact with more sensitive parts of the wall and

to fix the plasma potential, temperature, and position) while a diverted plasma has a separatrix

and an X-point in the magnetic field allowing the LCFS to be aimed at specific divertor plates

designed to handle the energy of the particles traveling on the incident field lines. This is better

understood by looking at Figures Figure 1.8 and Figure 1.10; the separatrix is the transition region

from closed field lines to open field lines. Inside of the separatrix is the confined plasma and

outside the separatrix is the SOL. By changing the current in one or more of the PF coils, one

or more X-points can be created. An X-point is any place where the magnitude of the poloidal

magnetic field becomes null. Therefore, the separatrix is the magnetic flux surface that intersects

an X-point and since any magnetic flux surface that is outside this separatrix is not confined (i.e.,

open magnetic field lines), the separatrix defines the LCFS. In short, limited and diverted plasmas

have an LCFS but only diverted plasmas have a separatrix, for this thesis. In limited plasmas,

particles that escape the LCFS merely follow the field line until they strike an object which could

potentially damage diagnostic instruments or erode the vacuum vessel. But in diverted plasmas, the

X-point and separatrix cause the plasma edge to decouple from the limiter thus giving the escaped

particles a preferred path and an established area to strike. This area is commonly known as the

divertor target plate or divertor target [6].

Shaping a plasma naturally calls for a way to characterize the shape, thus two new parameters
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Figure 1.10: The geometry of a shaped plasma. Modified from [13]Chapter 1 David Weldon David Weldon
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are introduced: elongation and triangularity. Elongation is a ratio of the vertical dimension of the

plasma to the horizontal dimension of the plasma, formally calculated as ^ = 1/0 where 1 is the

height of the plasma above the geometric mid-plane of the torus. The triangularity is defined by

X* =
(
'64> − 'D??4A

)
0

(1.19)

X! =
(
'64> − ';>F4A

)
0

(1.20)

Where '64> is the radius to the geometric center of the plasma, 'D??4A and ';>F4A are the radii

to the vertical maximum and minimum of the LCFS, respectively, and finally, X* and X! are the

upper and lower triangularities, respectively. Note that in Figure 1.10 the vertical minimum is also

the X-point; this is not always the case that the X-point is a vertical extreme, but is most often the

case. In general, the greater the elongation, the more difficult it is to control the vertical stability

of the plasma [6]. Finally, the triangularity of the plasma plays a significant role in the stability

and confinement of the plasma. This improvement is so great that nearly all large tokamaks and

stellarators use a D-shape plasma as a standard. Note that in Equation (1.19) and Equation (1.20)

if the 'D??4A/;>F4A > '64> then the triangularity could be negative. If both are negative, then the

plasma would have something of a reversed D-shape [6]. The remainder of this thesis will address

a revived area of interest in regards to plasma shape: the negative-triangularity configuration.

1.2.4 Negative-triangularity

As previously stated, all tokamak experiments have only achieved pulsed operation, however,

there is significant research being done in plasma current driving techniques [14] as well as in

an intriguing phenomenon known as bootstrap-current [15]. While it now seems that the current

drive challenge of continuous operation will be overcome, this is not the only challenge facing

continuous operation. In recent years, tokamak research has repeatedly shown that the plasma edge

(that is the layer closest to and including the LCFS) magneto-hydrodynamic stability is critical for

handling the power to the vacuum vessel walls and the divertor target plates which is now, and will
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most likely continue to be, a limiting factor in the ITER and the DEMOnstration Power Station

(DEMO). The heat flux is not only critical during Edge Localized Mode (ELM) energy emission

(a type of violent transport caused by turbulence that can be mitigated to the point that they do

not terminate the plasma) but also between ELM emissions. Because the SOL heat channel is

so narrow, the divertor target plate must sustain a very high steady-state heat flux on a relatively

small area. Both the electron conductive heat flux and the ion convective heat flux are quite large

due to the enhanced SOL flow, which causes the heat channel to be so narrow [16]. It has been

proposed that neoclassical SOL flow acceleration mechanisms could be the cause of the high SOL

flow speed [17]. At the same time, others have suggested that a tokamak plasma configured with

a strong negative-triangularity could significantly reduce the SOL flow acceleration due to trapped

particles and thereby reduce the heat-load on the divertor [16]. Furthermore, tokamak configuration

has evolved to optimize the core plasma confinement which has lead to the D-shaped plasma. In

H-mode operation (high energy confinement mode; as opposed to L-mode, low energy confinement

mode), this shape gives a high plasma edge pressure limit (located at the LCFS) and reduces edge

transport [18]. Again, power handling is now a significant problem for the D-shaped plasma and

needs to be addressed before the continuous operation in a tokamak is possible. The majority of

Negative-Triangularity Configuration (NTC) experiments have been performed on TCV [19]–[23]

and DIII-D [24]; from them, four major conclusions stand out:

1. The heat-load on the PFCs can be greatly reduced

2. The thresholds for certain instabilities (e.g., Mercier, kink, ballooning modes) are higher than

for similar Positive Triangularity Configurations (PTC)

3. The vertical growth rate increases sharply as the triangularity becomes more negative

4. The NTC has yet to be established using ITER-like configurations i.e., superconducting,

D-shape, target-diverted plasmas

The first two of these three conclusions are the reasons for further study of the NTC while the

third is a challenge to be overcome and is currently being addressed [22]. This thesis addresses

Chapter 1 David Weldon David Weldon



Negative-Triangularity Configuration on EAST Negative-Triangularity Configuration on EAST

the final point from above and presents the first NTC successfully run on EAST which uses the

ITER-like conditions of superconducting coils, D-shape vessel, and the plasma diverted onto target

plates.

1.3 Thesis summary and structure

This thesis work was originally intended to compare plasma parameters such as vertical growth

rate, instability mitigation, and divertor heat-load between a series of positive-triangularity plasma

configurations with 0 ≤ X! ≤ 0.4 and an equivalent series of negative-triangularity plasma con-

figurations with −0.4 ≤ X! ≤ 0 on EAST. However, after several failed attempts to produce a

stable negative-triangularity plasma, it became apparent that since this would be the first time

performing a negative-triangularity discharge on EAST, the time needed to configure the plasma

control system would be significantly greater than initially expected. To pivot around this setback

and make the best use of the allotted experiment time, our team changed our goal: achieving a

plasma configuration with the triangularity as negative as possible and then create an equivalent

positive triangularity configuration. In conjunction with this would be an engineering analysis of

the limiting factors of the EAST device that do not allow for greater negative-triangularity. The

negative-triangularity configuration was eventually achieved after significant trial-and-error and

was immediately followed by a shutdown of EAST (scheduled maintenance and preparation for

upgrades to the vessel wall). Thus, no equivalent positive-triangularity configuration could be

achieved for comparison.

This setback was taken in stride and the aim of this research was once again pivoted in the

direction of simulation and to prepare teaching tools for the lucky graduate student who would pick

up the negative-triangularity torch, so to speak, and soldier on where we had left off. Concerning

simulation, a set of Matlab scripts used for simulation, design, and analysis have been developed

by General Atomics in San Diego, CA, and were adapted for use at EAST and were successfully

used to design the negative-triangularity configuration that eventually was achieved at EAST.
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Furthermore, the positive-triangularity equivalent was successfully designed with these tools as

well, but a comparison to the experimental data from the negative-triangularity configuration is not

fruitful as the design does not give the important characteristics such as growth rate, heat-load, etc.

However, when discharges at the EAST facility resume, the PTC design can be tested. Finally, the

steps for using these tools have been detailed for instructional purposes for a successor.

Chapter 2 gives a brief description of EAST and how its geometry and parameters compare

with those of TCV and DIII-D followed by a detailed account of the design methods used for

the NTC and the specific parameters used in the Plasma Control System (PCS) to achieve a full

discharge NTC plasma. Chapter 3 presents the detailed results of the experiment, compares them

to the design, and examines the limitations that EAST has in achieving the NTC as compared to

the PTC. Chapter 4 gives a detailed demonstration of the simulation software used to model the

plasma response and how it is used to fine-tune PTC discharges. Chapter 5 concludes the work

done in this thesis and discusses its implication for future work for furthering NTCs at EAST.
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Chapter 2

Design & Optimization

2.1 Experimental Superconducting Tokamak (EAST) setup

EAST is a key research project for the Chinese Academy of Sciences (CAS) located in Anhui

Province, Hefei city. As shown in Figure 2.2a, EAST has a D-shape vacuum vessel with 12

independently controlled superconducting coils surrounding the vessel. In Figure 2.2a it can be

seen that coils 7/9 and 8/10 appear conjoined; each pair is in fact wired in series. EAST is normally

operated with 1.5 ≤ ^ ≤ 2.0, 0.3 ≤ X ≤ 0.6, coil currents below 14 kA as shown in Figure 2.1a,

power supplies below 1.1 kV as seen in Figure 2.1b, and cooled by supercritical helium at 4 K.

For PTCs the 12 coils and their power supplies have more than enough flexibility to operate in

these ranges allowing EAST to explore ITER relevant issues such as particle handling, plasma wall

interactions, and non-inductive current drive [25]. However, EAST was commissioned in 2006,

well before NTCs became established as an area of interest for ITER and other future tokamak

operation. Nonetheless, it is worth the effort to explore the NTC on EAST as the results will help

us to investigate engineering solutions to the shaping limitations and the diagnostic data can help

in understanding the stability and confinement of an NTC better. It is useful to compare the NTC

used on EAST with those of TCV and DIII-D; first look at the important parameters of each device.

However, since this research is done with the future tokamaks and fusion reactors in mind, ITER’s
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(a) Maximum coil current [kA] (b) Maximum power supply voltage [V]

Figure 2.1: Configuration and limits of the PF coil currents and power supply voltage on EAST.
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parameters are also included for comparison. Table 2.1 lists the parameters while Figure 2.2 shows

the poloidal view of each tokamak.

Table 2.1: Comparison of tokamak parameters for EAST, TCV, DIII-D, and ITER

Parameter Symbol Unit EAST TCV DIII-D ITER

Toroidal Field �C [T] 3.5 1.43 2.2 5.3
Plasma Current �? [MA] 1.0 1.2 2.0 15
Major Radius '0 [m] 1.85 0.88 1.67 6.2
Minor Radius 0 [m] 0.45 0.25 0.67 2.0
Pulse Length [s] 1000 2 7 400
Additional Heating [MW] 7 4.5 23 50
PF Coils* 12 14 18 12
Shape D Rect. D D
* Number of independently controlled poloidal field coils

As seen in Figure 2.2b the geometry of TCV allows it to shape plasma in exotic ways and is one

of the main reasons TCV has been capable of achieving X ≤ −0.9 which have shown promising

results with upper, lower, and both triangularities in such a negative configuration [23]. While

this success has been encouraging and continues to provide insights into the stability, confinement,

etc., all of the NTC plasmas on TCV have either been non-diverted or diverted onto the vessel

wall [20], [26], [27]. This, of course, is not ideal for future fusion devices which will need the

plasma diverted safely onto target plates. In contrast, DIII-D as seen in Figure 2.2c is a D-shaped

tokamak and has parameters more similar to what future fusion reactors will likely have. However,

while DIII-D has divertor target plates, the NTC experiments performed so far have not diverted

the plasma onto the targets but instead onto the vessel walls which limits how long a pulse can

last before the walls are damaged too much [24]. Even with 18 poloidal field coils, it is extremely

difficult to shape the plasma with strong negative-triangularity (X ≤ −0.4) while also maintaining

target-diverted plasma. Furthermore, neither of these tokamaks are superconducting which is a

key aspect of future fusion devices and presents its own set of advantages and disadvantages when

achieving NTC plasmas, namely stronger magnetic fields but also coils farther from the plasma as

is evident in Figures Figure 2.2c and Figure 2.2a. The coils on EAST are nearly twice as far from

the plasma as those of DIII-D and those of ITER in Figure 2.2d will be even farther. To this end,
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Figure 2.2: Side-by-side comparison of EAST, TCV, DIII-D, and ITER geometries where the
horizontal axis is the major radius, ', and the vertical axis is height, / . Note the scales of each.
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EAST has successfully achieved target-diverted plasmas with a lower triangularity of X ≤ −0.09

for more than 6 s.

2.2 Design tools: gsdesign.m

Previously at EAST, Equilibrium FITing, (EFIT) was the tool to use for both reconstructing the

plasma after a shot and for designing a future shot. The PCS has some tools for designing future

shots as well, though they are more limited and less convenient. However, all of the design work

reported in this thesis was done with a set of MatLab scripts called TOKSYS which are maintained

by General Atomics of San Diego, California and were largely developed there as well, though

scientists and engineers from EAST, KSTAR, ASDEX-Upgrade, and other experiments have also

contributed substantially over the years. While TOKSYS is a large and very versatile suite of

Matlab scripts, functions, and Simulink models, consisting largely of a series of circuit models

with all of the passive conductors, active coils, and plasma circuit as well as the plasma response

model [25], this chapter focuses on the use of just one main script: gsdesign.m.

The script is designed to find a numeric solution to the Grad-Shafranov equation while simul-

taneously minimizing a cost function of several design parameters such as boundary points on the

separatrix/LCFS (A,I), coil currents (��), flux (k?, k1), plasma current (�?), betas (V?, VC , V=),

and many more. While gsdesign.m can accept many different file inputs, for this section all

of the inputs come from running the standard startup scripts for TOKSYS as well as loading a

structure that contains all the equilibrium data from either an EFIT gfile or a previous gsdesign.m

equilibrium.

Note that for this thesis the words shot and discharge will be used interchangeably. Both refer

to a single attempt of the EAST machine to produce a plasma, whether successful or not.

Chapter 2 David Weldon David Weldon



Negative-Triangularity Configuration on EAST Negative-Triangularity Configuration on EAST

2.3 Necessary background

To best understand the work presented in the remainder of this chapter, it is imperative that the user

first be familiar with Matlab (some short cuts are given in Appendix D) and it’s general operation.

It is also useful to have read and understood the "Tokamak System (TokSys) User Guide" by Walker

et al. Finally, an understanding of the underlying physical principals employed by the gsdesign.m

script is also very important. An understanding of the physical forces acting on the plasma will help

in fine-tuning the equilibrium results. A brief review of the Grad-Shafronov derivation is given in

Appendix A for the reader if needed.

2.4 Starting File(s) and information

This chapter assumes the reader is already familiar with how to connect to the PCS gate and one of

the four servers. If this is not the case, then please refer to Appendix B for detailed instructions on

how this should be done.

2.4.1 File(s)

Only one file outside of the TOKSYS library is needed, a gfile from EFIT. However, several inputs

to GSDesign need to be loaded into the Workspace in Matlab. Listed below are the structures,

paths, and variables that need to be in the Workspace for GSDesign. How to load them will be

covered in detail in the next sections. As for the gfile, the reader should refer to Appendix B. Note

Table 2.2: Variables and values needed in the Workspace for GSDesign

Name Value

east_obj_filename ’east_obj_170921.mat’
gatools_root ’/project/builds/TOKSYS/2018-05-18_18-03-12_build138’
GATOOLS_ROOT ’/project/builds/TOKSYS/2018-05-18_18-03-12_build138’
gfile 1x1 struct
tok_data_struct 1x1 struct

that Appendix B uses a different gfile as an example than this chapter, but the format is the same.
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After becoming familiar with the general format of the gfile, move on to a closer look at the gfile

used here, g170921.00010, which was provided by Luo et al.

Listing 2.1: Examining the gfile

1 EFITD 08/02/2006 #170921 10ms 3 129 129

This line provides some valuable information.

• Year: This is important because the EAST objects configuration needs to correspond to 2006

(or whichever year the gfile comes from).

• Grid Size: This comes from the last two numbers in the line. We won’t need to use this right

away, but later a discussion on how this affects the computation speed and accuracy will be

addressed.

Before using this gfile, a few more lines should be explained first.

Listing 2.2: Examining the gfile

3562 129 129 170921 10

3563 0.120000000E+01 0.260000000E+01 −0.120000000E+01 0.120000000E+01

3564 −0.788019957E+06 −0.403353115E+06 0.422465404E+06 0.552643917E+06 −0.716103482E+05

3565 −0.206865166E+06 0.196482003E+06 −0.300605311E+06 −0.965905878E+06 0.351601871E+06

3566 0.194276139E+06 −0.261054925E+06

Here again is the grid size, shot number, and duration in milliseconds in line 3562, so no new

information. However, skipping down to lines 3564 to 3566 to find a total of 12 values. These

are the poloidal field coil currents. The reason these are of special note is that the total number of

coils EFIT assumed will be crucial for the initial equilibrium. While the coils at EAST are fairly

permanent, how they are connected can change the effective number of coils. More precisely, this

gfile only gives information about the coil circuits as opposed to the coils themselves. How this is

applied to the gsdesign.m script will be discussed later. Finally, note that the line numbers are

specific to this gfile. Other gfiles will have the same information but at different line numbers. To
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find this information, it is easiest to search for the grid size, in this case, 129 129 which is displayed

in the first line and the lines preceding the poloidal field coil currents.

2.4.2 TOKSYS

After examining the gfile it is convenient to establish a .bashrc script. This script is run from the

Linux [Terminal] window before Matlab is run and sets the global variable GATOOLS_ROOT

to a specific path. For gsdesign.m to work as described in this chapter, this variable needs to be

set to the build from 2018-03-02. As updates are made to the TOKSYS there is no guarantee that

the steps detailed here will work for later builds of TOKSYS. It is recommended that the reader

completes these steps before using a later build of TOKSYS. For this look at the following bash

script named gsdesign.bashcr.

Listing 2.3: gsdesign.bashrc script to be executed from the Linux Terminal

1 # gsdesign.bashrc

2

3 # Set paths

4 export MATLABPATH=/project/builds/TOKSYS/2018-03-02_16-31-54_

build124/startups:$MATLABPATH

5 export GATOOLS_ROOT=/project/builds/TOKSYS/2018-03-02_16-31-54_

build124

6 export PATH=/project/builds/anaconda2/bin:$PATH

7

8 # User specific aliases and functions

9 alias ls="ls -alh --color"

10 alias matlab="matlab2016a -softwareopengl"

Line 1 is the name of the file, lines 4 and 5 set some additional paths that are not necessary but

are good to include if scripts other than gsdesign.m will be used. In lines 4 and 5, there are

two different directory paths, the path in line 6 is all that is needed for now. Here the # symbol

comments out line 7 which uses the most recent build of TOKSYS. Then in lines 10 and 11 aliases
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are set to make executing the ls command give a preferred output and to execute a specific version

of Matlab. While line 10 is just a personal preference, line 10 sets the command Matlab to open

Matlab2016a and set what graphics rendering package to use. The steps that follow might not

work smoothly for all versions of Matlab, so it is best to use the version specified here.

A final note is made about where these files should be stored. Each user at EAST is granted

a directory named with his or her user name. It is up to the user to then create subdirectories as

he or she needs. A common suggestion is that a separate subdirectory is made labeled EAST and

used as the working location where all of the EAST related work is kept. The bash script that

is shown above automatically changes to this EAST directory and so the bash script itself can be

saved directly in the user’s directory. Lastly, this EAST subdirectory is also the location from which

Matlab should be opened to match the steps and procedures that follow.

2.5 Running the scripts

Begin by opening a terminal in the location of the EAST subdirectory. Execute the following

lines.

Listing 2.4: Lines and output executed directly from the Terminal

1 [daw@node60 ~]$ cd EAST

2 [daw@node60 EAST]$ source .bashrc

3 [daw@node60 EAST]$ ssh -X cs1

4 daw@cs1’s password:

5 Last login: Wed May 16 15:55:35 2018 from 202.127.205.60

6

7

8 ************************************************************

9

10 Welcome to EAST Computing Server 1 (CentOS6.7-64bit)

11
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12 Please contact wangfeng@ipp.ac.cn if you have any issues

13

14 ************************************************************

15

16 [daw@cs1 ~]$ matlab

17 MATLAB is selecting SOFTWARE OPENGL rendering.

Line 1 changes the directory, line 2 runs the gsdesign.bashrc script, and then line 3 opens a

secure shell to server 1, followed by entering the user’s EAST password on line 4. Lines 6-15 are

the output after a successful login. Note that as the user types in the password, the cursor within

the terminal does not move. Finally, on line 16 Matlab is executed, followed by the output on line

17. At this point the Matlab GUI should open. However, it should be noted that some of the quick

key commands such as ctr+c and ctr+p do not behave the same way when using Matlab on the

server as they do on a PC. For a remedy to this, please see Appendix E.

2.5.1 General start-up

It is convenient to create a start-up script that will add some directory paths needed as well as create

some Workspace variables.

Listing 2.5: start_daw.m start-up script

1 % Used to set file paths, run toksys_startup , and east_startup

2 %

3 % WRITTEN BY: David Weldon ON 2017/10/11

4 %

5 % MODIFICATION HISTORY:

6 % 2018/04/04 Cleaned up the code to make it more readable

for a tutorial

7 %

8 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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9

10 close all

11 clear all

12 clc

13

14 % This is the location of the main directory for all toksys stuffs

15 GATOOLS_ROOT = '/project/builds/TOKSYS/2018-03-02_16-31-54_build124

';

16 % GATOOLS_ROOT='/project/builds/TOKSYS/current ';

17 gatools_root = GATOOLS_ROOT;

18 addpath(genpath(GATOOLS_ROOT));

19

20 % Get the basics started up

21 % startup

22 toksys_startup

23 east_startup

24

25 % This is the location of all my files

26 local_path = '/home/ASIPP/daw/EAST';

27 addpath(genpath(local_path));

28

29 % Matlab toolbox, needed for running make_east_objects2.m

30 mpc_path = '/pkg/MATLAB/R2016a/toolbox/mpc/mpc';

31 addpath(genpath(mpc_path));

Lines 10-12 are optional, when executed in order they: close all figure windows, clear the

Workspace, and clear the Command Window. Lines 15 and 17 are the same as seen in the

gsdesign.bashrc script and in fact rely on the gsdesign.bashrc script for setting the path for

the General Atomics Root directory at EAST (GATOOLS_ROOT). The path is then added to the

list of paths that Matlab uses. Lines 22 and 23 use the default TOKSYS and EAST startup scripts,

respectively. Again, this adds paths and sets some Workspace variables. Then lines 26 and 27 set
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and add the user’s directory path, again here daw should be replaced with the reader’s user name.

Finally, in lines 30 and 31, the Matlab toolbox is added. For more information on the Matlab

toolbox, refer to the Tokamak System (TokSys) User Guide.

To create and run this script, go to the MatlabGUI and in the top right corner select New script

as seen below in Figure 2.3. Copy and paste the code from Listing 2.5. Be sure to check for proper

Figure 2.3: Creating a new Matlab script

formatting as copy and pasting from this PDF file might not work as expected. Once it has been

copied, then save it as start_XXX where XXX is the user’s preference. Here, daw is used as this

is also the name of the personal directory in this example. Follow this same procedure whenever

recreating one of the scripts in this document.

All should now be ready to click on the large green arrow near the top center of the Matlab

GUI to execute the script. Alternatively, the F5 key on the keyboard as shown in Figure 4.1 will

produce the same result.

2.5.2 GSDesign start-up

Now that the general directory paths and Workspace variables are set, a few specific variables are

needed for GSDesign to work efficiently. First, establish a directory for all of the outputs. To
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Figure 2.4: Running a Matlab script

do this, created a separate directory named after the shot number of this specific gfile, as seen in

Figure 2.5. This is also where the original g170921.00010 file is kept.

This method of organizing the output that will be generated will be very helpful when refining

the Grad-Schafranov equilibria because the process could take a dozen attempts or more. In this

case, over 17 attempts were needed before a suitable equilibrium was found. With that, now

examine the start-up file for GSDesign.

Listing 2.6: start_gsdesign_daw.m setting directories, saving inputs/outputs, and

additional plots

1 %

2 % Set various file names, save paths, and load variables needed by

3 % gsdesign to the Workspace. This is also used to build the east

objects

4 % needed by gsdesign to match the gfile.
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Figure 2.5: Directories and files contained within the EAST directory. The full file path is:
/home/ASIPP/daw/EAST

5 %

6 % WRITTEN BY: David Weldon ON 2017/10/11

7 %

8 % MODIFICATION HISTORY:

9 % 2018/04/04 Cleaned up the code to make it more readable

for a tutorial

10 %

11 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

12

13 close all % make the GUI nice and clean by closing any previous

plots

14 clc % make the command window clean as well

15

16 % Choose an EFIT g-file. If you are often working with different

gfile,

17 % be sure to comment out the ones you are not using.

18 efit_gfile='g170921.00010';
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19 % efit_gfile='g072659.003500';

20

21 % Set the path to where everything should be saved by parsing the

gfile

22 % name and the local path

23 save_path=cat(2,local_path ,'/',efit_gfile(2:7));

24

25 disp('Run the demo, this could take a while on 129 X 129 grids') %

mostly to let me know the script has run this far

26

27 % CHANGE THIS WHEN YOU CHANGE GFILES

!!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

28 % e-coils 12 coils for g170921 but 13 for g072659

29 gfile = read_gfile_func(efit_gfile ,12,1);

30

31 % Make the east objects file name

32 east_obj_filename=cat(2,'east_obj_',efit_gfile(2:7),'.mat');

33

34 % Make east objects if needed, but this should only need to be done

once

35 % per gfile. After that, the saved .mat file should be loaded.

36 % Need to correct the grid size and starting location to match this

gfile,

37 % so I made changes in make_east_objects and saved it in my EAST

directory

38 if exist(east_obj_filename ,'file')

39 % Load up the objects

40 load(east_obj_filename);

41 else

42 make_east_objects

43 % to avoid modifying make_tok_objects , just to load the objects

created
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44 % by make_tok_objects , save the new .mat where I want, then

delete the

45 % .mat created by make_tok_objects.

46 load('east_obj_2006_129129.mat');

47 save(cat(2,save_path ,'/',east_obj_filename), 'tok_data_struct')

;

48 delete('east_obj_2006_129129.mat');

49 end

50 % input('Press ''Enter'' to continue...0','s');

51

52 % Run the specific gsdesign script CHANGE THE V NUMBER!!

53 gsdesign_script=cat(2,'gsdesign_',efit_gfile(1:7),'_',efit_gfile(9:

end),'v0');

54 eval(gsdesign_script);

55

56 % Save the input that made the equilibrium as well as the results

from gsdesign

57 input_filename = cat(2,save_path ,'/',gsdesign_script ,'_input');

58 eq_filename = cat(2,save_path ,'/',gsdesign_script ,'_eq');

59 save(input_filename , 'spec','init','config');

60 save(eq_filename , 'eq');

61

62 % Save figure by saving the .fig file and by printing it to a pdf

63 fig_filename = cat(2,save_path ,'/',gsdesign_script);

64 fig(1) = figure(1); fig(1).PaperType='b4'; fig(1).PaperOrientation=

'landscape';

65 print(fig(1),fig_filename ,'-dpdf','-r0','-fillpage')

66 savefig(fig(1),fig_filename)

Lines 13 and 14 have already been discussed in the general start-up so instead focus on lines

18 and 23. Line 18 sets the variable efit_gfile to a character string. This string, of course, is

the same as the gfile of interest above. If the user is working with more than one gfile, then line

19 might be useful. However, the way these scripts are structured, only line 18 OR line 19 can be
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used. If they are both left uncommented then line 19 will just overwrite the variable efit_gfile.

Notice in line 23 how the efit_gfile character string is parsed to set the save_path. As

seen below, these two variables will be parsed many times to make various output file names.

Line 25 is just to have some Command Window output in Matlab to indicate that the script is

running.

Lines 27-29 are fairly self-explanatory but are necessary so that the user does not waste several

hours of computation while running the wrong number of coils.

Line 32 makes the filename for saving the EAST objects that are created in line 42 and saved

in line 47. tok_data_struct is the structure containing all the EAST objects and must first be

loaded into the Workspace to run GSDesign. However, running make_east_objects at each

start-up is highly inefficient. It is better to run it once and save the structure then load this structure

to the Workspace for every subsequent start-up, which is done with the if statement in line 38

and the load command in line 40. The first time this script is run, no east_obj_filename will

be found and so lines 42-48 will create it and save it. However, the .mat file is created using the

default settings. To get the EAST objects that are needed for this example, see Appendix D.

Lines 53 and 54 also take previously made character strings to parse and concatenate them with

a few other things to call up a script that contains all of the GSDesign settings and the actual call

to gsdesign.m. This separate script dealing with the settings for GSDesign will be dealt with in

Section 2.6.1.

Line 50 is special and should be noted carefully. Matlab has a debugging function and it works

just fine for some uses. But sometimes a user might want a little more control over where and how

Matlab stops. So, line 38 or something like it can be used. If the user is exploring a script from

TOKSYS that is necessary for GSDesign then one could use several of these lines inserted in the

script with different numbers such that one knows which part of the script is being executed.

Lines 57-66 are all about saving the results. The reader is encouraged to organize his or her file

directories and results in a way that is most logical to him or her. Take note of lines 65 and 66 as

these are saving the same figure but in different file formats.
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2.6 Creating an equilibrium

As mentioned above concerning line 57, a character string is made referring to a specific script that

has settings for GSDesign to use in a single equilibrium design. The result is the character string

gsdesign_g170921_00010v0.m. Next is an examination of this script to see how it works.

2.6.1 Matching the gfile equilibrium

The purpose of this version 0 script (hence the v0 at the end of the file name) is to mark it as the

first attempt at converging on an equilibrium and is designed to try and reproduce the exact same

shape and coil currents that the gfile has.

Listing 2.7: gsdesign_g170921_00010v0.m setting the specifications, targets,

weights, initial equilibrium, and configuration for GSDesign

1 %

2 % USAGE: gsdesign_g170921_00010

3 %

4 % PURPOSE: DEMO of gsdesign showing design of EAST single-x-point

5 %

6 % INPUTS: none

7 %

8 % OUTPUTS: eq, a single-x-point equilibrium

9 %

10 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

11 %

12 % WRITTEN BY: Anders Welander ON 3/12/14

13 %

14 % MODIFICATION HISTORY: Augmented from gsdesign_demo_d3d_DN by

David
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15 % Weldon on 2017-10-10

16 %

17 % This is meant to get an equilibrium that matches the file

g170921

18 %

19 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

20

21 % Load EAST tokamak configuration

22 if exist('east_obj_filename','var')

23 try

24 clear tok_data_struct

25 load(east_obj_filename);

26 % tok_data_struct.rg; % I don't think this is needed

27 catch

28 error('east_obj_filename does not hold name of a matfile

containing tok_data_struct')

29 end

30 else

31 east_obj_filename = [getenv('GATOOLS_ROOT'), ...

32 '/tokamaks/east/make/east_obj_2006_129129.mat'];

33 if exist(east_obj_filename ,'file')

34 load(east_obj_filename)

35 else

36 east_obj_filename = ...

37 '/m/GAtools/tokamaks/east/make/east_obj_2006_129129.mat';

38 if exist(east_obj_filename ,'file')

39 load(east_obj_filename)

40 else

41 disp('Could not find east objects. Please set the variable:')

42 disp('east_obj_filename')
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43 disp('to name of matfile containing tok_data_struct for east'

)

44 end

45 end

46 end

47

48 config = tok_data_struct;

49 config.constraints = 1;

50 config.psikn = [0 0.40 0.70 1];

51 config.no_edge_current = true;

52 config.no_edge_gradient = true;

53 config.plot_settings.SOL.n = 9;

54 config.plot_settings.SOL.d = 1e-3;

55 init = [];

56

57 clear spec gsdesign

58

59 % Specify points rsep, zsep where flux should equal the boundary

flux

60 spec.targets.rsep = gfile.rbbbs;

61 spec.targets.zsep = gfile.zbbbs;

62

63 % Specify points rx, zx where the poloidal field should vanish

64 % Just because there is only 1 null, doesn't mean having 2 x-points

isn't a

65 % good idea. Also, read the documentation to see how to put a box

where no

66 % x-point should appear.

67 [~, ix1] = max(spec.targets.zsep);

68 spec.targets.rx = spec.targets.rsep(ix1);

69 spec.targets.zx = spec.targets.zsep(ix1);

70 spec.weights.x = 1;
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71

72 % The SN can be more balanced with higher weights on the x-points

73 spec.weights.sep = 10*ones(1,length(spec.targets.rsep));

74 spec.weights.sep(end-1:end) = 50*ones(1,2);

75 spec.weights.sep(ix1) = 10;

76

77 spec.targets.cpasma = gfile.cpasma;

78 spec.weights.cpasma = 1;

79

80 spec.cccirc = [config.def_connect.fcid 13 -13];

81 config.cccirc = spec.cccirc;

82

83 i = length(spec.cccirc) - length(gfile.brsp);

84 j = zeros(i,1);

85 ci = [gfile.brsp;j];

86 fcnturn = config.fcnturn;

87 fcnturn(7:10) = fcnturn(7)+fcnturn(10);

88

89 spec.locks.ic = (sign(spec.cccirc)'.*ci(abs(spec.cccirc)))./fcnturn

;

90 spec.locks.ic(15:16) = zeros(2,1);

91

92 clear i j ci1; % keeps the workspace clear of intermittent clutter

93

94 % Call gsdesign with these specs

95 % In this first design, it is better to not include the prims right

away,

96 % otherwise gsdesign can't get to the spec.lock.ic values.

97 config33 = regrid(33,33,config);

98 eq33 = gsdesign(spec, init, config33);

99 disp('The 33x33 grid equilibrium without ffprim or pprime has been

calculated');

Chapter 2 David Weldon David Weldon



Negative-Triangularity Configuration on EAST Negative-Triangularity Configuration on EAST

100 % Now we include the p' and ff' and use the previous equilibrium as

the

101 % init

102 disp('Next, the 33x33 grid equilibrium will be calculated including

the prims')

103 config.pprime0 = gfile.pprime;

104 config.ffprim0 = gfile.ffprim;

105 config33_prims = regrid(33,33,config);

106 eq33_prims = gsdesign(spec, eq33, config33_prims);

107 disp('The 33x33 grid equilibrium with ffprim or pprime has been

calculated');

108 % Now we change the grid size back to 129x129 and again use the

previous

109 % equlibrium as the init

110 disp('Next, the 129x129 grid equilibrium will be calculated

including the prims')

111 eq = gsdesign(spec, eq33_prims , config);

The header of the script in lines 1-19 explains a few details about the script. First of all that it

was originally a demo file that comes with TOKSYS located in the same directory as GSDesign.

Note that while on line 6 it says there are no inputs, that is not entirely true. When calling the

script it is true that no input arguments are needed, however the Workspace must contain specific

structures, data, and paths as listed under Section 2.4.1 in table Table 2.2.

Before going further, it would be enormously helpful for the reader to look at Appendix F which

is the help file for GSdesign included in TOKSYS. For more convenient reference, this file can also

be accessed by going to the Command Window in Matlab and typing in help gsdesign.

Lines 21 to 46 are taken directly from gsdesign_demo_d3d_DN and have not been modified.

This is mostly to check and find an appropriate objects file for EAST. This is taken care of by line

25. If the user is using a different EAST objects file, then it should be changed here. But, if the

EAST objects that was created by from make_east_objects has already been loaded, then the

Workspace should already contain the structure tok_data_struct.
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Next, in lines 48-55 several values and flags are being set for the config structure. Almost all

of these are the defaults that came from the original DEMO file except for line 48. There are several

key pieces of information in the tok_data_struct that are also needed in the config structure.

Line 57 is also part of the original DEMO file and is just to ensure that if there is a spec or

gsdesign in the Workspace, it is completely cleared before the subsequent ones are created.

Lines 60-75 are pretty self-explanatory. The targets come from the gfile while the weights

are up to the user to decide. There is not an exact way to determine how much to weight the

boundary and x-points. This is a trial-and-error process to determine it, but with experience comes

an intuitive understanding of how to set them.

Lines 77 and 78 set the plasma current to the value given in the gfile. The weight of which was

determined by the trial-and-error method starting with:

spec.weights.cpasma = 0.001

and gradually increased until it did not have the largest error at the end of the fitting process.

Lines 80 and 81 set the circuit configuration of the coils. This is not difficult, but needs to

be addressed. Typing "tok_data_struc.def_connect.fcid" into the Command Window will

give the output:

» tok_data_struc.def_connect.fcid

ans =

1 7 2 8 3 9 4 10 4 10 5 11 6 12

This vector is essentially showing how the coils are to be connected to each other. For example, coil

1 is connected to itself because it is in the first position. Then coil two is actually coil 7. Why? That

is because of a difference between the order of coils that the gfile assumes and that which GSdesign

uses. This re-ordering is done for all the coils. It should also be noted that coils in positions 7 and

9 are connected together in series as are those in positions 8 and 10. Finally, in Line 80 13 -13 is

added because the final two coils are connected together in an anti-series configuration.
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However, this is just part of the battle with the differences between the gfile and GSdesign.

Next, in lines 83-90, it is necessary to perform a calculation to convert the coil currents of line 90

and divide them by the number of turns in each coil (after the ".* in line 89) while still maintaining

the correct sign for each coil current (before the ".*). The result of which is the current per turn

of each coil (here it is meant each circuit because some coils are connected) as the spec.lock.ic

value. In line 90 the final two coils are locked to zero because they are not used in designing the

equilibrium but are used in the feedback control of the plasma.

Finally, all is ready to actually run GSDesign and get an equilibrium. To do this as efficiently

as possible, line 97 first "re-grids" the equilibrium to 33 by 33 mesh points. This requires much

less computation and will work as a first "guess" so to speak. Without this re-grid step, the first

iteration can take several minutes. If there are any mistakes in the settings or elsewhere, they will

most likely be seen in the first iteration, so this is a way to save time. Line 98 is the first run of

GSDesign and gives the result eq33meaning the equilibrium in a 33 by 33 grid. The inputs, which

are better explained in Appendix F, are the specifications set above, the initial equilibrium, init

is what GSDesign uses as a starting point. For line 98, init is empty as set by line 55. Lastly,

the 33 by 33 configuration is included in line 98. Lines 99 and 102 are notes that show up in the

Command Window to indicate which step in the computation is being executed.

Lines 103-105 include the ?′ and 5 5 ′ values from the gfile in the configuration so that an even

better fit can be found. Then GSDesign is run again, but the previous eq33 is used as the new

init. The resulting equilibrium is called eq33_prims, and two messages are displayed as before.

For the final calculation, the eq33_prims equilibrium is used as the new init and a 129 by

129 grid configuration with ?′ and 5 5 ′ as the config in line 111 resulting in the final equilibrium,

eq.

2.6.2 GSDesign results

With the run file, gsdesign_g170921_00010v0.m finally explained, an examination of the outputs

is in order. Figure 2.6 is the main figure to look at. This is the default output from GSDesign. It is
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not displayed here, but in the figure window the "?" can be seen in the top row. Clicking this will

bring up Figure 2.7, which gives a fairly detailed explanation for everything that is in Figure 2.6.

While this information is quite useful, a little more needs to be said about the error plots. In the

lower-left corner is a subplot showing all the errors of all the target values. Zooming in on this plot

will show the labels of each target however, for this example, the coil currents will not be found

because they have been locked to the exact values from the gfile. Only targets such as boundary

flux points and the plasma current will be found in this subplot. In fact, for this equilibrium, the

largest positive error is a separatrix boundary point, highlighted in red and the largest negative error

is another separatrix point, highlighted in blue. On any of these subplots, a double-click on any

area will zoom in, or clicking and dragging to make a rectangular zoom area will zoom in as well.

Finally, right-clicking will reveal some options including returning to the normal zoom. This can

easily be done once GSDesign has completed the calculation. Attempting to zoom in or out while

GSDesign is running will probably result in a lot of lag. Moving on to the immediate right of the

above-mentioned subplot is another subplot of errors and this is a bit more important. Note here

that all the error vectors are nice smooth curves and the on the y-axis is 10−11. This is showing how

good the convergence is. For matching the gfile, this is as good as can be achieved because so many

values are locked to match the gfile exactly. While 10−11 does indeed seem like a pretty small error,

it is in fact not that good. The desired error would be on the order of 10−14 or even 10−15 because

this means the error in the convergence would be almost nothing and the error vectors would be just

noise. Ideally, the only error should be noise that is inherent in any numerical calculation arising

from floating-point precision. So, for this case, there is still some fundamental error in matching

the gfile exactly. Where that is arising from, is not clear. However, the main point of matching the

gfile is an exercise in using GSDesign correctly. So while there is still some error, if the user feels

confident in the operation of GSDesign, then move on to modifying the shape in Section 2.7.

Moving on to the newly created files as shown in Figure 2.8. First is the east_obj_170921.mat

which was created by line 47 of Listing 2.6, next is the gfile, then the .fig file that is the result of

line 66 of Listing 2.6, followed by the .m file which has already been discussed in Listing 2.7, then
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Figure 2.6: Results from matching the gfile

Figure 2.7: The explanation of the GSDesign results figure
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the .pdf file was created by lines 64 and 65 in Listing 2.6, and finally the last two .mat files are

as their names claim, the equilibrium and the inputs. These two files are created by lines 57-60 in

Listing 2.6.

gsdesign_g170921_00010v0_input.mat is simply a single file containing the structures

spec, init, and config which were all in the gsdesign_g170921_00010v0.m file.

gsdesign_g170921_00010v0_eq.mat is the equilibrium that gsdesign outputs as the Workspace

variable eq and is a structure. Going to the Command Window type in "eq" to see what is contained

in this equilibrium. To see what each of these fields is, try typing in "eq.descriptions".

Figure 2.8: EAST directory containing all the new files that should have been created by running
GSDesign as well as the files previously shown in Figure 2.5

It is now up to the user to explore the contents of the eq structure depending on what the user

needs from it. In the case of using gsdesign.m to design an equilibrium, then the coil currents,

fluxes, betas, inductance, and other such parameters are probably most important.

2.7 Designing a negative-triangularity equilibrium

This section follows immediately from the previous section and details several more steps in

the design process, namely: slightly rotating the plasma boundary, shifting the boundary ver-

tically, expanding/contracting the shape, adding in divertor target points, and finally adjusting
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the coil currents to be within safe operating conditions. This is all done in a new file called

gsdesign_g170921_00010v1.m which will use gsdesign_g170921_00010v0_eq.mat as the

init as shown in Listing 2.8, line 70.

Listing 2.8: gsdesign_g170921_00010v1.m is created by changing specific parts

of gsdesign_g170921_00010v0.m. Note, the line numbers do not match exactly

with Listing 2.7 because more was added to the preamble notes in lines 1-30

66 config.plot_settings.SOL.d = 1e-3;

67

68 % Get the previous equilibrium and use it as the initial

equilibrium

69 load('gsdesign_g170921_00010v1_eq.mat')

70 init = eq;

71

72 clear spec gsdesign eq

73

74 % Specify points rsep, zsep where flux should equal the boundary

flux

75 rsep = gfile.rbbbs;

76 zsep = gfile.zbbbs;

77 R0 = gfile.rmaxis;

78 Z0 = gfile.zmaxis;

79

80 % Here I want to manipulate the shape a bit by bringing in the

outermost

81 % flux surface a little bit but keeping the other points the same

82 [~, ix1] = min(zsep);

83 [~, ix2] = max(zsep);

84 zmin = zsep(ix1);

85 rmin = rsep(ix1);

86 zmax = zsep(ix2);
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87 rmax = rsep(ix2);

88 rline = (zsep-zmax)*(rmax-rmin)/(zmax-zmin) + rmax;

89 K = 0.95; %right side R reduction

90 rsep(min(ix1,ix2):max(ix1,ix2)) = K*(rsep(min(ix1,ix2):max(ix1,ix2)

) ...

91 -rline(min(ix1,ix2):max(ix1,ix2)))+rline(min(ix1,ix2):max(ix1,

ix2));

92 spec.targets.rsep = rsep;

93 spec.targets.zsep = zsep;

94

95 % Here I want to bring the x-points closer by C%, and to keep the

shape the

96 % same, I need to do the same to all other points along the

boundary. The

97 % horizontal centerline is already calculated as Z=0, but now I

need to

98 % know what R is in the center of the vessel. I also want to apply a

99 % rotation to the shape by t radians.

100 C = 1.05;

101 Rshift = 0.0;

102 Zshift = 0.08;

103 t = 1*pi/200;

104 rot = [cos(t),-sin(t);sin(t),cos(t)];

105 sep0d = rot*[spec.targets.rsep-R0 spec.targets.zsep-Z0]'*C;

106 spec.targets.rsep = sep0d(1,:)' + R0 + Rshift;

107 spec.targets.zsep = sep0d(2,:)' + Z0 + Zshift;

108 clear C R0 Z0 Rshift Zshift rline zmin rmin zmax rmax rsep t rot K

109

110 % Specify points rx, zx where the poloidal field should vanish

111 % Just because there is only 1 null, doesn't mean having 2 x-points

isn't a

112 % good idea. Also, read the documentation to see how to put a box
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where no

113 % x-point should appear.

114 [~, ix1] = max(spec.targets.zsep);

115 spec.targets.rx = spec.targets.rsep(ix1);

116 spec.targets.zx = spec.targets.zsep(ix1);

117 spec.weights.x = 1;

118

119 % Add a few boundary points where we want the strike points of the

legs

120 rsp = [1.43 1.72]';

121 zsp = [0.92 1.06]';

122 spec.targets.rsep = [spec.targets.rsep;rsp];

123 spec.targets.zsep = [spec.targets.zsep;zsp];

124

125 % Adjust weights on the boundary points, strike points, and x-

points,

126 spec.weights.sep = 10*ones(1,length(spec.targets.rsep));

127 spec.weights.sep(end-1:end) = 50*ones(1,2);

128 spec.weights.sep(ix1) = 10;

129

130 % Probably only need to specify these three parameters

131 spec.targets.cpasma = gfile.cpasma;

132 spec.weights.cpasma = 0.0001;

133 spec.targets.li = 1.2; %eq.li;

134 spec.weights.li = 1;

135 spec.targets.betap = 1.0; %eq.betap;

136 spec.weights.betap = 1;

137 % Design the beginning and ending flux levels of a shot

138 spec.targets.psibry = 2.43;

139 spec.weights.psibry = 10;

140

141 % spec.cccirc = [1 2 3 4 5 6 7 8 7 8 9 10 11 12 13 -13];
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142 spec.cccirc = [config.def_connect.fcid 13 -13];

143 config.cccirc = spec.cccirc;

144

145 spec.targets.ic = zeros(16,1);

146 spec.weights.ic = 0.00002*ones(length(spec.targets.ic),1);

147

148 spec.locks.ic = nan(16,1); % must have this before specifying any

locks on ic

149 spec.locks.ic(15:16) = zeros(2,1);

150 spec.limits.ic = [12.8*ones(6,1);11.6*ones(4,1);10.2*ones(4,1)

;5;5]*[-1000 1000]*0.89;

151

152 % Call gsdesign with these specs

153 disp('The 33x33 grid equilibrium with ffprim or pprime will be

calculated');

154 config.pprime0 = gfile.pprime;

155 config.ffprim0 = gfile.ffprim;

156 config33_prims = regrid(33,33,config);

157 eq33_prims = gsdesign(spec, init, config33_prims);

158 eq33_prims = gsdesign(spec, eq33_prims , config33_prims);

159 % eq = eq33_prims;

160 disp('Next, the 129x129 grid equilibrium will be calculated

including the prims')

161 % input('Press ''Enter'' to continue...','s');

162 disp('I hope it works')

163 eq = gsdesign(spec, eq33_prims , config);

2.7.1 Boundary rotation, shift, and expansion/contraction

The boundary points of the equilibrium made in Section 2.6 can be found by loading the equilibrium

into the Matlab Workspace by either double-clicking the file or by using the command "load

’gsdesign_g170921_00010v0_eq.mat’", as in line 69, in the Command Window then checking
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eq.rbbbs and eq.zbbbs. In Listing 2.8, lines 75-76, these boundary points are still taken directly

from the gfile but could come from the previous equilibrium. However, these boundary points are

not exactly the same. GSdesign can be set to "lock" the boundary points or set them as "targets."

In either case, GSdesign will produce boundary points that are not exactly the same as the input.

If GSdesign is set to "lock" them, then there will still be some rounding error, however small; if

GSdesign is set to "target" them, then they can vary quite a bit. This is why in Listing 2.8 the

boundary points from the gfile are used to eliminate error propagation from one version to the next

as this "v1" is the first of 17 versions to achieve optimal results.

With that said, the next step is to actually augment the boundary points. Lines 77-78 set the

magnetic axis of the plasma as the center about which the shape will be rotated. Lines 82-87

find the highest and lowest boundary or separatrix points (rsep, zsep), then line 88 creates A;8=4

connecting them as seen in Figure 2.9a. Then line 89 sets K as the expansion/contraction factor

and lines 90-91 take the horizontal distance of each point to the right of the A;8=4 and multiplies

it by this expansion/contraction factor, effectively pulling in or pushing out the right side of the

boundary. Determining which side of the A;8=4 gets augmented is done by knowing that the

boundary points are ordered clockwise from the upper x-point which is done at the beginning of

line 90 rsep(min(ix1,ix2):max(ix1,ix2)). If the min and max were reversed then the left

side of the line would be augmented. Lines 92-93 then overwrite the previous boundary points with

the augmented ones. Here the K factor is set to 0.95 as this proved to be a good balance between

plasma volume and decreasing the lower triangularity. Note, that because this modifies 1 (vertical

minor radius), the elongation ^ is also increased, as discussed in Section 1.2.3.

Next, a universal expansion/contraction factor (not just for the left or right side and not just

horizontal), a vertical shift, and a rotation to the boundary are added. Lines 95-99 explain this as

well, but not in great detail. Line 100 establishes the expansion/contraction factor C, increasing

the area of the boundary slightly. Lines 101-102 set the horizontal and vertical shift. It was best

to keep the plasma horizontally unchanged but move it up slightly. The vertical adjustment was a

compromise between decreasing X! and having the open field lines strike the divertor target plates
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(a) Boundary of gfile g170921 with a line connecting
the highest and lowest points, allowing the points left
or right of the line to be moved toward or away from
the line by a percentage of their original distance
from the line.

(b) Original and augmented boundary of gfile
g170921 with original and augmented plasma cen-
ter. The augmented boundary includes a contraction
on the right side of 0.95, anti-clockwise rotation of
c/200, overall expansion from the center of 1.05, and
a shift upwards of 0.08 m.

Figure 2.9: Comparison between the starting PTC boundary and the final NTC boundary design

Chapter 2 David Weldon David Weldon



Negative-Triangularity Configuration on EAST Negative-Triangularity Configuration on EAST

safely as will be discussed in Section 2.7.2. Line 103 sets the rotation angle C = c/200 rad which is

a minute anti-clockwise rotation. Then a simple rotation matrix is set up in line 104 and is shown

more clearly in Section 2.7.1. Where A>C is the rotation matrix and C is the rotation angle.

A>C =


cos(C) − sin(C)

sin(C) 2>B(C)

 (2.1)

And finally, lines 105-107 tie the rotation, expansion, and shift altogether, more easily un-

derstood in Section 2.7.1. Where ( is the matrix containing the ordered pairs of the augmented

separatrix/boundary points, A1�=, I1�= are the A and I coordinates of each separatrix/boundary point,

'0 and /0 are the coordinates of the magnetic axis and are taken to be the center of the plasma, � is

the expansion/contraction factor, and 'Bℎ8 5 C and /Bℎ8 5 C are the horizontal and vertical shifts applied

to the boundary, respectively.

( =


cos(C) − sin(C)

sin(C) 2>B(C)

 �




A1 I1

A2 I2
... ...

A= I=


−

[
'0 /0

]


)

� +
[
'0 + 'Bℎ8 5 C /0 + /Bℎ8 5 C

]
(2.2)

The results of these boundary augmentations can be seen more clearly in Figure 2.9b. And to close

this section, line 108 clears all the intermediate variables that were used in the above calculations

but are not used elsewhere.

2.7.2 X-points and strike points

Starting with lines 110-117 are the explanation for and creation of the x-point as seen in Figure 2.6

in the rightmost subplot designated by the red "X" at the top of the separatrix. This can be adjusted,

but because it is based on the boundary that was just modified it will already select the best place
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for the x-point. However, the user augments the code, keep in mind that line 114 assumes that no

strike points have been made and so the highest boundary point should still be on the separatrix.

The next set of lines examine the strike points. If the strike points are created before the x-points

it could cause the x-point to be placed on a strike point. Lastly, line 117 sets the weight. This will

need to be adjusted to balance the shape and where the strike points land.

Next, lines 119-123 set two strike points as seen in Figures Figure 2.9b and Figure 3.1a. The

exact location of these strike points was determined by looking at the physical structure of the

divertor target plates. The goal was to avoid having the open field lines striking the critical areas

of the divertor target plates which are demarcated in Figure 2.10. The weights for the boundary,

x-, and strike points are all set in lines 125-128. How much to weight each one is a trial-and-error

process; a battle among all the desired characteristics of the plasma.

Figure 2.10: Closeup of the critical points in the upper divertor on EAST
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2.7.3 Basic plasma parameters

This section discusses the basic plasma parameters that are shown in the subplot of Figure 2.6

second from the right. The key parameters of which are shown in Table 2.3. These are typically

the parameters used to characterize the toroidal current density in the plasma.

Table 2.3: Summary of basic plasma parameters that are often targeted in GSdesign

Parameter Symbol Units TOKSYS Equation

Plasma Current �? [MA] cpasma �? =
∫
Ω?

�i d(

Internal Inductance ;8 [H] li ;8 =
4

`0A2 �
2
?

∫
+?

�2
?

2`0
di

Poloidal beta V? betap V? =
4

`0A2 �
2
?

∫
+?

〈=:�)〉 di

Boundary Flux k1 [V-s] psibry k1 = k(A, I)
��
!��(

The Plasma Current is the total flow of electrons and ions through the plasma within the

separatrix then integrating the current density in the toroidal direction �i over the area designated

by the poloidal cross-section within the separatrix Ω? gives the plasma current �?. The Internal

Inductance is the self-inductance of the current loop that is within the volume of the plasma, created

by the plasma current and is calculated by taking the magnetic field that is produced by the plasma

current (Ampére’s Law 2cA2�o = `0�?) and integrating over the volume of the plasma +? in the

toroidal mi direction. Here, A2 is the horizontal coordinate of the centroid of the plasma and can be

thought of as the current axis and �o is the poloidal magnetic field created by the plasma current.

The beta is a ratio of plasma pressure to magnetic pressure. Take the Poloidal beta V? which

only looks at the magnetic pressure from the poloidal magnetic field �o. The plasma pressure is

calculated with ? = =:�) and averaged over the volume of the plasma. Finally, the Boundary Flux

is the flux evaluated at the boundary and is not easily calculated but a simplified solution assuming a

circular cross-section is given in Appendix A. This is an important parameter as it is directly related

to the flux [V-s] the poloidal field coils can give the plasma. In reality, all the flux in the plasma is

effected but the flux at the boundary is what the diagnostics can measure. The relationship between
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them can be seen better in Figure 2.11 and is discussed in more detail in Section 2.7.4.

The remainder of file gsdesign_g170921_00010v1.m from line 141 onward are fairly straight

forward. The major difference between it and Listing 2.7 is that the poloidal field coil currents are

no longer locked to the gfile values and are instead allowed to adjust however needed to match the

previously mentioned parameters. This is set in line 145 where the targets are set to zero so as to

keep the coil current far from their limits. Line 148 also sets the locks to NaN to be sure only the

targets will influence the convergence. Lastly, line 150 sets the limits of the coil currents. These

limits are taken from the database containing the physical limits of each coil and are displayed in

Table 2.4 as well as the "soft" limits of each coil set to 89% of the "hard" or physical limits. These

hard limits are also shown in Figure 2.1a.

Table 2.4: Hard (physical limit due to mechanical stresses and cooling ability), soft limits (89% of
the physical limits), and power supply voltage limits of the poloidal magnetic field coil currents.

Coil Numbers 1-6 7-10 11-12 13-14 15-16

Hard Limit [kA] ±12.8 ±11.6 ±10.2 ±10.2 ±5.0
Soft Limit [kA] ±11.4 ±10.3 ±9.1 ±9.1 ±4.5
Voltage Limit [V] ±350 ±800 ±400 ±330 ±1600

2.7.4 Flux

As mentioned before, there is one last topic to discuss when it comes to designing an equilibrium.

As seen in Figure 2.11, the design of an equilibrium is essentially just a single time slice during a

discharge "flat-top" as show in the second subplot. This is all well and good, but it doesn’t indicate

if there will be enough flux available from the coils to reach the designed equilibrium from the end

of the ramp-up. The ramp-up is the phase where the plasma current is steadily increased at the

beginning of the discharge, directly preceding the flat-top shown in Figure 2.11. For this, one can

perform a linear extrapolation such that the maximum voltage the power supplies of the individual

poloidal magnetic field coils are not exceeded. These limits are also shown in Figure 2.1b. First, it

is necessary to make sure the power supplies can handle the transition from the ramp-up phase to the
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shape control phase at flat-top. To do this, calculate the maximum voltage that will be demanded

to change the current of each coil as shown in Equation (2.3).

"22

d�%�
dC

= +%( (2.3)

Where "22 is the square matrix containing the coil-to-coil mutual inductance, �%� is the vector

containing the current in each coil, and +%( is the vector containing the voltage demanded from the

power supply. This equation can be discretized as shown in Equation (2.4).

"22

�%� 5 − �%�8

C 5 − C8
= +%( (2.4)

As long as the voltages in +%( remain within the range designated in Table 2.4 then the equilibrium

can be reached from the end of the ramp-up. If not, then the designed equilibrium needs to be

adjusted. This is not an exact process, but again, a trial-and-error process that is based on the ramp-

up of a similar discharge that has already succeeded. In Figure 2.11, the vertical line marking GS

Design marks the extrapolation from the equilibrium shown in Figure 3.1a. This is the maximum

flux that can be expected in the plasma, based on Equation (2.4). Any higher than this and the coils

cannot reliably produce enough flux. This establishes the rough estimate for when to employ the

RZIP or ISOFLUX control to shape the plasma and is discussed in the next section.

2.8 PCS parameters

Before closing this chapter, it is necessary to address the Plasma Control System (PCS). The PCS

was inherited from DIII-D and modified for the EAST central control system and has been in use

since the first plasmas at EAST in 2006 [28]. The modifications to it were necessary because the

special control characteristics that are a result of the coils having an integrated design (used to

induce the plasma current and control the shape of the plasma) and being superconducting. The

NTC follows the normal divertor plasma discharge control sequence using a piece-wise series of
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Figure 2.11: Flux progression during discharge and relationship with selected poloidal magnetic
field coil currents. The bottom subplot shows solid lines for the measured coil currents and dotted
lines for the designed coil currents. This figure is used both for explaining the design strategy
concerning Equation (2.4) and is the result of shot 083311, this successful NTC discharge.
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feedback control algorithms to smoothly transition the plasma from a circular shape to a fully

diverted and elongated shape. The specific shape of the plasma is achieved in various ways, but

all rely on the feed-forward current in the poloidal field coils. This work primarily focused on the

use of the RZIP and ISOFLUX control schemes. The RZIP control simplifies the control system

by assuming only two degrees of freedom i.e., movement on the A − I plane. The main inputs

needed from the equilibrium design are the initial feed-forward coil currents and the location of

the magnetic axis. The targets used to create the designed equilibrium are also input into the

PCS, but these are already known. The model assumes a current distribution for a specific plasma

equilibrium and then only allows the plasma to move as a single rigid body in the vertical or radial

directions [28]. The position is then regulated by adjusting the current in the PF coils to try and

keep the magnetic axis at the desired location. The ISOFLUX control, taken from DIII-D, adds to

the RZIP scheme by using specific control points on the boundary (points at which a diagnostic

probe can directly measure the flux) and tries to keep the flux, which is calculated at each point

using real-time EFIT, at all of these control points the same; greatly improving shape control [28].

Thus for both control schemes, the feedback control current for the shape position is superimposed

on the feed-forward current for the desired shape. The sum of the two is the total current in the coil

and is the reason particular feed-forward design constraints must be applied such that each coil has

ample amperes of capacity remaining for the feedback control. Referring back to Figure 2.1a, a

general design strategy of only allowing any given coil to use 89% of its capacity for feed-forward

current is employed, the remainder is saved for feedback control. This design strategy can be seen

in the top left subplot of Figure 3.1a. The upper and lower bounds are the "soft" limits of each coil

and are only 89% of the "hard" or physical limits, see Table 2.4.
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Chapter 3

Experimental Results

3.1 Design agreement

After completing all the steps in Chapter 2 and especially going through 17 versions of designs,

each time fine-tuning one of the parameters, targets, or weights, the final equilibrium can be seen

in Figure 3.1a and the key parameters are summarized in Table 3.1. The experimental results were

gained after a total of five discharges were used to calibrate the PCS and produce the discharge (shot

083311) displayed in Figure 2.11 and Figure 3.1b. The agreement between the designed plasma

parameters and the experimentally measured parameters are also shown in Table 3.1, along with

the errors of each.

The large errors are not a concern as the designed equilibrium was for a specific flux and conse-

quently falls into a different time-slice of the discharge than the selected time-slice of experimental

results. The reason this time-slice of experimental results was chosen is that it shows the best results

for the lower triangularity which is the main focus of this research. In the table, it can be seen that

X! is more negative than the design, which is quite unexpected but very welcome. The parameters

from this discharge will be used to create a new design that should be even more accurate with

even lower X! . Furthermore, the ^ and '<0 have an excellent agreement between the designed and

experimental values. These are very promising results because ^ has a strong relationship with
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vertical drift. The greater the ^ the more difficult it is to control the vertical position of the plasma.

There was a concern that after augmenting the shape, the ^ was near the limits of controllability for

this novel NTC plasma. The agreement between the '<0 values is also encouraging as the observer

used to estimate the horizontal position of the plasma needed to be fine-tuned during the preceding

four discharges.

However, the experimental �? is not as high as the designed �? and this is a concern. Further

qualitative investigation shows that because so much of the poloidal magnetic field coil flux was

used in keeping a very negative X! the plasma current suffered. The vertical position of the magnetic

axis, /<0 is also of concern as this shows an error in the PCS. Normally, the vertical position is

easier to control than the horizontal position, but the NTC has vertical stability issues in other

experiments [16], [21], [24] and so it is to be expected that the vertical position would have a larger

error. On the other hand, the discharge did not drift vertically enough to cause a disruption, and so

further discharges are expected to be equally controllable.

Table 3.1: Summary of key parameters for final NTC design based on g170921

Parameter Symbol Units GSDesign Experiment Error %

Plasma Current �? [MA] 0.2999 0.2734 8.84
Internal Inductance ;8 [H] 1.1818 1.4454 22.30
Poloidal beta V? 1.0189 0.3666 64.02
Elongation ^ 1.6670 1.6535 0.81
Lower Triangularity X! -0.0832 -0.0938 12.74
Magnetic Axis R '<0 [m] 1.8680 1.8945 1.42
Magnetic Axis Z /<0 [m] -0.0438 0.0400 191.32
Boundary Flux k1 [V-s] 0.7225 0.17368 75.96

In addition to the tabular results, it is helpful to plot the boundary points of the design and

experiment for comparison. Qualitatively, the agreement is quite good and significantly better than

expected.

The final check of this discharge is to examine where exactly the open field lines were incident

upon the divertor plates. Figure 3.3 clearly shows that while the majority of the open field lines

missed the critical areas, the strike points are very close. For future designs, the strike points will

Chapter 3 David Weldon David Weldon



Negative-Triangularity Configuration on EAST Negative-Triangularity Configuration on EAST

(a) The final equilibrium design given by gsdesign.m based off of file g170921

(b) Reconstruction of the NTC shot 083311 on EAST

Figure 3.1: A comparison between the designed discharge and the reconstruction of the discharge
083311
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Figure 3.2: Plot of the boundary points of the design and experiment for discharge 083311
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need to be moved farther up into the divertor. Moving the strike points deeper into the divertor is

not just a goal of the NTC but is desirable for any fusion reactor design. This keeps the heat and

particle flux that comes from the open field lines incident at an oblique angle effectively increasing

the incident area and thus reducing the power density on the target plates.

Figure 3.3: Closeup of the critical points in the upper divertor with the open field lines of discharge
083311

3.2 Limitations

The major limitation seen in these experimental results is largely from competing design require-

ments. The items listed below are the parameters in order of preference from a result standpoint,

assuming the safe operation of the experiment.

• Strong negative-triangularity

• Coil limits - for safe operation and to maximize discharge duration
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• Strike point locations

• Plasma current

• Plasma volume

Strong negative-triangularity, as stated above, requires the poloidal field coils to operate quite

close to their limits, especially coils 13 and 14, as seen in Figure 2.11 (bottom subplot) and

Figure 3.1a (top right subplot). This is understandable as coils 13 and 14 (see Figure 2.1a are closest

to the right side of the plasma where coils 12 and 14 must work to keep the lower triangularity

as negative as possible while coils 11 and 13 struggle to keep the upper right strike point away

from the critical area of the divertor. In the future, to alleviate this problem, the target plates can

be adjusted so that the seam between them is in a safer place. In fact, in the autumn of 2019, a

full metal upgrade to EAST began. This will not only upgrade the divertors but the walls of the

tokamak as well. This upgrade is expected to increase the heat-load the PFCs can handle as well

as reduce the impurities that the PFCs release into the plasma.

The coil currents are certainly the crux of all the issues listed above. If the coils were perfectly

superconducting, with infinite flux, then no problems would be had. However, the limitations exist

exactly because this is not the case. The coils can only provide so many V-s and so this flux must be

shared among the competing design requirements. Furthermore, the increased plating on the walls

from the upgrade mentioned above will have increased eddy currents that will resist the changes in

the magnetic field produced by the coils, effectively reducing the flux available for feedback control.

However, a potential method to mitigate this is to get more accurate measurements of the passive

conductors present in the magnetic fields. This plan is also underway during the upgrade. The

control of the plasma is based largely on diagnostics that measure the magnetic fields and a model

of the mutual inductance between the coils and passive elements. As of 2020, this model is still

simple with many of the values being rough estimates (e.g., resistance between the power supply

and the poloidal field coil) or some are even guesses (the resistivity between passive elements).

Proposals to update this model have all been waiting for a time when the tokamak is disassembled
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and so should be underway in late 2020. As a way to calibrate this model even better (many of

the values change every time a passive element is added, subtracted, or moved) a proposal to add

hardware to more accurately measure the induced voltage at each coil such that the coils themselves

can be used to measure the mutual inductance. Imagine sending a waveform, a simple sawtooth,

for example, through one coil and using all the other coils as well as the magnetic diagnostics to

measure the field produced. Then repeated, not only for each coil but for every combination of the

coils. Using this method, an overdetermined system of the coils and passive elements could then

be solved using a least-squares method. The proposal for this upgrade is still under consideration.

The limitations due to the strike point locations have already been discussed, leaving only the

final two items. The plasma current is the more important of the two. A higher plasma current

results in a higher �o which increases the confinement of the plasma. As discussed above, the

poloidal field coils struggle to stay within their limits to achieve the NTC and so the plasma current

suffered. However, if the proposal mentioned in the preceding paragraph were implemented then

the magnetic diagnostic measurements would hypothetically be more accurate making the observer

for the plasma center more accurate and thus the plasma would be more controllable. This would

allow the coils to operate closer to their limits for longer without fear of disruption or not having

enough flux in reserve for feedback control and thus able to increase the plasma current. This would

also work well for the plasma volume issue as the boundary points would then be more accurately

measured in real-time and more easily controlled. This means the safety margin between the LCFS

and the limiter can be safely decreased, allowing for a larger overall plasma.

We wait in hopeful anticipation of the passive voltage measurement upgrade for the poloidal

(and possibly the toroidal) field coils to be approved so that a team of clever and feisty graduate

students can cut their proverbial teeth on it.
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Plasma Response Simulation

4.1 Introduction

This section gives a detailed demonstration of east.slx, a Simulink model, to produce a simu-

lated shot using the EAST PCS. One of the aims of this simulation, and by extension this section,

is to allow students and scientists alike to test out their proposed shots in a simulated environment

and thereby work out any bugs/mistakes with their design/configuration/diagnostics/etc. To achieve

this, the majority of the heavy lifting is done by gspert.m which can be used separately, though it

will not be covered in this thesis. Designing an equilibrium of a shot can be done with gsdesign.m

and has already been covered in Chapter 2. The general procedure of this simulation is to use the

existing PCS as is and use Matlab to provide all the same feedback that the EAST machine would

provide. To do this, the east.slx needs to match the plasma response with reasonable accuracy,

which it does as of the spring of 2020 and is continuously improving. At the moment, simpcs in

conjunction with east.slx is less forgiving than the actual EAST machine in most cases. That

is to say, if a discharge will not run on the simpcs, then it still might run on the EAST machine.

However, if the discharge does run on the simpcs then it will almost certainly run on the EAST

machine.

Note that simpcswill refer to all the software used to simulate a shot at EAST while east.slx
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refers only to the Simulink model in Matlab. The background necessary for this section is the

same as that of Section 2.3.

4.2 Starting File(s) and information

4.2.1 File(s)

This section will discuss the inner workings of three files. Two of which can be copied from

the TOKSYS library and modified while the last one will need to be written by the user just as

those in Section 4.2.1 were written. It is recommended that the user create a directory for the

EAST simulations. For this section, create the following EAST-sim directory located at the path

/home/ASIPP/<user>/EAST-sim/ where <user> is the user’s home directory. Start by opening

a Linux [Terminal], log into data-server3, and use the following commands to copy two files

from TOKSYS to the EAST-sim directory. If the user is unsure how to open a Linux [Terminal],

refer to Appendix B.

Listing 4.1: Copying files from TOKSYS to the user’s EAST-sim directory

1 cp /project/builds/TOKSYS/2019-09-05_00-24-57_build366/tokamaks/

east/sim/gsevolve/setup_east.m /home/ASIPP/<user>/EAST-sim/

2 cp /project/builds/TOKSYS/2019-09-05_00-24-57_build366/tokamaks/

east/sim/gsevolve/simsettings.m /home/ASIPP/<user>/EAST-sim/

At the time of writing, the source file path above is the current path. In the future, this path will

change and so the source file path could also be written as /project/builds/TOKSYS/current/

tokamaks/east/sim/gsevolve/setup_east.m. However, the latest current directory may have

updated simsettings.m and setup_east.mwhich might not match those in this section and may

not work smoothly with the steps in this section.
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4.2.2 TOKSYS

Now that the necessary Matlab files have been copied, one should move on to creating a shell script

called simpcs.bashrc. This script is run from the Linux [Terminal] window before Matlab

is run and sets the global variable GATOOLS_ROOT to a specific path as well as a few other aliases.

For east.slx to work properly for what follows, this variable needs to be set to the build from

2019-09-05. As updates are made to the TOKSYS there is no guarantee that this tutorial will work

for later builds of TOKSYS. It is recommended that this section is completed before using a later

build of TOKSYS. For this, look at the following bash script named.

Listing 4.2: bash script used after logging into a server

1 # simpcs.bashrc

2

3 cd /home/ASIPP/daw/EAST-sim

4

5 # Set paths

6 export MATLABPATH=/project/builds/TOKSYS/current/startups:

$MATLABPATH

7 export GATOOLS_ROOT=/project/builds/TOKSYS/current

8 export PATH=/project/builds/anaconda2/bin:$PATH

9

10 # User specific aliases and functions

11 alias ls="ls -alh --color"

12 alias matlab="matlab2017a -softwareopengl"

13 alias simpcs="/pcshome/pcs/builds/pypcs_shared/pcshost/current/

tokrun nosim --pcs-root=/pcshome/pcs/builds/PCS/east/pcshost/

master/current --gui"

Line 3 changes the working directory, lines 4, 5, and 8 set aliases that make executing certain

commands easier, while lines 6, 7, and 9 set the necessary paths for simpcs and the Matlab scripts

to execute properly.
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4.3 Running the Matlab Scripts

Begin with opening a Linux [Terminal] in the location of the EAST-sim sub-directory. Execute

the commands after each "$" without a preceding space and the output should match the output

below.

Listing 4.3: What the [Terminal] should look like after starting Matlab

1 bash -4.1$ ssh -X data-server3

2 <user>@data-server3’s password:

3 Last login: Wed Apr 8 06:40:02 2020 from 202.127.205.60

4

5

6 ************************************************************

7

8 Welcome to EAST PCS Data Server

9

10 ************************************************************

11

12 -bash -4.1$ source simpcs.bashrc

13 -bash -4.1$ matlab

14 MATLAB is selecting SOFTWARE OPENGL rendering.

At this point, the Matlab GUI should open. Again, it should be noted that some if the quick key

commands such as ctr+c and ctr+p do not behave the same way when using Matlab on the server

as they do on a PC. For a remedy, please see Appendix E.

4.3.1 sim_start.m

For convenience, create a start-up script that will run several other scripts to load everything

east.slx needs to work properly.
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Listing 4.4: sim_start.m start-up script

1 % Used to set file paths, run toksys_startup , east_startup ,

simsettings ,

2 % and setup_east. All unnecessary variables are cleared at the end

.

3 %

4 % WRITTEN BY: David Weldon ON 2020/03/30

5 %

6 % MODIFICATION HISTORY:

7 % 2020/04/04 Cleaned up the code to make it more readable

for a tutorial

8 %

9 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11 close all

12 clear all

13 clc

14

15 disp('**********sim_start**********')

16

17 % Get the basics started up

18 disp('**********toksys_startup**********')

19 toksys_startup

20 disp('**********east_startup**********')

21 east_startup

22 % settings for simserver

23 disp('**********simsettings**********')

24 simsettings

25 % run the setup for the east sim
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26 disp('**********setup_east**********')

27 setup_east

28

29 % set some defaults for figures

30 set(0,'DefaultAxesFontSize',15)

31 set(0,'DefaultFigureColor',[255 253 224]/255)

32 set(0,'DefaultFigureColormap',jet);

33 set(0,'DefaultAxesCreateFcn','zoom on')

Lines 11-13 are optional, in order they: close all figure windows, clear the Workspace, and

clear the Command Window. Lines 15, 18, 20, 23, and 26 display in the Command Window the

script that is running to make it easier to see the progression of the startup. Lines 19, 21, 24, and

27 execute the corresponding scripts. Lines 30-33 set some default values for plotting figures.

To create and run this script, go to the Matlab GUI and in the top right corner select "New

Script" as seen below in Figure 2.3. Copy and paste the code from Listing 4.4. Be sure to check

for proper formatting as copy and pasting from this PDF file might not work as expected. Once it

is copied, then save it as sim_start.

4.3.2 simsettings.m

Before running this script, however, set the shot number in the simsettings.m script to 77218 (the

discharge that will be used throughout this section) and while doing so, add a few other details as

well. The simsettings.m script that was just copied from the TOKSYS directory in Section 4.2.1

should be changed slightly to match the code in Listing 4.5.

Line 5 is the shot number that will be loaded into the PCS and simulated. Line 13 is optional

and can be set to any one of the directories shown in line 11. This tells Matlab where in the

MDSplus tree to look for the data of the shot number in line 5. Line 18 needs to match the

stop-time that is used in the PCS NEXT SHOT and will be discussed later. Lines 23-25 are needed

for setup_east.m which will be addressed next.
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Listing 4.5: simsettings.m simulation settings i.e. shot number and MDSplus

directory to search

1 % Create a copy of this file in the directory from which matlab is

run

2 % Use matlab version 2017a:

3

4 % oldshot is default source for data that are not otherwise

specified

5 oldshot = 77218;

6

7 % set efit source to one of the following. if the source you chose

is not

8 % available then setup_east.m will attempt to retrieve data from

the

9 % followin in the order presented until data is found. If no data

is found

10 % then setup_east will exit with an error.

11 % 'EFITRT_EAST ', 'EFIT_EAST ', 'PEFIT_EAST ', 'PEFITRT_EAST '

12

13 % efit_source = 'EFIT_EAST ';

14

15

16

17 % stop_time should match time-to-stop in the PCS under Bookmarks ->

operating setup data

18 stop_time = 2;

19

20

21 % -----------------------------------------------------------------

22 % Creating structure simset that is read by setup_east (do not edit

)

Chapter 4 David Weldon David Weldon



Negative-Triangularity Configuration on EAST Negative-Triangularity Configuration on EAST

23 simset = struct(...

24 'oldshot', oldshot,...

25 'stop_time', stop_time);

4.3.3 setup_east

Only lines 55-105 are displayed as the other lines will not be modified. Starting with lines 55-58

delete the line setting efit_source to match that of Listing 4.6. Then move down to lines 77-101.

It is easiest to copy and past from Listing 4.6 and then reformat to match it exactly. In short, the

line that defines efit_source has been taken from lines 55-58 and moved it to an if statement in

lines 77-101 that checks for the existence of the efit_source. This variable is optionally defined

in simsettings.m in line 13 as shown in Listing 4.5. However, that line is commented out which

means that setup_east will iterate through the list of each possible efit_source until the data

is found or exit with an error if it is not found. For this example, the source will be found and it will

be from EFIT_EAST, however for other shots the source may be different and will need to match

the source chosen in Section 4.4.2. This is done with the while loop in lines 83-97 of Listing 4.6.

Information is displayed to the Command Window in Matlab to indicate which sources are tried

and which one is chosen.

Listing 4.6: setup_east.m simulation settings i.e. shot number and MDSplus

directory to search

55 tok.tokamak = upper(tok.tokamak);

56

57 rzero = 1.6955;

58 shot = simset.oldshot;

59

60 % Data and commands from the old shot

61 getallolddata = 1;

62 if getallolddata

63 disp(['Reading pcsdata from shot ' num2str(shot)])
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64 pcsdata = east_pcsdata(shot);

65

66 disp(['Reading pcs commands from shot ' num2str(shot)])

67 pcscom = east_pcscom(shot);

68 else

69 pcsdata = [];

70 pcscom = [];

71 end

72

73 if verbose

74 disp(['Reading efits from shot ' num2str(shot)])

75 end

76

77 if ~exist('efit_source', 'var')

78 efit_source = {'EFITRT_EAST', 'EFIT_EAST', 'PEFIT_EAST', '

PEFITRT_EAST'};

79 disp('**No efit source specified in the simsettings.m file.**')

80 disp('**These sources will be attempted in the order specified:

');

81 disp(efit_source)

82 c = 1; exit = 0;

83 while exit == 0

84 try

85 disp(['**Trying to find data in source: ' efit_source{c

} '**'])

86 [eqs, eqtimes] = east_efits(shot,efit_source{c},tok);

87 disp(['**Using data found in source: ' efit_source{c} '

**'])

88 exit = 1;

89 catch ME

90 disp(ME)

91 c = c + 1;
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92 end

93 if c > length(efit_source)

94 exit = 1;

95 disp(['**No data found for shot ' num2str(shot)])

96 end

97 end

98 else

99 [eqs, eqtimes] = east_efits(shot,efit_source ,tok);

100 disp(['**Using data found in source: ' efit_source '**'])

101 end

102

103 k = true;

104 for i = 2:numel(eqs)

105 k(i) = eqs(i).betap > 0;

4.3.4 sim east

Figure 4.1: Running a Matlab script
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With all three Matlab scripts ready, the simsettings.m and setup_east.m scripts can be

closed and the sim_start.m script can be executed by clicking on the large green arrow near the

top center of the Matlab GUI. Alternatively, the F5 key on the keyboard will work also. Once

executed the GUI should be similar to Figure 4.1. The first time this script is run, three files will be

created and added to the directory and the Command Window may show some warnings and errors

when looking for these files. This can take several minutes.

Figure 4.2: The results of running the sim_start.m script for the first time

If the script executes without serious error, then the final output to the Command Window should

be exactly like that of Figure 4.2. Also shown in the figure is the last Matlab command to be run:

sim east. Type this in as shown and hit enter. This final command will start up the simulation

and wait for the PCS to begin interacting with it.

To see the Simulink file east.slx instead of just running it, then replace the sim east

command with simply east. This will open the Simulink model, as shown in Figure 4.3. This

model can be run by clicking the green arrow button near the top center of the Simulink window.

This will start the simulation and should yield the same results as running the sim east command

in the Command Window. However, if the simulation seems to end abruptly or unexpected behavior

occurs, then revert to using the sim east command in the Command Window.

Now that the simulation is running, look at the Linux [Terminal]window shown in Listing 4.7.

Take note of Line 19 as it contains the most pertinent information for the next section which will
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Figure 4.3: The Simulinkmodel simulates the behavior of the EAST machine, opened by executing
east in the Command Window

give instructions on how to open and configure the simulated PCS.

Listing 4.7: Information to be entered into the PCS is shown in the same Linux

[Terminal] used to start Matlab

1 bash -4.1$ ssh -X data-server3

2 daw@data-server3’s password:

3 Last login: Wed Apr 8 08:13:41 2020 from 202.127.205.60

4

5

6 ************************************************************

7

8 Welcome to EAST PCS Data Server

9

10 ************************************************************

11
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12 -bash -4.1$ source simpcs.bashrc

13 -bash -4.1$ matlab

14 MATLAB is selecting SOFTWARE OPENGL rendering.

15

16 *********************************************

17 SIMSERVER ready and waiting for start of shot

18

19 simport = 53514, simhost = data-server3

20 num rt cpus = 7

21 master cpu num = 1

22 data will be given to cpus in following order: 1, 2, 3, 4, 5, 6, 7

23 simulation will start at 0.000000

24 cpu 1 cycle time = 100 ** MASTER CPU

25 cpu 2 cycle time = 500

26 cpu 3 cycle time = 4000

27 cpu 4 cycle time = 100

28 cpu 5 cycle time = 1000

29 cpu 6 cycle time = 100

30 cpu 7 cycle time = 500

31 cpu 1 command delay = 100

32 cpu 2 command delay = 500

33 cpu 3 command delay = 4000

34 cpu 4 command delay = 100

35 cpu 5 command delay = 1000

36 cpu 6 command delay = 100

37 cpu 7 command delay = 500

38

39 starting execution

40 *********************************************
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4.4 Running simpcs

Begin this section without closing any window or changing Matlab in any way. Instead, simply

open another Linux [Terminal], log into data-server3, and run the simpcs.bashrc script as

before.

4.4.1 Starting simpcs

Now instead of startingMatlab, execute the commandsimpcs as shown in Listing 4.8.

Listing 4.8: Executing simpcs in a new Linux [Terminal]

1 bash -4.1$ ssh -X data-server3

2 daw@data-server3’s password:

3 Last login: Thu Apr 9 03:22:20 2020 from 202.127.205.60

4

5

6 ************************************************************

7

8 Welcome to EAST PCS Data Server

9

10 ************************************************************

11

12 -bash -4.1$ source simpcs.bashrc

13 -bash -4.1$ simpcs

This will cause the IDL window to open. Simply click on the "Click to Continue" button as shown

in Figure 4.5a which will cause another window, called the Wave, to open as is shown in Figure 4.5b.

Once the Wave window is open go to Control > next shot to open the NEXT SHOT window, as

shown in Figures Figure 4.5b and Figure 4.4.

This brings us to the Load shot window shown in Figure 4.6a. Enter in the shot number 77218

and then click "load all categories". This will open a TAKE NOTICE! which gives some warnings.
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Figure 4.4: Restoring a previous shot in the NEXT SHOT window

(a) Starting the PCS requires use of IDL (b) Opening the NEXT SHOT window
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Simply click the "dismiss" button at the bottom of the window which will then open another window

titled Skipped Items From Restores. Click "load phase: ShotStart/Data Acquisition" which will

lead to another TAKE NOTICE! window, which can also be dismissed. This will cause the Skipped

Items From Resotres window to change slightly and add more options. Click on each option starting

with "load data item: Snap setups/efit/Equilibrium" one by one until they have all been loaded,

then click the "dismiss" button. After the first option is clicked, the space-key can also be used to

click on each subsequent option. Finally, dismiss the Skipped Items From Restores and the Load

shot windows.

4.4.2 Configuring the Shot

Now that the shot is loaded, change the real-time reconstruction from PEFIT (Parallel EFIT) to

rtEFIT (real-time EFIT). As mentioned in Section 4.3.3, this source will need to match the source

that Matlab found. To do this, turn once again to the NEXT SHOT window in the left pane and

follow the sequence Ctgy > ParaEquilibrium > Sub > EQUIL options > Equilibrium Source. This

sequence is shown more explicitly in Figure 4.7. The next step is to return to the top of the NEXT

SHOT window and from there select Bookmarks > operating setup data which will open a new

window titled Operating setup data. Enter in the information as is displayed in Figure 4.8 except

for the information noted earlier in Listing 4.7. Set Operational mode > simulation test which is

the mode for working with the east.slx, the "time to stop" was set in the simsettings.m. The

"simserver host:" and "simserver port:" come from the Linux [Terminal] from which Matlab

is run, Listing 4.7 line 19. Finally, the "Number of samples:" should be set to 10,000. All other

data does not need to be changed and can be left to whatever default the Operating setup data had

originally. Click "apply" at the bottom of the window and then "close".

The last step to run a shot is to go to the NEXT SHOT window then select File > manual cycle

control which will open a window by the same name. From here ensure that the message reads

"waiting for a shot" then click "start test shot" which should change the message in the window to

"locked out, unlock possible" as shown in Figure 4.9a. Shortly after that a new Matlab figure titled
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(a) Load shot window, enter in shot
number then select "load all cate-
gories"

(b) TAKE NOTICE! windows can be dismissed after reading the notice

(c) Skipped Items From Restores window needs all "load..." buttons
clicked

Figure 4.6: Steps and windows for restoring a shot
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(a) Step 1. Ctgy > ParaEqui-
librium

(b) Step 2. Sub > EQUIL op-
tions

(c) Step 3. Equilib-
rium Source > 0.00000
1.00000

(d) Step 4. In the new
y: window enter 0 then
click "replace"

(e) Step 5. On the graph, a square pink marker
should indicate the new coordinate that was en-
tered in the previous step. Just above the graph
on the left side, click "apply"

Figure 4.7: Steps and windows for changing the EFIT source

Figure 4.8: Entering the pertinent information from Matlab into the Operating setup data window
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GSevolve simulation should open showing the progression of the plasma flux surfaces as it solves

each equilibrium for each time step using GSevolve, shown in Figure 4.9b.

4.5 Post-simulation

If any errors occur, then the log file which is located by looking at the Wave window then Utilities

> view pcs log should hold greater details of the errors. This can give clues as to what is wrong

with the PCS and simulation.

After or even during the simulation another Linux [Terminal] can be opened but instead of

logging into the data-server3, log into the csX server where X can be 1, 2, 3, or 4. Then issue the

command eastviewer as shown in Listing 4.9 which should bring up the window EASTViewer

on EAST. Then select EAST mds-server and enter in the "shot:" then click "update" which will then

populate the "Tree" list under the "tree and time" section. Since the simulation is based on rtEFIT,

choose "efitrt_east" as shown in Figure 4.10. Now, select a time to view which will open another

window: Plasma Equilibrium. This window, shown in Figure 4.11, gives the reconstructed shape

and data for the shot for each time-slice and can be compared with the simulation as the simulation

steps through time.

Finally, the simulation can be checked using the following command executed in the Matlab

Command Window: viewtime=1; check_east_sim.

Listing 4.9: Viewing the simulation results in the Matlab Command Window

1 bash -4.1$ ssh -X cs2

2 daw@cs2’s password:

3 Last login: Fri Apr 10 03:15:51 2020 from 202.127.205.60

4

5

6 ************************************************************

7
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(a) Select NEXT SHOT > File > manual cycle control > start test shot to begin the test shot.

(b) The GSevolve simulation window shows the progression of the simulated plasmaChapter 4 David Weldon David Weldon
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8 Welcome to EAST Computing Server 2 (CentOS6.7-64bit)

9

10 Parallel and high performance computing are prohibited!

11

12 Please pay attention to resources usage or be banned!

13

14 ************************************************************

15

16 -bash -4.1$ eastviewer
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Figure 4.10: Using eastviewer to compare the simulation shape and parameters with the recon-
structed shape and parameters
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Figure 4.11: A comparison between the Plasma Equilibrium window and the GSevolve simulation
window.
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Chapter 5

Conclusion and Discussion

5.1 Summary

This thesis presents a unique and novel configuration for the EAST machine; demonstrating that not

only is a negative-triangularity configuration possible for EAST but by extension, it shows that any

D-shaped, fully superconducting tokamak should be able to recreate the NTC while keeping the

plasma safely diverted on to the target plates. This thesis presents several firsts for EAST: (1) the

first application of the NTC at EAST; (2) the first successful discharge of a configuration designed

completely by GSdesign; (3) the first plasma response simulation for a full discharge from EAST.

Chapter 1 presented an introduction to nuclear fusion, the triple-product, magnetic confinement,

tokamak physics, and negative-triangularity. The motivation for this work is to understand better

the underlying physics of negative-triangularity and its apparent stability advantages and reduced

heat-load.

Chapter 2 introduced EAST and compared its geometry and characteristics with those of DIII-

D, TCV, and ITER. The design procedure using GSdesign, Matlab, and TOKSYS was presented

in detail. The optimization for the NTC was also described and the final design presented with all

of its considerations.

Chapter 3 presented a comparison between the experimental results and the final design from
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Chapter 2. While the design results were better than expected in the final discharge, the limitations

of the EAST machine were made apparent and a brief explanation of these limitations was also

discussed. Notwithstanding, the final results are very encouraging and future NTC experiments are

scheduled.

Chapter 4 described in great detail the initial simulations of the plasma response model for a

full discharge at EAST. The success of this model in combination with the success of the NTC

discharge has provided ample encouragement for the future work described in the final section.

5.2 Ongoing and Future Work

As of the time of writing, the author is in collaboration with scientists from DIII-D to refine the

plasma response model (east.slx) such that the NTC can be successfully simulated. However, to

complete this work, more data on NTC discharges will be required. Unfortunately, with the upgrade

of EAST underway, there will be no new data until 2021 at the earliest. Nevertheless, several more

NTC designs (a range from −0.4 ≤ X! ≤ 0.4) have already been made and are waiting for EAST

to be back online. In the meantime, the plasma response model can be expanded and refined for a

variety of discharges, not limited to the NTC. This will eventually include auxiliary heating, more

advanced diagnostics, disruption suppression through sonic beam injection, and others. While

these additions will continue to improve the model, refining of the myriad variables within the

model is separate and significant task altogether.

For some of the variables, better measuring techniques such as those suggested in Section 3.2.

Other techniques can also be used during the upgrade to better measure certain aspects of the

tokamak directly. However, for many of the variables in the model, these types of direct and

indirect measuring techniques will not suffice as they cannot be done during discharges and the

values of these variables change depending upon the discharge. Currently, each time the model is

expanded to include another feature, several dozen discharges must be painstakingly run through

the model and so that the results of the simulation can be compared with the experimental results.
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This would essentially mean a poor unfortunate graduate student would be repeating the steps in

Chapter 4 hundreds of times. And with each repetition guessing at adjustments in the model and

then trying again. This type of trial-and-error method is tedious, prone to human error, and highly

inefficient overall.

To deal with this, the author has begun working on automating the trial-and-error method.

While this is still not the most efficient method, computationally speaking, it will alleviate the

tediousness and human error issues. To do this, some limitations will need to be implemented.

For example, for the simulation to be useful to the average EAST operator, the simulation needs

to accurately predict if a specific configuration will reach break-down and flat-top. That is to say,

the plasma will instantiate and reach a controllable state. For this, the simulation would only need

to simulate the first two or three seconds, not the entire discharge. Other limitations may also be

implemented to reduce the computations such as only including certain diagnostics rather than all

available diagnostics. With these limitations in place, several dozen discharges that all use the same

diagnostics, have similar configurations, and similar duration can be "batch processed" through

the simulation. This alone would save hundreds of man-hours. Then the discharges that whose

simulation did not reach breakdown and flat-top can be examined individually and the variables in

the model can be tweaked.

While this method would save countless hours, the tweaking of the model variables still

essentially means a human would need to build an intuition for how to tweak each variable. Thus,

the next step of the work would be to find a correlation between how those variables were tweaked

and the parameters in the discharge configuration. For example, an obvious correlation would

be the resistivity between passive structure elements and the targeted plasma current. A different

plasma current would cause more or fewer eddy currents in the passive structure and more or less

resistivity between them. Plotting the plasma current vs. the resistivity of certain passive structures

would likely reveal some pattern.

Unfortunately, this is still a very tedious process as there are hundreds of variables in the model

and hundreds of parameters for each discharge configuration. To go through and examine the
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correlations of each would be a herculean task... for a human. This is where the future work, not

just for this thesis, but for many tokamaks is heading: Artificial Intelligence.

Because AI is not at all the topic of this thesis, only a few sentences will be given here. Only

to say that other devices have successfully implemented machine learning into plasma control

and disruption mitigation systems [29], [30]. The authors successfully gave the machine learning

algorithms the initial parameters and disruption results of hundreds of discharges as the "teaching"

data. The machine learning algorithms were then able to find the correlations between the initial

parameters of the discharge and the output from the diagnostics just before the disruption to predict

the instability in real-time effectively. It seems reasonable that with similar algorithms, the variables

of the plasma response model could be more accurately fit, thus making the simulated plasma highly

accurate.
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Appendix A

A Derivation of the Grad-Shafronov

Equation

A.1 GS Derivation

This derivation refers to the Navy Research Laboratory Plasma Formulary abbreviated as NRL, in

particular the vector identities. An on-line copy can be found at https://www.nrl.navy.mil/

ppd/content/nrl-plasma-formulary.

Begin with a few assumptions about the magnetic field and magnetic flux

H = HZ + HV = �ie> +
1
'
∇k × e>, �I =

1
'

mk

m'
, k% = 2ck (', I = 0) (A.1)

Where HZ = �ie> and HV = 1
'
∇k × e>. Also note that both �i and k are not functions of i. So

any derivatives with respect to i for them will be 0. Now that the functions of the magnetic field

and flux have been established, begin with P and evaluate it through Ampere’s Law

4c
2
P = ∇ × H = ∇ × HZ + ∇ × H p
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To prove that ∇× HZ = 1
'
∇

(
'�i

)
× e> use the NRL Plasma Formulary vector identities 8 and 10.

∇ × HZ =
1
'
∇

(
'�i

)
× e>

∇ ×
(
�ie>

)
=

1
'

(
'∇�i + �i∇'

)
× e>

�i∇ × e> + ∇�i × e> =
1
'

(
'∇�i + �i∇'

)
× e>

�i

'
ez + ∇�i × e> = ∇�i × e> +

�i

'
���*

eX∇' × e>

�i

'
ez + ∇�i × e> = ∇�i × e> +

�i

'
ez
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Move on to the poloidal field and to show that ∇ × H p =
(
− 1

'
∇2k + 2

'2
mk

m'

)
e> = − 1

'
Δ∗ke>, use

NRL vector identities 7 and 10.(
− 1
'
∇2k +

2
'2

mk

m'

)
e> = ∇ × H p

= ∇ ×
(

1
'
∇k × e>

)
= ��������:01

'
∇k

(
∇ · e>

)
− e>

(
∇ ·

(
1
'
∇k

) )
+
���������:0(
e> · ∇

) (
1
'
∇k

)
−

( (
1
'
∇k

)
· ∇

)
e>

= −e>

(
∇ ·

(
1
'
∇k

) )
−

( (
1
'
∇k

)
· ∇

)
e>

= −
(

1
'
∇ · ∇k + ∇k · ∇ 1

'

)
e> −

( (
1
'
∇k

)
· ∇

)
e>

= −
(

1
'
∇2k + ∇k · −1

'2 eX

)
e> −

( (
1
'
∇k

)
· ∇

)
e>

= −
(

1
'
∇2k − mk

m'

1
'2

)
e> −

( (
1
'
∇k

)
· ∇

)
e>

=
(
− 1
'
∇2k +

1
'2

mk

m'

)
e> −

(
1
'

[
mk

m'
eX +

mk

mI
ez

]
· ∇

)
e>

=
(
− 1
'
∇2k +

1
'2

mk

m'

)
e> − 1

'

[
mk

m'

1
'

m (' )
m'

+
mk

mI

m ( )
mI

]
e>

=
(
− 1
'
∇2k +

1
'2

mk

m'

)
e> − 1

'2


mk

m'

m
(
'e>

)
m'

+
���

���*
0

mk

mI

m
(
e>

)
mI


=

(
− 1
'
∇2k +

1
'2

mk

m'

)
e> +

1
'2

mk

m'
e>

=
(
− 1
'
∇2k +

2
'2

mk

m'

)
e>

Finally, the curl of the toroidal and poloidal magnetic fields can be summarized.

∇ × H p =
(
− 1
'
∇2k +

2
'2

mk

m'

)
e> = − 1

'
Δ∗ke>

∇ × HZ = ∇ × �ie> =
1
'
�iez + ∇�i × e> =

1
'
∇

(
'�i

)
× e>
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Where the elliptic operator is given as

Δ∗k = '
m

m'

(
1
'

mk

m'

)
+
m2k

m/2 (A.2)

Thus the current density can now be written as

1
2
P =

1
4c'

(
−Δ∗ke> + ∇

(
'�i

)
× e>

)
(A.3)

Now for the force balance equation:

∇? =
1
2
P × H (A.4)

It can be proven that the cross product means both H · ∇? = 0 and P · ∇? = 0 which implies that

HV · ∇? = 0 which also implies that ∇? ‖ ∇k thus, ? and '�i are parallel to k and so can be

defined as
? = ?(k)
� ≡ '�i = �(k)

It can also be shown that �% = 2c�(k). Let∇? = d?
dk∇k, and∇� = d�

dk∇k. Substitute Equation (A.1)

and Equation (A.3) into Equation (A.4) then dotting each side with ∇k, assuming ∇k · ∇k =
��∇k��2,

then work out the final form of the equation:

∇? · ∇k =

[
1

4c'
(
−Δ∗ke> + ∇� × e>

)
×

(
�ie> +

1
'
∇k × e>

) ]
· ∇k( (

d?
dk

)
∇k

)
· ∇k =

1
4c'

����������:0(
−Δ∗ke>

)
× �ie> +

(
∇� × e>

)
× �ie> +

(
−Δ∗ke>

)
×

(
1
'
∇k × e>

)
+

(
∇� × e>

)
×

(
1
'
∇k × e>

)  · ∇k

Chapter A David Weldon David Weldon



Negative-Triangularity Configuration on EAST Negative-Triangularity Configuration on EAST

(
d?
dk

) ��∇k��2 =
1

4c'

[ (
∇� × e>

)
× �ie> +

(
−Δ∗ke>

)
×

(
1
'
∇k × e>

)
+

(
∇� × e>

)
×

(
1
'
∇k × e>

) ]
· ∇k NRL VI (3), 3rd term

=
1

4c'

[ (
∇� × e>

)
× �ie> +

(
−Δ∗ke>

)
×

(
1
'
∇k × e>

)
+
��������������[ (

e> ×
(
∇� × e>

) )
× ∇k

]
−

��������������[
e> ×

( (
∇� × e>

)
× ∇k

) ] ]
· ∇k

NRL VI (2)

=
1

4c'


(
d�
dk

∇k× e>

)
×�ie> −

1
4c'

Δ∗k

(
������:1(
e> · e>

)
∇k−

�������:0(
e> · ∇k

)
e>

) 
· ∇k NRL VI (2)

=
1

4c'

[
d�
dk

(
�i������:0(

e> · ∇k
)

e> − �i�����:1(
e · e>

)
∇k

)
− 1

4c'
Δ∗k∇k

]
· ∇k

=
1

4c'

[
−�i

d�
dk

∇k − 1
4c'

Δ∗k∇k
]
· ∇k(

d?
dk

) ��∇k��2 =
1

4c'

[
−�i

d�
dk

∇k · ∇k − 1
4c'

Δ∗k∇k · ∇k
]

(
d?
dk

)
�
��

��∇k��2 =
1

4c'

[
−�i

d�
dk�

��
��∇k��2 − 1

4c'
Δ∗k

�
��

��∇k��2 ]
d?
dk

= −
�i

4c'
d�
dk

− 1
4c'2Δ

∗k

(A.5)Δ∗k = −4c'2 d?
dk

− '�i

d�
dk

= −4c'2 d?
dk

− �
d�
dk

Including the elliptic operator, the full Grad-Shafranov equation becomes

'
m

m'

(
1
'

mk

m'

)
+
m2k

m/2 = −4c'2 d?
dk

− �
d�
dk

The subsections below include an analytical solution to the GS equation for further understanding.

However, it is not necessary to go any further if you have understood the above derivation and its

physical meaning well.
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A.1.1 0th Order Solution

Begin by converting the elliptic operator given by Equation (A.2) into toroidal coordinates using

' = '0 + A cos(o), I = A cos(o), i′ = −i (A.6)

Δ∗k = '
m

m'

(
1
'

mk

m'

)
+
m2k

m/2

(A.7)⇒ Δ∗k =
1
A

m

mA

(
A
mk

mA

)
+

1
A2

m2k

mo2 − 1
'0

(
cos(o)

mk

mA
− sin(o)

A

mk

mo

)
Assume that the plasma is surrounded by a perfectly conducting surface of circular cross section

of radius A = 0. Then the boundary condition is

kA=0 = k(0, o) = 2>=BC, kA<0 = k(A, o) 6= 2>=BC

Use the low-V assumption V% ∼ 1 for tokamaks which means

�%

�)

∼ n ⇒ V% =
8c〈?〉
�2
%

, V) =
8c〈?〉
�2
)

⇒ V% =
�2
)

�2
%

V) =
1
n2 V) ⇒ V) ∼ n2

This also implies that the magnetic winding index is on the order of unity, @ ∼ 1.

Furthermore, assume that the solution for the flux surface will be of the form

k(A, o) = k0(A) + k1(A, o) +
��������:∼ n2

k2(A, o) + . . .

Here, k0(A) is the 0Cℎ order solution where the tokamak aspect ratio goes to zero, A
'0

→ 0 ⇒ n → 0.

Assume the 0Cℎ order terms to be ∼ 1. In this limit the poloidal magnetic field is only a function of

A meaning �%(A, o) → �%1(A). Use the subscript "1" here because it is a 1BC order quantity. And

the relationship between �%1 and k0(A) can be expressed as

�%1(A) =
1
'0

dk0
dA
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The toroidal magnetic field in the 0Cℎ limit is a constant �) (A, o) = �)0 = 2>=BC. Estimate

k ∼ A'0�%, then Equation (A.7) and divide by �)0 to make the equations dimensionless and thus

easier to analyze the order of each term.

Δ∗k =
1
A

m

mA

(
A
mk

mA

)
+

1
A2

m2k

mo2 − 1
'0

(
cos(o)

mk

mA
− sin(o)

A

mk

mo

)
1
�)0

Δ∗k =
1
�)0

1
A

m

mA

(
A
mk

mA

)
+

1
�)0

1
A2

m2k

mo2 − 1
�)0

1
'0

(
cos(o)

mk

mA
− sin(o)

A

mk

mo

)
=

1
�)0

1
A

m

mA

(
A
mk

mA

)
+

1
�)0

1
A2����

��*0
m2A'0�%

mo2 − 1
�)0

1
'0

©«cos(o)
mA'0�%

mA
− sin(o)

A ���
��*

0
mA'0�%

mo

ª®¬
=

1
�)0

1
A

m

mA
(A'0�%) − 1

�)0 �
�
�1

'0

(
cos(o)�

�mA��'0�%

��mA

)
=

1
�)0

'0�%

A
−

��
����*∼ n

�%

�)0
cos(o)

(
1
�)0

Δ∗k

)
0Cℎ

=
'0�%

A�)0
∼ 1

Before applying this same procedure to the RHS of Equation (A.5), linearize the derivatives of ?

and � with respect to k. So, let

? =
k2

k2
<0

?<0 �2 = '2
0�

2
)0

(
1 +

k2

k2
<0

1<0

)
⇒ d?

dk
= 2

k

k2
<0

?<0 ⇒ d�2

2 dk
= '2

0�
2
)0

k

k2
<0

1<0 (A.8)

where ?<0, k<0, and 1<0 are the pressure, poloidal flux, and diamagnetic term at the magnetic

axis, respectively. Use these to get the order of n of the individual terms. Note that if 1<0 < 0

the term is diamagnetic and if 1<0 > 0 the term paramagnetic and that 1<0 ∼ n2. Finally, assume

k ∼ A'0�% and the same for k<0.
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Substitute, simplify, and reorganize the RHS of Equation (A.5).

Δ∗k = −4c'2 d?
dk

− �
d�
dk

= −4c
(
'0 + A cos(o)

) 2 2
k

k2
<0

?<0 −
d�2

2 dk

= −4c

(
'2

0 + ������:∼ n
'0A cos(o) + �����:∼ n2

cos(o)2

)
2

k

k2
<0

?<0 − '2
0�

2
)0

k

k2
<0

1<0

= −
'2

0�
2
)0

k2
<0

(
8c?<0

�2
)0

+ 1<0

)
k

= −
'2

0�
2
)0

k2
<0

(
V)<0 + 1<0

)
k

1
�)0

Δ∗k = − 1
����)0

�
�'2
0�

�2
)0

A�2��'
2��2

%

(
V)<0 + 1<0

)
�A'���%

= −'0�)0
A�%

(
V)<0 + 1<0

)
1
�)0

Δ∗k = − '0�)0
A�%︸ ︷︷ ︸
∼n−2

©« V)<0︸︷︷︸
∼n2

+ 1<0︸︷︷︸
∼n2

ª®®®¬
Both terms are 0Cℎ order. Combine them with the 0Cℎ order terms of the RHS of Equation (A.7)

and let k(A, o) ≈ k0(A). To make the notation more concise, let the entire quotient preceding the

parenthesis on the RHS be �. This coefficient has the dimensions of the reciprocal of area.

1
A

d
dA

(
A

dk0
dA

)
= −

'2
0�

2
)0

k2
<0

(
V)<0 + 1<0

)
k0

1
A

d
dA

(
A

dk0
dA

)
(A.9)

1
A

d
dA

(
A

dk0
dA

)
= −�

(
V)<0 + 1<0

)
k0

While this equation looks quite tractable, it isn’t trivial (at least not for the beginner). With use of

the symbolic mathematics package Maple as well as the "Handbook of Mathematical functions"

by Abramowitz & Stegun, the solution to this was determined to be a Bessel function. One more

change is made so that this equation matches the form in the "Handbook" and that is to combine �

with the sum in the parentheses to form �̃. Finally, manipulate the equation into the form associated
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with the Bessel function.

1
A

d
dA

(
A

dk0
dA

)
= −�̃k0

0 =
1
A

dk0
dA

+
d2 k0

dA2 + �̃k0

= A
dk0
dA

+ A2 d2 k0

dA2 + A2 �̃k0

The general form of the Bessel function has a solution that is given by a linear combination of the

two linearly independent functions �a(I) and.a(I), the first and second kind, respectively. However,

.a(I) is divergent at I = 0 and so its coefficient of integration is set to 0. This leaves us with the

possible forms of the solution for the first kind as given by Abramowitz & Stegun. Furthermore,

the coefficient �1 is obviously the value of k0(A = 0). Since this is the unperturbed solution, A = 0

corresponds to the magnetic axis as the Shafronov shift is in the perturbed solution. Which means

that �1 = k<0. I will ignore this for now and just focus on the form of the solution first.

0 = I
dF
dI

+ I2 d2 F

dI2 +
(
I2 − a2

)
F

F(I) = �a(I)�1 + �����:38E4A64=C
.a(I)�2 full generic solution

F(I) = �a(I) =
(
I

2

) a ∞∑
:=0

(
− I2

4

) :
:!Γ (a + : + 1)

Ascending Series

F(I) = �a(I) =

(
I
2

) a
√
cΓ(a + 1

2 )

∫ c

0
cos

(
I cos(\)

)
sin(\)2a d\ Integral Representation

Only the integral representation will be used and, in this case, a = 0 allowing the solution to

simplify. Furthermore, I = A
√
�̃ and �1 is replaced with k<0.

�0(I) =
1
c

∫ c

0
cos

(
I cos(\)

)
d\

(A.10)k0(A) = k<0�0

(
A
√
�̃

)
=
k<0

c

∫ c

0
cos

(
A
√
�̃ cos(\)

)
d\
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A.1.2 1st Order Solution

Begin with substituting k(A, o) = k0(A) + k1(A, o) into Equation (A.7) so that the 0Cℎ order terms

can be separated out, which were just found, and keep the 1BC order terms:

(
Δ∗k

)
1BC =

1
A

m

mA

(
A
m

(
k0(A) + k1(A, o)

)
mA

)
+

1
A2

m2 (
k0(A) + k1(A, o)

)
mo2

− 1
'0

(
cos(o)

m
(
k0(A) + k1(A, o)

)
mA

− sin(o)
A

m
(
k0(A) + k1(A, o)

)
mo

)
By putting k1 into the last term with the 1

'0
coefficient, this whole term becomes ∼ n2 because

1
'0

∼ n . Instead, let k = k0(A) and note that dk
do = 0, and finally separate out all the 0Cℎ order terms

in Equation (A.9).

(
Δ∗k

)
1BC =

1
A

m

mA

(
A
m

(
k0(A) + k1(A, o)

)
mA

)
+

1
A2

m2 (
k0(A) + k1(A, o)

)
mo2

− 1
'0

(
cos(o)

mk0(A)
mA

−��������:0sin(o)
A

mk0(A)
mo

)
=

1
A

m

mA

(
A
m

(
k0(A) + k1(A, o)

)
mA

)
+

1
A2

m2 (
k0(A) + k1(A, o)

)
mo2 − 1

'0
cos(o)

mk0(A)
mA

(A.11)=
1
A

m

mA

(
A
mk1(A, o)

mA

)
+

1
A2

m2k1(A, o)
mo2 − 1

'0
cos(o)

mk0(A)
mA

Let d?
dk = d?

dk0
+ d2 ?

dk2
0
k1 + ... and ignore all non-1BC order terms for this part of the analysis. Convert

coordinate systems from cylindrical to toroidal with Equation (A.6). Then substitute and expand(
−4c'2 d?

dk

)
1BC

= −4c
(
'0 + A cos(o)

) 2
(

d?
dk0

+
d2 ?

dk2
0
k1

)
= −4c

(
�

�
��'2

0
d?
dk0

+ 2'0A cos(o)
d?
dk0

+
��������
A2 cos2(o)

d?
dk0

+ '2
0
d2 ?

dk2
0
k1

+
����������
2'0A cos(o)

d2 ?

dk2
0
k1 +

���������
A2 cos2(o)

d2 ?

dk2
0
k1

)
= −4c

(
2'0A cos(o)

d?
dk0

+ '2
0
d2 ?

dk2
0
k1

)
(A.12)= −8c'0A

d?
dk0

cos(o) − 4c'2
0
d2 ?

dk2
0
k1
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In a similar way, the last term in the RHS of Equation (A.5) also produces one 1BC order term after

ignoring the 0Cℎ order term. (
−� d�

dk

)
1BC

=
�
�
�
�

−� d�
dk0

− d
dk0

(
�

d�
dk0

)
k1

(A.13)
= − d

dk0

(
d�2

dk0

)
k1

= −1
2

d2 �2

dk2
0
k1

Combine Equation (A.12) and Equation (A.13), then apply Equation (A.8) for ? and � to get:(
Δ∗k

)
1BC = −8c'0A

d?
k0

cos(o) − 4c'2
0
d2 ?

dk2
0
k1 −

1
2

d2 �2

dk2
0
k1

= −16c'0A
k0

k2
<0

cos(o) − 8c'2
0

1
k2
<0

k1 − '2
0�

2
)01<0

1
k2
<0

k1

= −
'2

0�
2
)0

k2
<0

(
16cA

k0

'0�
2
)0k

2
<0

?<0 cos(o) + 8c
k1

�2
)0k

2
<0

?<0 + 1<0k1

)
= −

'2
0�

2
)0

k2
<0

(
k1V)<0 +

2A cos(o)k0
'0

V)<0 + 1<0k1

)
= −�

(
k1V)<0 +

2A cos(o)k0
'0

V)<0 + 1<0k1

)
(A.14)= −�̃k1 − 2�

A cos(o)V)<0

'0
k0

Now put Equation (A.11) and Equation (A.14) together to form (dropping the k1(A, o) and k0(A)

notation for compactness)

1
A

m

mA

(
A
mk1
mA

)
+

1
A2

m2k1

mo2 − 1
'0

cos(o)
mk0
mA

= −�̃k1 − 2�
A cos(o)V)<0

'0
k0

Assume a circular boundary where k1(A, o) = k1(A) cos(o), then cancel the cos(o) from each term

����cos(o)
A

m

mA

(
A
mk1
mA

)
− k1

A2 ����cos(o) − 1
'0

����cos(o)
mk0
mA

= −�̃k1����cos(o) − 2�
A����cos(o)V)<0

'0
k0

1
A

m

mA

(
A
mk1
mA

)
− k1

A2 − 1
'0

mk0
mA

= −�̃k1 − 2�
AV)<0

'0
k0

1
A

m

mA

(
A
mk1
mA

)
− k1

A2 + �̃k1 =
1
'0

mk0
mA

− 2�
AV)<0

'0
k0

(A.15)
1
A

m

mA

(
A
mk1
mA

)
+

(
�̃ − 1

A2

)
k1 =

1
'0

mk0
mA

− 2�
AV)<0

'0
k0
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The derivative with respect to A of Equation (A.10) is given by

mk0(A)
mA

=
k<0

c

∫ c

0
− cos(\) sin

(
A
√
�̃ cos(\)

)
d\

Then substitute this result and Equation (A.10) into Equation (A.15) to get

1
A

m

mA

(
A
mk1
mA

)
+

(
�̃ − 1

A2

)
k1 =

1
'0

k<0

c

∫ c

0
− cos(\) sin

(
A
√
�̃ cos(\)

)
d\

− 2�
AV)<0

'0

k<0

c

∫ c

0
cos

(
A
√
�̃ cos(\)

)
d\

1
A

m

mA

(
A
mk1
mA

)
+
(
�̃− 1

A2

)
k1 =−k<0

'0c

∫ c

0

[
cos(\) sin

(
A
√
�̃ cos(\)

)
+2�AV)<0 cos

(
A
√
�̃ cos(\)

)
d\

]

(A.16)
A

dk1
dA

+ A2 d2 k1

dA2 +
(
�̃A2 − 1

)
k1 = −k<0A

2

'0c

∫ c

0

[
cos(\) sin

(
A
√
�̃ cos(\)

)
+ 2�AV)<0 cos

(
A
√
�̃ cos(\)

)
d\

]

Now, on the left hand side is another Bessel function of order 1. It has the general (homogeneous)

solution given by:

(A.17)F(I) = �1(I)�1 + .1(I)�2

where
�1(I) =

1
c

∫ c

0
cos

(
I sin(\) − \

)
d\

.1(I) =
1
c

∫ c

0
sin

(
I sin(\) − \

)
d\ − 1

c

∫∞

0

[
4C − 4−C

]
4−G sinh(C) dC

letting I = A
√
�̃ so that k1(A) = �1�1

(
A
√
�̃

)
+ �2.1

(
A
√
�̃

)
�1(A

√
�̃) =

1
c

∫ c

0
cos

(
A
√
�̃ sin(\) − \

)
d\

.1(A
√
�̃) =

1
c

∫ c

0
sin

(
A
√
�̃ sin(\) − \

)
d\ − 1

c

∫∞

0

[
4C − 4−C

]
4−A

√
�̃ sinh(C) dC

Do not let�2 = 0 as was previously done for thek0 solution. According to "Advanced Mathematical

Methods for Scientists and Engineers" by Bender and Orszag, the complete homogeneous solution

(meaning the solution of the first and second kind) is needed to get the inhomogeneous solution.

H(G) = −H1(G)
∫ G 5 (C)H2(C)

,(C)
dC + H2(G)

∫ G 5 (C)H1(C)
,(C)

dC
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where the differential equation is of the form
!H = 5 (G)

where

! =
d2

dG2 + ?1(G)
d

dG
+ ?0(G)

and ,(G) is the Wronskian
,(G) = ,

[
H1(G), H2(G)

]
The 5 (C) would be the RHS of Equation (A.16) with a change of variables for integration letting

A = C. The Wronskian is given by

,
[
61(G), 62(G), . . . , 6=(G)

]
≡ det



61(G) 62(G) · · · 6=(G)

6′1(G) 6′2(G) · · · 6′=(G)
... ... . . . ...

61(G)=−1 62(G)=−1 · · · 6=−1
= (G)


So, for this case the first derivative of the first and second kind are needed to compute the Wronskian

d�1(I)
dA

= �0(I) − �1(A)
A

d.1(I)
dA

= .0(I) − .1(A)
A

So, the Wronskian is

,

(
A
√
�̃

)
= ,

[
�1�1

(
A
√
�̃

)
, �2.1

(
A
√
�̃

) ]

= det


�1�1

(
A
√
�̃

)
�2.1

(
A
√
�̃

)
�1

©«�0

(
A
√
�̃

)
−
�1

(
A
√
�̃

)
A

ª®®¬ �2
©«.0

(
A
√
�̃

)
−
.1

(
A
√
�̃

)
A

ª®®¬


= �1�2

(
�1

(
A
√
�̃

)
.0

(
A
√
�̃

)
− .1

(
A
√
�̃

)
�0

(
A
√
�̃

) )
Putting this all together

k1(A) = −�1�1

(
A
√
�̃

) ∫ A 5 (C)�2.1

(
C
√
�̃

)
,(C)

dC + �2.1

(
A
√
�̃

) ∫ A 5 (C)�1�1

(
C
√
�̃

)
,(C)

dC

Chapter A David Weldon David Weldon



Negative-Triangularity Configuration on EAST Negative-Triangularity Configuration on EAST

for compactness, drop the
(
A
√
�̃

)
and

(
C
√
�̃

)
notation on all � and . functions as the dependent

variable can be assumed by context

= −�1�1

∫ A 5 (C)�2.1

,
[
�1�1, �2.1

] dC + �2.1

∫ A 5 (C)�1�1

,
[
�1�1, �2.1

] dC

= −���1 �1

∫ A 5 (C)���2.1

����1�2 (�1.0 − .1�0)
dC + ���2.1

∫ A 5 (C)���1 �1

����1�2 (�1.0 − .1�0)
dC

= −�1

∫ A 5 (C).1
(�1.0 − .1�0)

dC + .1

∫ A 5 (C)�1
(�1.0 − .1�0)

dC

There is one more simplification to be made thanks to Abramowitz & Stegun, the Wronskian in the

denominator will reduce to 2/(cC).

k1(A) =
c

2

[
.1

∫ A

5 (C)�1C dC − �1

∫ A

5 (C).1C dC
]

There is still a major problem, however. The .1 represents the Bessel function of the second kind

and is always divergent. This will cause the first term to diverge along with it. The second term,

fortunately, does not. But what should be done about this. One solution would be so simply ignore

the divergent term, but there is no justification for that. In the 0th order solution I was able to do

that by choosing the constant of integration to be 0. But here, the constants of integration have

already canceled out. The other way of dealing with this divergent problem is to look at the limits

of the integrals. Right now, I have simply used A in the upper limit as a placeholder to indicate the

anti-derivative. However, If I were to set the lower limit to 0, then taking the limit A → 0 both of

the integrals would go to 0. Well that is all well and good, but now how do I meet the boundary

condition that k1(0) = 0? This comes from basic differential equations. A particular solution to

a DE is not the only solution, of course. There is also the homogeneous solution! And here is

the answer, a linear combination of the particular solution and the homogeneous solutions is also a

solution! So, I simply go back to Equation (A.17) and let �2 = 0. Now I can add the homogeneous

solution to the particular solution to get

k1(A) = �1�1 +
c

2

[
.1

∫ A

0
5 (C)�1C dC − �1

∫ A

0
5 (C).1C dC

]
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And with that, substitute in for 5 (C)
k1(A) = �1�1

+ �c

2

.1

∫ A

0

k<0C
2

'0�c

∫ c

0

[
cos(\) sin

(
C
√
�̃ cos(\)

)
+ 2�CV)<0 cos

(
C
√
�̃ cos(\)

)
d\

]
�1C dC

− �1

∫ A

0

k<0C
2

'0�c

∫ c

0

[
cos(\) sin

(
C
√
�̃ cos(\)

)
+ 2�CV)<0 cos

(
C
√
�̃ cos(\)

)
d\

]
.1C dC


= �1�1 +

k<0

2'0

.1

∫ A

0
C3�1

∫ c

0

[
cos(\) sin

(
C
√
�̃ cos(\)

)
+ 2�CV)<0 cos

(
C
√
�̃ cos(\)

)
d\

]
dC

− �1

∫ A

0
C3.1

∫ c

0

[
cos(\) sin

(
C
√
�̃ cos(\)

)
+ 2�CV)<0 cos

(
C
√
�̃ cos(\)

)
d\

]
dC


Taking the limit of this as A → 0 and then solving for �1 needs to be done numerically and so

a value for 0 needs to be assigned. For this analysis, the exact value is not important, but rather

its size as compared to other values, in particular '0. Thus, I let 0 = 1 and '0 = 3 as "typical"

tokamak parameters. With that, �1 u 0.21 after rounding. However, I will not use this specific

value in the following analysis and will instead continue to use the symbol �1. The numeric value

will be used for plotting.

A.1.3 Combining 0th & 1st Order Solutions for Plotting

Finally, put the entire solution together and plot it as shown in Figure A.1a.

(A.18)k (A, o) = k0(A) + k1(A) cos(o)

= k<0�0 + �1�1 cos(o)

+
k<0

2'0

.1

∫ A

0
C3�1

∫ c

0

[
cos(\) sin

(
C
√
�̃ cos(\)

)
+ 2�CV)<0 cos

(
C
√
�̃ cos(\)

)
d\

]
dC

− �1

∫ A

0
C3.1

∫ c

0

[
cos(\) sin

(
C
√
�̃ cos(\)

)
+ 2�CV)<0 cos

(
C
√
�̃ cos(\)

)
d\

]
dC

 cos(o)

Figure A.1b gives a visual comparison of the orders of magnitude for the k0(A) and k1(A) solutions

as well as showing their sum. All the graphs below were made assuming approximate values for a

tokamak such that A
'0

≈ n ≈ 1
3 . Note that the shift is barely noticeable for these "typical" values.

However, if ?<0 were increased (which would intern increase V)<0), the shift would be more

noticeable. For the plots below V)<0 ∼
(
0
'0

) 2
.
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(a) Countours of k(A, o) showing the Shafranov shift due to the correction made by k1(A) cos(o)

(b) A comparison of magnitude for the k0(A) and k1(A) solutions as well as their sum.
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A.1.4 Shafronov Shift

Using the following equation, it is possible to calculate the Shafronov shift as a function of A

Δ(A) = −k1(A)
(
dk0(A)

dA

) −1
where

(
dk0(A)

dA

) −1
=

−1
k<0�1

⇒ Δ(A) = −�1���1
1

k<0���1

− �
��k<0

2'0

.1

∫ A

0
C3�1

∫ c

0

[
cos(\) sin

(
C
√
�̃ cos(\)

)
+ 2�CV)<0 cos

(
C
√
�̃ cos(\)

)
d\

]
dC

−���1

∫ A

0
C3.1

∫ c

0

[
cos(\) sin

(
C
√
�̃ cos(\)

)
+ 2�CV)<0 cos

(
C
√
�̃ cos(\)

)
d\

]
dC

 1
���k<0����1(A)

= − �1
k<0

− 1
2'0

.1
�1

∫ A

0
C3�1

∫ c

0

[
cos(\) sin

(
C
√
�̃ cos(\)

)
+ 2�CV)<0 cos

(
C
√
�̃ cos(\)

)
d\

]
dC

−
∫ A

0
C3.1

∫ c

0

[
cos(\) sin

(
C
√
�̃ cos(\)

)
+ 2�CV)<0 cos

(
C
√
�̃ cos(\)

)
d\

]
dC


The plot of this can be seen in Figure A.2. The maximum of value 0.07 occurs at A = 0 which

agrees well with the magnetic axis of Figure A.1a.
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Figure A.2: The Shafranov shift expressed as Δ(A). Clearly, the maximum occurs at A = 0.
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Appendix B

Connecting to the PCS Server

The figures below are fairly self-explanatory. All of this is done from a Windows 10 machine

but should work for other versions of Windows, Apple, or Linux. The captions give further

information if needed. To download and install NoMachine, follow the instructions here: https:

//www.nomachine.com/download. Now that you are connected to the PCS Virtual Desktop,

you can open a terminal to begin the steps listed in Section 4.3 or Appendix E

126

https://www.nomachine.com/download
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Figure B.1: Setting up NoMachine step 1: Choose the Protocol to be "NX", then Continue
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Figure B.2: Setting up NoMachine step 2: Enter the IP address 202.127.204.3, then Continue
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Figure B.3: Setting up NoMachine step 3: Choose the "Password" option, then Continue
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Figure B.4: Setting up NoMachine step 4: Choose the "Don’t use a proxy" option, then Continue.
Note, this works when using NoMachine from the EAST campus and most other places I have tried.
It is possible that a proxy is needed when connecting in some locations.
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Figure B.5: Setting up NoMachine step 5: Set the connection name to whatever you like, then you
are Done
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Figure B.6: Connecting to PCS server step 1: Now when you open up NoMachine you should see
this screen. Choose the connection you created in the previous step, then Continue
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Figure B.7: Connecting to PCS server step 2: Choose the "Create a new virtual desktop", then
Continue
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Figure B.8: After successfully connecting the PCS Virtual Desktop, open a terminal.
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Appendix C

Gfile Explained

Listing C.1: Selected lines from the gfile for explanation

style

EFITD 12 / 18 / 02 # 4617 ,1900ms 3 129 129

0.140000000E+01 0.240000000E+01 0.175000000E+01 0.120000000

E+01 0.000000000E+00

0.187491205E+01 −0.695368779E−02 −0.248024932E+00 −0.154744767

E+00 0.200000000E+01

0.184123914E+06 −0.248024932E+00 0.000000000E+00 0.187491205

E+01 0.000000000E+00

−0.695368779E−02 0 .000000000E+00 −0.154744767E+00 0.000000000

E+00 0.000000000E+00

0.351253474E+01 0.351230907E+01 0.351208589E+01 0.351186517

E+01 0.351164692E+01

0.350254475E+01 0.350245724E+01 0.350237149E+01 0.350228748

E+01 0.350220520E+01

0.118315425E+05 0.113966781E+05 0.109711236E+05 0.105547858

E+05 0.101475715E+05
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−0.114397246E+04 −0.116769171E+04 −0.118816356E+04 −0.120548130

E+04 −0.121973819E+04

−0.109369733E+01 −0.108163254E+01 −0.106962319E+01 −0.105766928

E+01 −0.104577081E+01

−0.125962876E+00 −0.124728735E+00 −0.123478622E+00 −0.122213076

E+00 −0.120932629E+00

−0.154187735E+00 −0.154578409E+00 −0.154950512E+00 −0.155303568

E+00 −0.155637175E+00

−0.155950899E+00 −0.156244284E+00 −0.156516851E+00 −0.156768101

E+00 −0.156997524E+00

−0.157001182E+00 −0.157308480E+00 −0.157594355E+00 −0.157858215

E+00 −0.158099456E+00

−0.147964870E+00 −0.148611023E+00 −0.149245952E+00 −0.149869225

E+00 −0.150480389E+00

−0.151078967E+00 −0.151664461E+00 −0.152236347E+00 −0.152794081

E+00 −0.153337094E+00

−0.153864794E+00 −0.154376567E+00 −0.154871779E+00 −0.155349827

E+00 −0.155810299E+00

−0.156252739E+00 −0.156676651E+00 −0.157081500E+00 −0.157466718

E+00 −0.157831703E+00

−0.160317643E+00 −0.160386277E+00 −0.160425716E+00 −0.160435354

E+00 −0.160414617E+00

−0.160362976E+00 −0.160279946E+00 −0.160165089E+00 −0.160018021

E+00 −0.159838409E+00

gfile interface description

Luo Zhengping (2007-09-27) translated by David Weldon (2017-10-30)

The Gfile file is generated by the weqdsk subroutine in the weqdeskx.for file in the efit / efitcore
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directory. Output data description: (eg 65 * 65 grid point calculation result g004617.001900

example, line by line explanation). The gfile can have a maximum of 5 values per line

Line 1: EFITD 12/18/02 # ishot,itime 3 nw nh

Executed Program Date Shot Number time-slice grid size

Line 2: R direction width, Z direction width, R0 coordinate, R starting point, Z center coordinate

(5 values)

Line 3: magnetic axis R coordinate, magnetic axis Z coordinate, psi value at magnetic axis, psi

value at boundary, Bt (0) value

Line 4: Ip current value, psi value magnetic axis, xdum (= 0, meaningless), magnetic axis R

coordinate, xdum

Line 5: Z coordinate of magnetic axis, xdum, psi value at the boundary, xdum, xdum

Line 6 - line 18: fpol — current flux function — a total of 65 (nw) nw / 5 per lines

Line 19 - Line 31: Stress — Total 65 (nw) nw / 5 per line lines

Line 32 - line 44: ffprim — ff ’ value - a total of 65 (nw) nw / 5 per lines

Line 45 - line 57: pprime — pp’ value - a total of 65 (nw) nw / 5 per lines

Line 58 - line 902: psi value — nw * nh the magnetic flux per point, 5 points per line, a total

of nw * nh / 5 per lines

Line 903 - Line 915: qpsi — nw nw / 5 per lines

Line 916: nbbbs (number of boundary points), limitr (number of limiter points)

Line 917 - line 942: rbbbs, zbbbs (i = 1, nbbbs) - total [nw * 2/5] +1 rows

Line 943 - line 943: xlim, ylim (i = 1, limitr) - total [limitr * 2/5] +1 rows

Line 965: kvtor (intermediate variable, default = 0), rvtor (default = 1.70), nmass (intermediate

variable, default = 0)

Line 966: nw, nh, ishot, itime

Line 967: rgrid (1), rgrid (nw), zgrid (1), zgrid (nh)

Line 968 - line 970: brsp (i = 1, nfcoil) - 12 poloidal field coil current values [nfcoil / 5] +1

rows
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Line 971: ecurrt (i = 1, nesum nesum defaults to 1) - a total of 1, accounting for 1 line

Line 972 - line 1816: pcurrt (i = 1, nwnh) - nwnh = nw * nh total nw * nh / 5 rows per line,

these are the plasma current densities.

File reading complete. All the main information is now included in the output. After this, the

$OUT1 data does not need to be read.

The matlab function that reads the gfile: read_gfile_func.m

The Gfile namelist output, out1 includes: expmp2, coils, plasma, brsp, etc. are the variables

containing the values of diagnostic values.

The following values are actually the calculated values from the EFIT program based on all

current sources. Assign them separately before the gfile file output:

plasma =cpasma(jtime)

btor=bcentr(jtime)

do 500 i=1,nsilop

coils(i)=csilop(i,jtime)

500 continue

do 520 i=1,magpri

expmp2(i)=cmpr2(i,jtime)

520 continue

brsp is the value of the pole field coil current, which is calculated from the plasma current model

coefficients and other unknown inversion parameters that have been stored during the calculation.
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Appendix D

Making EAST objects

Here we need to look at the make_east_objects.m file found here: /project/builds/TOKSYS/

2018-03-02_16-31-54_build124/tokamaks/east/make/make_east_objects.m. I won’t

include the entire script, but will instead just address a few lines of it.

I suggest that you simply save a copy of this in your EAST directory. For me, this is

/home/ASIPP/daw/EAST/make_east_objects.m. By doing this, Matlab will use your modi-

fied make_east_objects.m file instead of the one in the path above. Whenever you reference a

script, file, or variable, Matlab follows a preset order of places to search. Right now, your EAST

directory is at the top of this search list. Then you are free to modify the script as I have done,

shown in Appendix D. The comments in the code should be fairly self-explanatory. Running this

script, however, may take 20 minutes or more, depending on the server.

Listing D.1: Modifications to make_east_objects.m

61 %avoid possible conflict with mpc

62 rmpath([matlabroot '/toolbox/mpc/mpc']);

63

64 % Added the 'if' statments to include gfile information DAW

2018/04/04

65 if exist('gfile','var') && isfield(gfile,'ecase')

139
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66 if isfield(gfile,'nh') && isfield(gfile,'nw')

67 mk_var('nr',gfile.nh);

68 mk_var('nz',gfile.nw);

69 cn = cat(2,gfile.ecase(18:21),'_',[int2str(nr) int2str(nz)

]);

70 mk_var('config_name',cn);

71 else

72 mk_var('nr',129);

73 mk_var('nz',129);

74 cn = cat(2,gfile.ecase(18:21),'_',[int2str(nr) int2str(nz)

]);

75 mk_var('config_name',cn);

76 end

77 else

78 %defaults: use rtefit grid

79 mk_var('datadir','160119');

80 mk_var('config_name','2016_3333');

81 mk_var('nr',33);

82 mk_var('nz',33);

83 end

84 mk_var('datadir','160119');

85

86 etav = 7.4e-1*ones(80,1); %VV res uOhm-m (316SS)

87 etav(81:90)= 1.7e-2; % passive plates are copper

126 'dzfl', 0.001); %height of FL for mutuals to points (like grid

ggdata)

127

128 % Added to correct the grid using gfile information DAW 2017/09/30

129 if exist('gfile','var')

130 if isfield(gfile,'zmid') && isfield(gfile,'zdim')

131 make_tok_inputs.zgmin = gfile.zmid-gfile.zdim/2;
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132 make_tok_inputs.zgmax = gfile.zmid+gfile.zdim/2;

133 end

134 if isfield(gfile,'rzero') && isfield(gfile,'xdim')

135 make_tok_inputs.rgmin = gfile.rzero-gfile.xdim/2;

136 make_tok_inputs.rgmax = gfile.rzero+gfile.xdim/2;

137 end

138 if isfield(gfile,'nh') && isfield(gfile,'nw')

139 make_tok_inputs.nr = gfile.nw;

140 make_tok_inputs.nz = gfile.nh;

141 end

142 end

143 make_tok_inputs

144 make_tok_objects(make_tok_inputs);
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Appendix E

Matlab Preferences

To be clear, I want to take a moment to give the layout of the Matlab GUI and highlight some parts

that I will refer to often in this tutorial. In Figure E.1 we see the main parts of the GUI starting at

the top there is the Toolstrip, the Editor window, the Command Window, Current Folder window,

and finally the Workspace window. Each of these windows can be moved, resized or closed within

the Matlab GUI. This is my preferred layout.

Figure E.1: Matlab layout preference
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While the reader should already be familiar with the general operation of Matlab, it is also

helpful to know how to change the preferences of this particular version of Matlab otherwise things

such as copy & paste (ctr+c & ctr+v, respectively) and other keyboard shortcuts will not work

properly. To change these go to the MatlabGUI→Home tab→Preferences→Keyboard→Shortcuts

and change the desired actions to the keyboard key combinations that you prefer. If there are any

conflicts then you’ll need to delete them so that the keyboard shortcut works properly. See Figure E.2

- Figure E.4. Here we also need to talk about abusing the server cores. Matlab can become a very

computationally intensive process when calculating a 129 × 129 equilibrium which will cause the

server to use up to 800% of the available processing power. This is dangerous and if it lasts too

long, can seriously damage the server. As you become more familiar with GSDesign and begin

doing "batch" equilibria it might be necessary to use cpulimit. Below is an example of how to

use it so that Matlab does not use more than 100% of the CPU. For more information, please refer

to http://cpulimit.sourceforge.net/ or contact the computing administrator, Dr. Wang at

wangfeng@ipp.ac.cn

Listing E.1: Changing directory, executing, the .bashrc script, logging into the

server, and starting Matlab with cpulimit from the terminal.

1 [daw@node60 ~]$ cd EAST

2 [daw@node60 EAST]$ source .bashrc

3 [daw@node60 EAST]$ ssh -X cs1

4 daw@cs1’s password:

5 Last login: Wed May 16 15:55:35 2018 from 202.127.205.60

6

7

8 ************************************************************

9

10 Welcome to EAST Computing Server 1 (CentOS6.7-64bit)

11

12 Please contact wangfeng@ipp.ac.cn if you have any issues
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13

14 ************************************************************

15

16 [daw@cs1 ~]$ cpulimit -l 100 -i matlab

17 MATLAB is selecting SOFTWARE OPENGL rendering.

Figure E.2: Opening the Matlab Preferences interface

Figure E.3: Changing the keyboard shortcut for copy
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Figure E.4: Deleting any keyboard shortcut conflicts
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Appendix F

GSDesign Help

This section merely provides the help documentation

Listing F.1: GSDesign help file containing definitions and some hints on strategies

for getting good convergence

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2

3 USAGE:

4 eq = gsdesign(spec, init, config)

5

6 PURPOSE:

7 Design a 2-D (Grad-Shafranov) equilibrium by minimizing

8 cost function: norm(sum(weights.param.*(targets.param-param)))

9

10 INPUTS:

11

12 spec, specification of the equilibrium to be designed.

13 This structure -variable may contain:

14 targets, weights, limits, locks

15

16 targets make up the error vector in the cost function
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17 All weights = 1 by default

18 Setting a target or its weight to NaN removes it from the

error vector

19

20 limits have two columns: lower, upper limit

21 Use -inf or +inf for no limit, ex: limits.betap = [0 inf]

22

23 locks makes a quantity equal to exactly the locked value

24 Use NaN for any quantity that should not be locked

25

26 Parameters that can be designed:

27

28 SEPARATRIX specified by: targets.rsep, targets.zsep

29 The error vector is weights.sep.*(psisep-psibry)

30 where psisep is flux at rsep, zsep

31 A (small) set of points can be locked with:

32 locks.rsep, locks.zsep, making fluxes exactly equal to psibry

33 Limits for the boundary can be set with 2-column matrices:

34 limits.rsep, limits.zsep, forcing flux to equal psibry

35 somewhere between each pair of points in columns 1 and 2.

36

37 BOUNDARY-DEFINING POINT specified by: targets.rbdef, targets.

zbdef

38 The error vector is weights.bdef*(psibdef-psibry)

39 where psibdef is flux at targets.rbdef, targets.zbdef

40 Alternatively use locks.rbdef, locks.zbdef

41 to make psibdef at locks.rbdef, locks.zbdef exactly equal to

psibry

42 The bdef point is prevented from jumping to other locations

by

43 limits on flux at "wrong-way points" where bdef might

otherwise jump.
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44 The minimum normalized poloidal flux difference between such

points

45 and the boundary is set with limits.bdef_dpsibar (default =

0.01)

46 If limits.bdef_dpsibar is too large these other points may

47 come and go between iterations , causing convergence problems

48 The actual bdef is only guaranteed to be near rbdef, zbdef

49 If bdef is an x-point it may end up at a different poloidal

angle

50 than rbdef, zbdef. Use targets.rx, targets.zx or locks.rx,

locks.zx

51 if more control of bdef position is desired for a diverted

plasma.

52

53 X-POINTS specified by: targets.rx, targets.zx

54 The error vector contains weights.x.*[dpsixdr dpsixdz]

55 for each point rx, zx, and the target is zero gradient

56 Points can be locked with: locks.rx, locks.zx

57 Limits can be specified with limits.rx and limits.zx

58 The resulting x-point for target #i will stay within

rectangle

59 limits.rx(i,1:2), limits.zx(i,1:2). If limits.rx(i,:) has

more

60 than 2 elements > 0 these together with limits.zx(i,:)

specify

61 corners in a polygon and the x-point will stay within this

polygon.

62 All x-points are shown when limits have been specified for x-

points

63 Points with r <= 0 are ignored for targets, locks, limits.

64

65 SNOWFLAKE -POINTS specified by: targets.rsnf, targets.zsnf
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66 Extra settings: targets.tsnf, targets.nsnf, targets.rhosnf

67 The flux gradient is controlled to zero at rsnf, zsnf; and

68 fluxes are controlled to equal the flux at rsnf, zsnf at nsnf

69 surrounding points a distance rhosnf away with one of those

70 being at an angle tsnf in degrees

71 Default for targets.nsnf = 6 (8,10,12,... possible if many

coils exist)

72 Default for targets.tsnf = 40*sign(zmaxis-zsnf)

73 Default for targets.rhosnf = (dr+dz)/2

74 Default for weights.snf = 1

75 The interpolation method does not allow perfect snowflakes

but

76 with high grid resolution perfection can be approached

77

78 SCALAR QUANTITIES

79 Targets, locks, limits can be specified for:

80 cpasma = total plasma current

81 li = normalized inductance

82 betap = poloidal beta

83 betan = normalized beta

84 q0 = q at center (not yet implemented)

85 q95 = q at rhot = 0.95 (not yet implemented)

86 qmin = q at minimum q (not yet implemented)

87 psibry = the flux at the boundary

88 psimag = the flux at the axis

89 psipla = plasma flux = current-density-weighted average

flux

90 fluxexp = flux expansion (help calc_fluxexp) calculated by:

91 calc_fluxexp(eq, ...

92 spec.targets.rfluxexp, ...

93 spec.targets.zfluxexp, ...

94 spec.targets.dfluxexp)
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95 fluxerror = maximum error in normalized poloidal flux

96 By default fluxerror is locked to 0. Including targets.

fluxerror = 0

97 and weights.fluxerror may improve convergence in some

cases.

98 Default for limits.fluxerror = [0 1e-9]

99 After cost function is minimized iterations continue

until

100 fluxerror < limits.fluxerror(2) and stops decreasing

101 or fluxerror < limits.fluxerror(1) which stops iterations

immediately

102 Set limits.fluxerror(1) > 0 to avoid iterations to

perfect convergence

103

104 DIAGNOSTIC SIGNALS

105 Targets, locks, limits can be specified for:

106 fl = flux loops

107 bp = magnetic probes

108 rog = rogowski loops

109 Use nan to omit elements in target and lock vectors

110 e.g. targets.bp = [4 nan 5] will set targets for bp(1) and

bp(3)

111 Limits are size n by 2 where column 1 is min and column 2 is

max.

112 Use -inf or +inf where there is no limit, example:

113 limits.rog = [-inf inf; 1e6 inf] to place lower limit on

rog(2).

114

115 PROFILES ARE NOT YET IMPLEMENTED EXCEPT FOR THIS

DOCUMENTATION

116 PROFILES (specified at points of normalized poloidal flux)

117 targets, locks, limits can be specified for:
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118 pres = pressure (at nr psibar points, same as EFIT)

119 qpsi = q-profile (at nr psibar points, same as EFIT)

120 Use nan to omit elements in target and lock vectors

121 limits are size n by 2 where column 1 is min and column 2 is

max

122 and -inf or +inf are used where there is no limit.

123 By default limits.pres = [zeros(nr,1) inf(nr,1)].

124

125 COIL CURRENTS

126 Coil currents are normally varied to minimize

127 the cost function but can also be among targets as

128 targets.ic & weights.ic

129 Specify nan for coils that have no target value.

130 To lock a coil current at a value, use locks.ic

131 Specify nan for coils that aren’t locked.

132 To limit range of coil currents, use limits.ic

133 The size(limits) = [nc,2], with lower and upper limit

134 Default limits exist for DIII-D, NSTXU, KSTAR, EAST, ITER

135 Connections put extra constraints on coil currents.

136 The degrees of freedom are referred to as circuits.

137 spec.cccirc assigns a circuit (with sign) to each coil

138 Example: cccirc = [1 -1 2 3] makes 3 circuits with

139 ic(1) = -ic(2) as the first circuit current, then ic(3)

140 is the second circuit current, and ic(4) the third.

141 spec.buscode connects coils to a bus and reduces

142 number of circuits by 1 by making spec.buscode*ic = 0

143 For DIII-D an old patch panel can be loaded and used by:

144 PP = get_PP_objs(shot), spec.buscode = [0 0 PP.bus_code]

145

146 VESSEL CURRENTS

147 By default vessel currents are locked to zero, locks.iv =
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zeros(nv,1)

148 However, if spec includes a targets.iv all vessel currents

are

149 instead unlocked by default, locks.iv = nan(nv,1)

150 The defaults can be overridden by including locks.iv in spec

151 Targets and weights for currents in vessel elements are given

by

152 targets.iv & weights.iv

153

154 FLUX AT COILS

155 Targets for fluxes at coils can be specified by:

156 targets.psic, targets.dpsicdic , targets.ic0

157 The actual flux target for the coils are:

158 tpsic = targets.psic + targets.dpsicdic.*(ic-targets.ic0)

159 The weights for targets, locks, limits are specified with

160 weights.psic, locks.psic, limits.psic

161 By default all quantities are zero

162 One use is to design equilibrium that obeys, Vps = Rc*ic +

Vind

163

164 FLUX AT VESSEL

165 Targets for fluxes at vessel elements can be specified by:

166 targets.psiv, targets.dpsivdiv , targets.iv0

167 The actual flux target for the coils are:

168 tpsiv = targets.psiv + targets.dpsivdiv.*(iv-targets.iv0)

169 The weights for targets, locks, limits are specified with

170 weights.psiv, locks.psiv, limits.psiv

171 By default all quantities are zero

172 One use is to design equilibrium that obeys, 0 = Rv*iv + Vind

173

174 FORCES ON COILS (frc & fzc)

175 For radial forces on coils, use:
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176 weights.frc, targets.frc, locks.frc, limits.frc

177 For vertical forces on coils, use:

178 weights.fzc, targets.fzc, locks.fzc, limits.fzc

179

180 SWITCHES

181 spec.max_iterations , overrides config.max_iterations

182 spec.fig, controls what figure window gsdesign uses:

183 -1 opens new figure

184 0 opens new figure if last one has changed (default)

185 >0 opens the figure spec.fig

186 spec.showgrid, display the grid in geometry picture

187 spec.showallxpoints , show all x-points

188 showallxpoints=1 by default when limits specified for x-

points

189 spec.plot_settings , overrides config.plot_settings , see below

190

191 init, initial equilibrium

192 The TOROIDAL FIELD is specified by init.rzero and init.bzero

193 If init contains efit-specific fields these will be copied

194 to the output eq to facilitate interfacing with efit codes

195

196 config, Toksys description of the tokamak (a.k.a. tok_data_struct)

197 REQUIRED fields are:

198 tokamak, Name of tokamak such as ’DIII-D’ or ’EAST’

199 rg, radius of grid points [m]

200 zg, height of grid points [m]

201 mcc, mutuals between coils

202 mcv, mutuals between coil and vessel elements

203 mvv, mutuals between vessel elements

204 mpc, mutuals between grid and coil elements

205 mpv, mutuals between grid and vessel elements

206 mpp, mutuals between grid points
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207 limdata, R, Z coordinates of limiter

208 imks, 1 means MKS units are used

209 iterminal , 1 means that ic gives current in 1-turn

210 fcnturn, number of turns in the F coils

211 def_connect , used by the efit interface

212

213 OPTIONAL fields are:

214 pres0, template pressure profile

215 pprime0, template pprime profile, used if pres0 is

missing

216 fpol0, template fpol profile

217 ffprim0, template ffprim profile, used if fpol0 is

missing

218 constraints , how profiles (pres and fpol) may vary

219 0 = no constraint , both pres and fpol

vary

220 with nkn+2 degrees of freedom

221 1 = only 3 degrees of freedom,

222 pres = a scaled pres0

223 fpol = a scaled and peaked fpol0

224 psikn, psibar for knots, default = linspace(0,1,

nkn+1)

225 nkn, number of knots, default = 1

226 max_iterations , default = 99, iterations stop when cost

function

227 has been minimized or iterations =

max_iterations

228 or user clicks stop button in figure

229 plot_settings.nxptmax, maximum number of x-points in list (

default 9)

230 plot_settings.nflux, number of flux surface contours (default

8)
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231 plot_settings.SOL.n, number of SOL contours to plot (default

0)

232 plot_settings.SOL.d, distance between contours in outboard

midplane (1e-3)

233 plot_settings.SymbolSize , number or struct with relative

symbol sizes

234 Examples:

235 plot_settings.SymbolSize = 0.5; % reduce all sizes to 50%

236 plot_settings.SymbolSize.target.sep = 2; % double size of

these

237 plot_settings.SymbolSize.wrongway = 0; % don’t show wrong-

way points

238 Symbol sizes that can be modified:

239 locks.x, locks.sep, locks.snf, locks.bdef

240 limits.x, limits.sep, limits.snf, limits.bdef

241 targets.x, targets.sep, targets.snf, targets.bdef

242 x, bdef, wrongway

243

244

245 OUTPUTS:

246

247 eq, the designed equilibrium (eq.descriptions for more info)

248 figure with subplots:

249 Conductors: currents in coils, vessel in green, limits in red

, blue

250 Rp’,ff’/mu0R (where R=rmaxis) versus normalized poloidal flux

251 Error vector = weights.*(eq values - target values)

252 (Labels appear on error elements when zooming in on a few)

253 flux error = (psizr - psizr_pla -psizr_app)/(psimag-psibry)

254 ( < 1e-3 for good solution to the Grad-Shafranov equation)

255

256 List of scripts that demonstrate use of gsdesign:
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257 gsdesign_demo_iter - Design the ITER shape for ITER

258 gsdesign_demo_d3d_DN - Design of EAST-like DN plasma for DIII-D

259 gsdesign_demo_d3d_DSNF - Design of a double snowflake plasma for

DIII-D

260 gsdesign_demo_east_LSNF - Design a lower-snowflake plasma for EAST

261 gsdesign_demo_east_DSNF - Design a double-snowflake plasma for EAST

262 gsdesign_demo_kstar_ISS - Design ITER-similar-shape (ISS) for KSTAR

263 gsdesign_iss - Automatic design of ISS for 9 tokamaks
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