
Rose-Hulman Institute of Technology
Rose-Hulman Scholar

Graduate Theses - Chemical Engineering Graduate Theses

Spring 2-2016

The Effect of Assembly Technique on Weak
Polyelectrolyte Multilayer Film Morphology and
Humidity Swelling/Deswelling Behavior
Ziyang Yin
Rose-Hulman Institute of Technology, yinz@rose-hulman.edu

Follow this and additional works at: http://scholar.rose-hulman.edu/
chemical_engineering_grad_theses

Part of the Other Chemical Engineering Commons, and the Polymer Science Commons

This Thesis is brought to you for free and open access by the Graduate Theses at Rose-Hulman Scholar. It has been accepted for inclusion in Graduate
Theses - Chemical Engineering by an authorized administrator of Rose-Hulman Scholar. For more information, please contact bernier@rose-
hulman.edu.

Recommended Citation
Yin, Ziyang, "The Effect of Assembly Technique on Weak Polyelectrolyte Multilayer Film Morphology and Humidity Swelling/
Deswelling Behavior" (2016). Graduate Theses - Chemical Engineering. Paper 2.

http://scholar.rose-hulman.edu?utm_source=scholar.rose-hulman.edu%2Fchemical_engineering_grad_theses%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/chemical_engineering_grad_theses?utm_source=scholar.rose-hulman.edu%2Fchemical_engineering_grad_theses%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/grad_theses?utm_source=scholar.rose-hulman.edu%2Fchemical_engineering_grad_theses%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/chemical_engineering_grad_theses?utm_source=scholar.rose-hulman.edu%2Fchemical_engineering_grad_theses%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/chemical_engineering_grad_theses?utm_source=scholar.rose-hulman.edu%2Fchemical_engineering_grad_theses%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/250?utm_source=scholar.rose-hulman.edu%2Fchemical_engineering_grad_theses%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/246?utm_source=scholar.rose-hulman.edu%2Fchemical_engineering_grad_theses%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/chemical_engineering_grad_theses/2?utm_source=scholar.rose-hulman.edu%2Fchemical_engineering_grad_theses%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bernier@rose-hulman.edu
mailto:bernier@rose-hulman.edu


	

The Effect of Assembly Technique on Weak Polyelectrolyte Multilayer Film 

Morphology and Humidity Swelling/Deswelling Behavior 

 

 

A Thesis 

Submitted to the Faculty 

of  

Rose-Hulman Institute of Technology 

By 

Ziyang Yin 

 

In Partial Fulfillment of the Requirements for the Degree 

Of 

Master of Science in Chemical Engineering 

 

February 2016 

 

©2016 Ziyang Yin



	

 

 
 
 

 
 

 
 



	

ABSTRACT 
Yin, Ziyang 

M.S.Ch.E 

Rose-Hulman Institute of Technology 

February 2016 

The Effect of Assembly Technique on Weak Polyelectrolyte Multilayer Film 

Morphology and Humidity Swelling/Deswelling Behavior 

Thesis Advisor: Dr. Adam Nolte 

Summary: 

The goal of this research is to investigate the film morphology and humidity 

swelling/deswelling behavior of polyelectrolyte multilayers (PEMs) that are constructed 

from poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) by two 

assembly techniques: automated dipping layer-by-layer (LbL) and spin-assisted (SA) 

LbL. Two sets of pH polyelectrolyte solution conditions were tested: (PAH7.5/PAA3.5) 

and (PAH7.0/PAA7.0). It was found that when the films were constructed with the same 

number of bilayers (=20 bilayers), SA-LbL (PAH7.5/PAA3.5) has a greater thickness 

than (PAH7.0/PAA7.0). (PAH7.5/PAA3.5) thin films constructed by automated dipping 

LbL did not result in a uniform film morphology, making thickness comparisons between 

techniques for those assembly conditions difficult. On the other hand, the thickness of 

(PAH7.0/PAA7.0)20 thin films constructed by automated dipping LbL was a tenth of the 

thickness of (PAH7.0/PAA7.0)20 thin films constructed by SA-LbL.  

In addition, film morphology was studied for the uneven automated dipping LbL 

(PAH7.5/PAA3.5)20 thin film using contact mode AFM. Silane treatment and an adsorbed 

polyethylenimine (PEI) underlayer were attempted to produce a smooth film surface. 



	

However, neither surface treatments gave a smooth film surface for the uneven 

automated dip-coated LbL (PAH7.5/PAA3.5)20.  Therefore, the assembly technique is an 

important factor on the thin film thickness and film morphology.  

Humidity swelling/deswelling tests were carried out on SA-LbL (PAH7.5/PAA3.5)20, 

SA-LbL (PAH7.0/PAA7.0)20, and automated dip-coated LbL (PAH7.0/PAA7.0)20. SA-

LbL (PAH7.5/PAA3.5)20 and SA-LbL (PAH7.0/PAA7.0)20 demonstrated a maximum 

swelling of approximately 40% under a humid air environment. However, the humidity 

hysteresis effect for the automated dipping LbL (PAH7.0/PAA7.0)20 was hard to tell due 

to the high uncertainty in the film thickness.   
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1. INTRODUCTION 
 

1.1 Background 
 

Polyelectrolyte multilayers (PEMs) are thin films traditionally formed by using the 

layer-by-layer (LbL) technique, which involves dipping a substrate back and forth 

between positively and negatively charged polyelectrolyte solutions. After each 

deposition step, water rinse steps are used to ensure that only well-adsorbed polymer 

stays in the film. In this study, two layer-by-layer techniques were used: automated 

dipping assembly and spin-assisted (SA) assembly. The automated dipping assembly uses 

a robotic dipping machine along with a computer program to execute the dipping process 

as shown in Figure 1.1.1(a). On the other hand, the spin-assisted LbL (SA-LbL) assembly 

instead uses alternating spin coating of polymer and rinse solutions as shown in Figure 

1.1.1(b). The latter technique speeds up the polymer adsorption process. Even though the 

chemical composition of SA-LbL assembly is similar to the one of dipping assembly, due 

to the forced adsorption, the chain structure can be different [1].  

(a)     (b)  

Figure 1.1.1 Illustrations of (a) the traditional dipping LbL assembly process and 
(b) the spin-assisted coating assembly process [2][3] 

 The layer-by-layer assembly has been utilized in various applications. For 

example, the layer-by-layer assembly has been used in nanoparticle coating on fibers, H2 

sensing in industrial processes utilizing H2 gas, and optical coatings [4].  PEMs have been 

known to be suitable for sensing in humid environments because they can respond 
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differently to different chemical environments such as humidity and to rearrange within 

the film in nanoscale. In addition, PEMs have been used in the semiconductor industry to 

produce thin-film transistors [5]. 

PEMs are prepared by using either strong polyelectrolytes, which remain fully 

charged with change in pH, or weak polyelectrolytes, which may be partially charged 

depending upon the pH. Strong polyelectrolytes and fully charged weak polyelectrolytes 

can be deposited to form films with very thin layers. This is because the charges from the 

polyelectrolytes cause the chains to stretch out on the surface. Therefore, those 

polyelectrolytes can adhere to the substrate in multiple locations. Partially charged weak 

polyelectrolytes allow the chains in solution to have a more globular morphology and to 

adhere at fewer points to the surface, forming chain loops on the surface and thicker 

adsorbed layers. The resulting films constructed by such partially charged weak 

polyelectrolytes are thicker for an equivalent number of deposition steps.  

1.2 Scope of the work 
 
In this study, LbL thin films were constructed from positively charged 

poly(allylamine hydrochloride) (PAH) and negatively charged poly(acrylic acid) (PAA) 

polyelectrolyte solutions.  The structures of these polyelectrolytes are shown in        

Figure 1.2.1.  

(a)  (b)   

Figure 1.2.1 The structures of (a) poly(allylamine hydrochloride) (PAH) and (b) 
poly(acrylic acid) (PAA) 
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Two different types of LbL films were assembled from PAH and PAA for each 

assembly technique; these are distinguished by listing the pH values of the 

polyelectrolyte solution used during film construction.  (PAH7.5/PAA3.5) conditions 

result in both adsorbing polyelectrolytes being only partially charged during the 

deposition steps, while the neutral pH (PAH7.0/PAA7.0) conditions result in each 

polyelectrolyte being fully charged during the deposition steps [6]. The film deposition 

processes were carried out by automated dipping and spin-assisted dipping. By 

alternating back and forth between the weak polyelectrolyte solutions, electrostatically 

crosslinked thin films were constructed. Since two different deposition conditions and 

two different deposition methods were used, the film properties could be expected to vary 

as a result of both of these factors. Therefore, the goals of this study are:   

(a) To compare film thickness and topology of PEM thin films constructed at the 

same pair of pHs with different assembly techniques 

(b) If uniform films were constructed, to perform humidity swelling/deswelling tests 

to determine the extent of swelling and any swelling hysteresis effects that may 

exist.  

Therefore, pH of polymer solutions and assembly methods are important to the 

morphology and internal chemistry of the PEM thin films. 

1.3 Literature Review 
 

The layer-by-layer assembly method is a fairly recent approach to fabricate nanoscale 

thin films. The discovery of the LbL assembly method was by R.K. Iller in 1965, who 

utilized this technique to build charged particle films; however, it did not become popular 

until 1997 with the rediscovery by Gero Decher and its application to polyelectrolytes 



 4	

[7,8]. There are several advantages of using the LbL assembly method. First, it can 

accommodate a range of substrate sizes and shapes, and a wide range of materials can be 

deposited onto different substrates. Second, materials for LbL assembly method are not 

limited to polyelectrolytes. Functional macromolecules including proteins and DNA, 

biological nanoparticles, and magnetic and gold nanoparticles are all on the list for 

constructing LbL multilayer films. The substrates can be glass, silicon or optical fibers 

[9].  Lastly, LbL assembly in itself is a simple and relatively inexpensive method of 

depositing alternate layers of functional materials [10].  

Dip-coating and spin-assisted are two major LbL assembly techniques. Dip-coating 

LbL assembly relies on diffusion of a charged species to the surface of a growing film 

when a substrate is immersed in the polymer solution [6]. For a long immersion time, the 

amount of polymer molecules adsorbed will be limited by charge repulsion between 

chains on the surface and chains in the solution. There are several factors that contribute 

to the dip-coated film structures and thickness: submersion time (for short times), initial 

substrate surface functionality, rinse steps, pH of solutions, etc. Dip-coating LbL 

assembly can be done either by hand or using an automated robotic system.  

In previous research, a study on how solution pH affected the dip-coating LbL 

assembly of PAH and PAA on the Si substrate was carried out [6]. Both polyelectrolyte 

solutions were made at 0.01 M based on the repeat unit molecular weight. Films 

constructed by all possible pH combinations between pH 2.5 and pH 9.0 were tested. 

Two of these conditions are directly relevant to this study.  

When depositing with PAH and PAA solutions each at the same pH near neutral (pH 

7), both polyelectrolytes were fully charged and the resulting films were flat and thin. In 
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the study, the authors described these conditions in “region III” (pH 6.0-7.5), where both 

PAH and PAA were fully ionized. The resulting PAH/PAA bilayer thickness was very 

thin, ranging from 0.3-0.5 nm. Similar results were expected for the PAH7.0/PAA7.0 pH 

conditions in this study.  

In addition, this previous research also carried out a study keeping PAA at a constant 

pH of 3.5 and varying pH of PAH solution from 2.5 to 8.5. In the pH range of 2.5- 4.5, 

the PAH/PAA bilayer thickness increased with the increasing pH of PAH within a range 

of 3-6 nm. When the pH of PAH was higher than 4.5, however, adsorbing chains would 

adopt a more loopy conformation which resulted in a substantially thicker bilayer 

thickness [6]. Therefore, when depositing PAH7.5/PAA3.5 system, the adsorbing chains 

are expected to be only partially charged, which would result in a thicker film. 

In contrast to dip-coating LbL assembly, PEMs that were constructed by spin-assisted 

(SA) LbL assembly uses forced-adsorption along with centrifugal force to deposit 

polymer solutions on a flat, spinning substrate. There are many advantages for using SA-

LbL including decreasing assembly time and minimizing solution usage compared to dip-

coating LbL assembly. In addition, different deposition methods could result in different 

film morphology when using the same polymer solutions [11]. 

In a previous study on the effect of LbL deposition methods on the surface 

morphology, hydrogen-bonding multilayer thin films constructed by hydrophobically 

modified poly(ethylene oxide) (HM-PEO) and PAA were prepared using dip-coating LbL 

and SA-LbL. It was found that the surface morphology constructed by the same polymer 

solution using different deposition techniques was different. For the SA-LbL assembly, 

the adsorption and rearrangement on the surface was limited during the short spinning 
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time (~20 s). In addition, HM-PEO micelles were easily deformed by imposed shear 

force; therefore, during the deposition process, the micelles could not retain their shape. 

On the contrary, dip-coating LbL allowed HM-PEO to diffuse and adsorb onto the 

substrate due to a long deposition time (~15 minutes). It also allowed a longer time for 

the surface rearrangement, resulting in different surface morphology than the SA-LbL 

sample. Therefore, the finalized thin films constructed by the two assembly techniques 

looked different. The dip-coated LbL films appeared to be cloudy, which indicated a high 

surface roughness due to light scattering, whereas the spin-assisted LbL films appeared to 

be transparent [11].  

PEMs are known to be sensitive to external factors such as pH, temperature, or 

humidity [12]. Therefore, it is vital to know about humidity swelling/deswelling effects in 

the PEMs. The swelling of PEMs can be attributed to the increasing availability of 

additional absorption sites for water to enter [13]. In a previous work, a humidity 

swelling/deswelling study of was carried out for SA-LbL (PAH7.5/PAA3.5)20 thin films. 

Data collected in the swelling period was called “absorption”, whereas data collected in 

the deswelling period was called “desorption”. It was found that humidity swelling 

hysteresis occurred in this thin film between dry state conditions (~10% RH) and 

hydrated state conditions (~100% RH). Overall, the thin film swelled up to approximately 

40% of its dry state thickness. In addition, the swelling was not linear with humidity. 

PEMs demonstrated a substantial increase in swelling above 90% RH, as the external 

water activity approached unity [13].  However, when desorption occurred from ~100% 

RH to 90% RH, the film quickly reached its 90% RH absorption film thickness, which 

indicated that water that entered above this humidity was not tightly bound [13]. The 
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hysteresis became apparent when desorption occurred below 90% RH. The 

rearrangement of the film structure upon swelling gave more binding interactions with 

water and hindered the desorption of water from within the film. Furthermore, these 

interactions prevented the film from reforming the same electrostatic cross-linking 

interactions that were present during absorption, which resulted in thicker films at the 

same humidity levels during deswelling; hence, the hysteresis effect [13].  
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2. METHODS 
 

2.1 Deposition process of PEMs 
 

All PEMs were constructed on (100) p-type (University Wafer) silicon wafer by using 

spin-coating (Laurell Technologies Inc., model WS-400BZ-6NPP/Lite) or an automated 

dipping system (nanoStrata Inc., StratoSequence VI). Before deposition, silicon wafers 

were treated by a Novascan Digital UV ozone system for 30 minutes to eliminate organic 

containments on the wafers. Aqueous solution of PAH (Alfa Aesar, MW=120K-200K) 

and PAA (Polyscience Inc, 25% solids in water, MW > 200,000) were prepared with 

deionized water (Millipore, 18 MΩ�cm) to a concentration of 0.01 M by repeat unit. 

Afterwards, solutions were adjusted to desired pH values using 0.01 M solutions of either 

NaOH or HCl. The same pH-adjusted polyelectrolyte solutions were used in spin-assisted 

and automated dipping assemblies. PAH was first deposited, followed by two rinse steps 

of water. Then, PAA was deposited, followed by two rinse steps of water. This process 

was considered as one bilayer of film, and the process was repeated until reaching the 

targeted bilayer number (=20 bilayers). The SA-LbL PEMs were constructed using a spin 

step at 2000 rpm for 20 s, whereas the dipping PEMs were constructed by immersion in 

the solution for 5 min in each step. Both spin-assisted and dipping PEMs are denoted as 

(PAH x/PAA y)z, where x and y indicate the pH of the polyelectrolyte solution, and z 

indicates the number of bilayers used to construct the film. In this study, two sets of pH 

conditions of PEMs were studied by two assembly methods: (PAH7.5/PAA3.5)20 and 

(PAH7.0/PAA7.0)20. The film thickness measurements were carried out by a 

reflectometer (Filmetrics F20, as shown in Figure 2.1.1) 
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Figure 2.1.1 Thin film thickness measurement instrument: Filmetrics F20  

The thickness of thin film is measured by the reflectance from the top and bottom of 

the thin film. The reflective index and the extinction coefficient will also be generated. 

The thickness of spin-assisted LbL film was recorded every 5 bilayers; the thickness of 

dipped LbL film was recorded at 3 bilayers and 20 bilayers. 

2.2 Film morphology study with silane treatment and PEI underlayer 
 
Because dip-coated LbL (PAH7.5/PAA3.5)20 did not have a uniform surface, two 

different surface modifications on the Si substrates were subsequently investigated to see 

if more uniform films could be produced: silane treatment and the pre-adsorption of a PEI 

adhesion underlayer. Chloro(dimethyl)octylsilane (Sigma Aldrich, 97%) was used for the 

silane treatment. First, the ozone-treated Si substrate was put on an elevated surface in a 

petri dish. Then, one part of silane by mass and four parts of toluene by mass were mixed 

right before the treatment. The treatment was carried out in a vacuum oven (Thermo 
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Scientific™ Lindberg/Blue M™ Vacuum Oven) to let the mixture deposit from the vapor 

phase onto the Si at a pressure of 15 in Hg, temperature of 70ºF for 15 minutes. After the 

treatment, thin films were deposited in the same automated dipping process.  

In addition, linear PEI (Polysciences Inc, MW=25,000) was used to help the adhesion 

of PAH and PAA onto the wafer for the thin films where the morphology was cloudy 

[14]. 0.02M PEI solution was adjusted to pH 5.0. Then, the ozone-treated Si substrates 

were immersed in the PEI solution for 10 minutes, followed by a 2-minute water rinse. 

Afterwards, the dip-coated deposition steps were carried out according to the usual 

procedure.  

Film surface morphology studies were carried out using contact mode AFM (as 

shown in Figure 2.2.1) with a cantilever spring constant of 0.2 N/m and a scan speed of 

0.5 lines/s. The AFM was used to characterize sample surface at high resolution. In a 

contact mode AFM, the cantilever tip is scanned in close proximity over a sample 

surface. As the scanning proceeds, the surface roughness would cause the cantilever to 

bend and produce a measurement. 
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Figure 2.2.1 Surface roughness measurement instrument: Atomic Force Microscope  

 In this study, the surface roughness for PEMs was measured based on RMS 

roughness as measured over a 10 µm square area. An ozone-treated Si substrate was also 

used as a standard to compare its measured surface roughness, which should be very 

small, with the PEM thin films.  

2.3 Humidity swelling/deswelling studies 
 
The effect of humidity on both SA-LbL and dip-coated PEM thicknesses was studied 

by using a reflectometer (as shown in Figure 2.1.1). Measurements were carried out in a 

humidity-controlled glovebox (Electro-Tech Systems, Inc.). The thickness of the film 

was measured at least 5 times after reaching equilibrium. Relative film thickness was 

used for the analysis where the film thickness was normalized to the thickness value at 

10% RH of each sample. Thin films were equilibrated at 10% RH overnight, and film 

thickness was taken when the reading was stabilized. Then, RH was increased by 10% 
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increment until it reached 100% RH. At each RH value, 5 minutes were allowed to 

achieve equilibrium before recording data. Data collected in this swelling period was 

called absorption. After reaching 100% RH, desorption data was collected by decreasing 

RH by 10% increment until it reached 10% RH. 
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3. RESULTS AND DISCUSSIONS 
 

3.1 Thin film thickness measurements 
 
The thin film thickness versus number of bilayers for SA-LbL and automated dipping 

LbL samples are recorded in Figure 3.1.1. The ambient temperature was about 21 ºC, and 

the room humidity was about 22 %RH when the deposition process and thickness 

measurements took place. As seen in Figure 3.1.1, thin films deposited by dip-coating 

and SA-LbL assembly demonstrated a nearly linear growth in film thickness with 

increasing bilayer number. Moreover, SA-LbL (PAH7.5/PAA3.5)20 samples were 

relatively thicker than (PAH7.0/PAA7.0)20 samples using the same assembly technique.  

 
Figure 3.1.1 Thin film thickness growth by two deposition methods  
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The film thickness (and respective per bilayer thickness) of the two fabrication 

methods were summarized in Table 3.1. The difference in thickness between an adsorbed 

PEI underlayer samples and no underlayer samples was really small for samples that 

appeared to form uniform films. However, film morphology of dip-coated samples for 

(PAH7.5/PAA3.5)20, silane treated (PAH7.5/PAA3.5)20 and PEI underlayer 

(PAH7.5/PAA3.5)20 appeared to be non-uniform and splotchy, regardless of surface 

treatment. Hence, the thickness of those samples could not be measured by a 

reflectometer. Therefore, no data for these films appears in Figure 3.1.1, and such films 

were not included in the humidity tests. The surface morphology dip-coated 

(PAH7.5/PAA3.5)20 samples were however further investigated by AFM.  

Table 3.1 Summary of total and per-bilayer film thickness for the two fabrication 
methods and assembly pH conditions  

 SA-LbL film 

thickness (nm) 

Bilayer 

thickness for 

spin-coated 

(nm) 

Dip-Coated 

LbL film 

thickness 

(nm) 

Bilayer 

thickness for 

dip-coated 

(nm) 

(PAH7.5/PAA3.5)20 149.0±0.2 7.5 N/A N/A 

PEI underlayer 

(PAH7.5/PAA3.5)20 

152.5±0.1 7.6 N/A N/A 

(PAH7.0/PAA7.0)20 124.3±0.5 6.2 13.3±3.1 0.7 

PEI underlayer 

(PAH7.0/PAA7.0)20 

118.3±1.7 5.9 11.1±5.2 0.6 

 



 15	

The film thickness of dip-coated (PAH7.0/PAA7.0)20 was very thin. This result was 

consistent with what has been found in the previous literature [6]. At this condition, both 

PAH and PAA were fully ionized, leading to fewer chain loops within the film. 

Moreover, in the dip-coating assembly process, the polymer molecules diffused freely 

onto the substrate, and, due to charge repulsion or other thermodynamic effects, would 

have self-limited their growth at each deposition step [11]. Then, the water rinse steps 

would wash off any unbound polymer molecules. Therefore, the amount of polymer 

adsorbed on the substrate was presumably less than what would be possible via spin 

coating. In contrast, during spin coating, a thick film of polyelectrolytes is forced onto the 

surface via centrifugal force and precipitation from the drying solvent (water). It is 

unclear whether subsequent rinse steps can remove all the excess material, perhaps 

resulting in a larger bilayer thickness. Even though the film thickness of dip-coated 

(PAH7.5/PAA3.5)20 was not able to be determined by a reflectometer, based on the AFM 

topography from Figure 3.2.3, the estimated film thickness should be at least 100 nm, as 

its peak to valley distance was about 200 nm. Based on these results, where the same 

assembly technique was used, the film thickness of PAH7.5/PAA3.5 was much thicker 

than PAH7.0/PAA7.0, which was consistent with previous literature results [6]. 

Even though dip-coated (PAH7.5/PAA3.5)20 samples did not give a uniform surface 

films, the SA-LbL (PAH7.5/PAA3.5)20 samples appeared to be uniform and clear. 

Comparing SA-LbL (PAH7.0/PAA7.0) with SA-LbL (PAH7.5/PAA3.5) thin films, the 

per bilayer thickness did not differ that much. Although it has been shown that the 

thickness of PAH7.0/PAA7.0 films are substantially smaller than the thickness of 

PAH7.5/PAA3.5 films when constructed by dip-coating, films constructed at the same 
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conditions using SA-LbL seem to have very similar thicknesses. This finding could be 

beneficial to those who would like to fabricate thick PAH7.0/PAA7.0 films using dip-

coating assembly. Now, they could use SA-LbL to fabricate the same thickness of 

PAH7.0/PAA7.0 film and cut down the fabrication time. Therefore, the assembly 

technique could be a factor on the film morphology and the film thickness.  

Finally, an adsorbed PEI underlayer was used to promote adhesion of thin film in the 

deposition process. Using this method could increase the polycationic charge on the 

surface, which could provide more adsorption sites for the polymer molecules to attach to 

the substrate. However, based on the film thickness measurement, it did not seem to 

affect the ultimate film thickness too much compared to samples without the treatment 

[14].  

3.2 Thin film topography study with AFM 
 
Film surface topography studies were carried out using contact mode AFM. The 

surface roughness for PEMs was measured based on RMS roughness as measured over a 

10 µm square area. The image in Figure 3.2.1 was the AFM of a bare Si substrate after 

ozone treatment. Since there was nothing deposited on the substrate, the surface should 

be relatively smooth with an RMS roughness value of 0.143nm [15]. An RMS roughness 

value of 10.9 nm indicated that the surface of the film was smooth, as compared to the 

multilayer film samples, but that value was more than an order of magnitude higher than 

would be expected for a Si wafer [15]. It was speculated that room noise was the cause 

for this higher roughness value. Because this noise would presumably be present for all 

of the samples measured, the silicon roughness value was treated as a standard for the 
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roughness study of the films, although in light of the high value for the silicon, roughness 

values in the following were only used for comparative purposes between samples. 

 

Figure 3.2.1 Topographic image of a clear Si substrate with RMS=10.9nm 

The topographic image of the spin-coated (PAH7.5/PAA3.5)20 was shown in 

Figure 3.2.2. The RMS roughness value (= 13.6nm) of the spin-coated 

(PAH7.5/PAA3.5)20 thin film was only slighter higher than that of the bare Si substrate, 

indicating a very smooth surface morphology. These films also appeared very uniform 

visually.  
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Figure 3.2.2 Topographic image of spin-coated (PAH7.5/PAA3.5)20 with RMS = 
13.6nm 

In contrast to their spin-assembled counterparts, dip-coated (PAH7.5/PAA3.5)20 

films appeared non-uniform and cloudy. Based on the topographic image from Figure 

3.2.3, the film had several peaks and valleys, which indicated the unevenness of the film. 

The RMS roughness value was 20 times greater than the spin-coated (PAH7.5/PAA3.5)20 

sample.  

As mentioned previously, the uneven dip-coated (PAH7.5/PAA3.5) film 

morphology led to an investigation of whether a surface treatment could be used to 

produce smoother films.  Two surface treatment techniques were attempted: silane 

treatment and an adsorbed PEI underlayer. Using silane treatment before deposition 

would make the substrate hydrophobic and potentially encourage alternate types of 
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surface binding interactions. For example, others have shown that the PAH7.5/PAA3.5 

system can adsorb directly onto hydrophobic poly(dimethylsiloxane) surfaces [16]. In 

addition, an adsorbed PEI underlayer was used to attempt to promote adhesion of thin 

film during the deposition process as PEI is a strong polycation which could introduce 

more surface charge and make the first few bilayers of PAH/PAA adhere more strongly 

onto the substrate.  

 

Figure 3.2.3 Topographic image of dip-coated (PAH7.5/PAA3.5)20 with 
RMS=386.2nm 

The topographic image of silane treated dip-coated (PAH7.5/PAA3.5)20 was 

shown in Figure 3.2.4. The RMS roughness value of 61.4 nm decreased drastically after 

the treatment compared to the sample without the treatment (RMS = 386.2 nm). This 
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result indicated that the silane treatment did help to decrease surface roughness in the 

deposition process. However, this thin film still appeared cloudy visually, and there were 

still several peaks and valleys on the film surface based on the topography image. 

Therefore, silane treatment before deposition of dip-coated (PAH7.5/PAA3.5)20 did not 

work well enough to enable reflectometry, and samples were not as smooth as their SA 

counterparts.  

 

Figure 3.2.4 Topographic image of silane treated dip-coated (PAH7.5/PAA3.5)20 
with RMS=61.4nm 

The topographic image of dip-coated (PAH7.5/PAA3.5)20 with an adsorbed PEI 

underlayer is shown in Figure 3.2.5. Compared to the sample without any treatment, the 

thin film with an adsorbed PEI underlayer had a much smaller RMS roughness value of 

35.2 nm. This could due to the fact that the strong polycationic PEI helped with the 
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adhesion of the deposited thin film in the deposition process. However, even with a PEI 

underlayer and an order of magnitude decrease in the surface roughness from samples 

with an untreated substrate, the film appeared to be cloudy, and the film was still too 

rough to characterize using optical techniques.  

 

Figure 3.2.5 Topographic image of dip-coated (PAH7.5/PAA3.5)20 with a PEI 
underlayer with RMS=35.2nm 

 Based on the two surface treatment findings, they both gave a smaller RMS 

roughness value compared to the thin film without any surface treatments. Even though 

neither treatment made the thin films visually uniform and clear, the roughness of the thin 

films decreased drastically. The adsorbed PEI underlayer on the dip-coated 

(PAH7.5/PAA3.5)20 produced a smaller RMS roughness than the silane treated sample. 
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As mentioned before, an adsorbed PEI underlayer promoted better adhesion for the thin 

film because of the increase in surface polycationic charge, which would presumably 

provide adsorption sites for the polymer molecules to attach onto the surface.  

3.3 Humidity hysteresis study 
 

Swelling and deswelling measurements were performed on SA-LbL 

(PAH7.5/PAA3.5)20 and SA-LbL (PAH7.0/PAA7.0)20 films.  The temperature for the 

testing condition was 25.3±0.17 ºC.  The results of these studies are shown below in 

Figures 3.3.1 and 3.3.2, respectively. Both of the samples exhibited a hysteresis effect. In 

addition, they both swelled up to a maximum of nearly 40% of the dry-state thickness, 

which was similar to previous results [13]. However, neither system collapsed back to its 

original thickness at 10 %RH, which has been previously observed. This could be due to 

the decreased chain mobility in the PEM at low humidity [13].  
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Figure 3.3.1 Humidity swelling/deswelling of SA-LbL (PAH7.5/PAA3.5)20 (The 
uncertainty represents the standard deviation of at least 5 times of film thickness 
measurements) 

As can be seen on both plots (Figure 3.3.1 and Figure 3.3.2), there was a 

comparatively larger change of thickness from 90% RH to ≈100%RH in swelling. This 

could be due to increased mobility of chains in the film at the highest humidity values.  

From 10% RH up until 90% RH, the film was hysterestically stable, meaning that a 

different thickness was observed for absorption and desorption measurements [13].  
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Figure 3.3.2 Humidity swelling/deswelling of SA-LbL (PAH7.0/PAA7.0)20(The 
uncertainty represents the standard deviation of at least 5 times of film thickness 
measurements) 

 It was interesting to find in this case that at different pH conditions using SA-LbL 

assembly, the thin films demonstrated similar humidity hysteresis effect. At room 

temperature, the bilayer thickness of SA-LbL (PAH7.0/PAA7.0)20 was very close to the 

bilayer thickness of SA-LbL (PAH7.5/PAA 3.5)20. In addition, according to Figure 3.1.1, 

the thin film growth pattern for both conditions was relatively similar. Based on these 

observations, a speculation could be made that using SA-LbL to construct PAH/PAA 

system, even though the pH of polymer solutions was different, the resulting thin film 

structure could be similar. However, this speculation needs to be further investigated.  

The humidity hysteresis effect was difficult to analyze in the dip-coated LbL 

(PAH7.0/PAA7.0)20 due to the high uncertainty in film thickness as well as its small film 

thickness. As can be seen from Figure 3.3.3, the film thickness was not stable and 

thickness measurements varied widely at each humidity condition. Although it is feasible 
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that the water entering the film was rearranging the crosslinking in a dramatic way or that 

the substrate was having an effect on the swelling properties due to the thinness of the 

film, it should be noted that the film thickness of dip-coated LbL (PAH7.0/PAA7.0)20 

was really small (≈13nm), making film thickness measurements by reflectometry 

extremely challenging.  Without additional measurements on thicker dip coated 

(PAH7.0/PAA7.0) films, it difficult to say anything conclusive about the swelling 

properties of that system. 

 

Figure 3.3.3 Humidity swelling/deswelling of dip-coated LbL (PAH7.0/PAA7.0)20 
(there is a point not shown at %RH≈100 where the swelling ratio is near 3)  
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4. CONCLUSIONS  
 

PEMs in this study were constructed at two different pH assembly conditions and by 

two different techniques: automated dipping assembly and spin-assisted assembly. The 

difference in assembly methods at the same assembly conditions resulted in different film 

thickness and film morphology.  

The adsorption of polyelectrolyte chains in dip-coating LbL assembly is limited by 

diffusion and charge repulsion between adsorbing and adsorbed chains, which is 

mediated by the solution pH. PEMs constructed by dip-coated LbL had very different 

film thicknesses and morphology depending upon the pH of the polymer solutions. On 

the other hand, SA-LbL assembly utilizes a forced adsorption method. The resulting film 

thicknesses for both SA-LbL (PAH7.5/PAA3.5)20 and SA-LbL (PAH7.0/PAA7.0)20 did 

not vary much. Therefore, SA-LbL assembly appears to yield films whose morphology is 

less sensitive to the pH of the polyelectrolyte solutions.  

The film morphology of dip-coated LbL (PAH7.5/PAA3.5)20 was non-uniform, and 

AFM tests suggested a film thickness of several hundred nanometers. Even though 

different surface treatments were tested on the substrate and were able to decrease the 

roughness considerably, it did not decrease the film roughness to the same level as SA-

LbL films, and thickness measurements with the reflectometer could not be performed. 

For the dip-coated LbL (PAH7.0/PAA7.0)20, the film morphology looked uniform, but 

the films were considerably thinner. In the PAH7.0/PAA7.0 system, different assembly 

techniques could result in different film thickness. The SA-LbL PAH7.0/PAA7.0 sample 

resulted in a thicker film compared to the dip-coated LbL PAH7.0/PAA7.0 sample. In 
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this case, SA-LbL could produce a thicker film in a much shorter time. Therefore, the 

assembly technique is important to film thickness and morphology.  

In addition, humidity swelling hysteresis effects were found in both SA-LbL 

(PAH7.5/PAA3.5)20 and SA-LbL (PAH7.0/PAA7.0)20. However, for the dip-coated LbL 

(PAH7.0/PAA7.0)20, even though the film morphology looked uniform, the films were 

considerably thinner, making film swelling/deswelling measurements and an evaluation 

of swelling hysteresis difficult to quantify. The humidity swelling hysteresis effect at this 

condition needs to be further investigated with a thicker film thickness.  

Based on the similar humidity hysteresis effect found in SA-LbL (PAH7.0/PAA7.0)20 

and SA-LbL (PAH7.5/PAA3.5)20, it would be beneficial for the future work to determine 

whether the films were chemically similar internally. In addition, different pH condition 

pairs of PAH and PAA could be investigated to see if similar humidity hysteresis 

persisted over wider ranges of assembly conditions.  
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