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ABSTRACT 

 

Pauly, Michael Louis 

M.S.M.E. 

Rose-Hulman Institute of Technology 

November 2014 

Workspace Analysis of a Linear Delta Robot: Calculating the Inscribed Radius 

Thesis Advisor: Dr. Dave Fisher 

 

One of the most important traits of a robotic manipulator is its work envelope, the space 

in which the robot can position its end effector. Parallel manipulators, while generally faster, are 

restricted by smaller work envelopes [1]. As such, understanding the parameters defining a 

physical robot’s work envelope is essential to the optimal design, selection, and use of robotic 

parallel manipulators. 

A Linear Delta Robot (LDR) is a type of parallel manipulator in which three prismatic 

joints move separate arms which connect to a single triangular end plate [2]. In this study, 

general inverse kinematics were derived for a linear delta robot. These kinematics were then 

used to determine the reachable points within a plane in the robot’s work envelope, incorporating 

the physical constraints imposed by a real robot. After simulating several robots of varying 

parameters, a linear regression was performed in order to relate the robot’s physical parameters 

to the inscribed radius of the area reachable in a plane of the LDR’s work envelope. Finally, a 



iv 

 

physical robot was constructed and used as a reality check to confirm the kinematics and 

inscribed radius. 

This study demonstrates the relationship between the LDR’s physical dimensions and the 

inscribed radius of its work envelope. Building a physical robot allowed confirmation of the 

resulting equation, validating an accurate representation of the LDR’s physical constraints. By 

doing so, the resulting equation provides a powerful tool for correctly sizing a LDR based on a 

desired work envelope.  
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 1. INTRODUCTION 

This study focuses on describing the work envelope of a Linear Delta Robot (LDR), a type 

of parallel manipulator. Driven by three prismatic joints, this platform uses the same 4-bar 

mechanism used in other delta robots to maintain the orientation of the End Effector (EE) plate, 

while still allowing three degrees of translational freedom [3] [4].  

 

Figure 1: A Linear Delta Robot 

 

 A robot’s workspace, often called a work envelope, describes the volume a robot can 

reach with its End of Arm Tooling (EoAT). For LDRs it is often convenient to quantify the 

workspace in terms of an inscribed radius, taken from a single plane within the workspace [5] 
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[6]. Measuring this radius is a simple task on a physical LDR but difficult to calculate for a 

theoretical robot [7]. The objective of this study is to determine the relationship between the 

inscribed radius of a LDR’s workspace and the robot’s physical parameters. Figure 2 shows the 

LDR from Figure 1 when viewed from the right. The LDR’s work envelope is shown in blue, 

with the inscribed radius shown as the red arrow. 

 

Figure 2: Inscribed Radius of a LDR Work Envelope 

 

 One objective of this study is to place an emphasis on studying the physical workspace of 

a LDR, rather than the theoretical workspace, so additional factors such as joint angle limits and 
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end effector mounting are considered. Using the calculated inverse kinematics, a simulation 

program was written to measure the inscribed radius empirically using several different sets of 

physical parameters. A linear regression was performed comparing the arm length, delta plate 

radius, joint axis offsets, and spherical joint limits to the inscribed radius, resulting in an equation 

defining the inscribed radius in terms of the physical parameters of a LDR. Finally, a physical 

LDR was built to test the inverse kinematics and measure the inscribed radius. This platform was 

essential to confirm the kinematics and ensure that the assumptions about physical constraints 

made in the mathematical model were valid, acting as a reality check for the simulation. 

 The single resulting equation can be used to evaluate a Linear Delta Robot’s work 

envelope inscribed radius based only on easily measurable physical characteristics of the robot. 

No kinematic equations are required, meaning that this equation can be used quickly without 

requiring iterations to evaluate several possible robots quickly. Thus, the found equation is a 

powerful tool for easily approximating the inscribed radius of a Linear Delta Robot. 
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 2. BACKGROUND 

In recent years, robotic manipulators have gained popularity in many industries. Providing 

high strength, speed, repeatability, and robustness, robots have gained widespread acceptance for 

jobs deemed too labor-intensive, dangerous, monotonous, or difficult for humans. The growing 

number of robot models and manufacturers means that users have a plethora of potential robotic 

candidates for any task, making the selection of an ideal robot a difficult task. 

A defining characteristic of any robotic manipulator is its work envelope.  This term refers 

to any point that the robot can reach with its EoAT. Because the work envelope represents the 

space in which the robot can effectively interact with the environment, it is an essential aspect to 

consider when selecting or placing a robot. Designing a robot for a prescribed workspace can be 

an especially difficult problem, depending on the manipulator in question [8]. It is important to 

note that generally the work envelope only considers the EoAT position, but not orientation. 

Many times a robot will be able to reach a location, but cannot interact with a part or fixture 

because it has the wrong orientation. While work envelopes are a three dimensional space, they 

are often described with a radius (or radii) within a cross-sectional plane, as seen in Figure 3. 
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Figure 3: Example Work Envelope of a Serial Manipulator [9] 

 

An essential tool for describing a robot’s position are forward and inverse kinematics [10]. 

Forward kinematics are used to determine a robot’s end effector position based on the state of the 

robots actuators. Inverse kinematics are used to calculate the required actuator states to achieve a 

desired end position. Depending on the manipulator in question, both the forward and inverse 

kinematics may provide multiple solutions. All valid actuator configurations which reach a 

single end point are the set of viable poses. Serial manipulators generally have a unique solution 

to the forward kinematics problem, while having multiple poses which satisfy the inverse 

kinematics. Parallel manipulators, depending on the type, can have numerous solutions to both 

forward and inverse kinematics [11]. The Stewart Platform, shown in Figure 4 below, has 40 

direct forward kinematic solutions [12]. 
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Figure 4: The Stewart Platform [13] 

 

Robotic manipulators are generally categorized into one of two groups: serial and parallel 

[12]. Serial robots have one path of joints and links from the base to the end effector, whereas 

parallel robots have multiple paths from the base to the end effector. In general, serial 

manipulators are heavier and slower because each joints’ motor must be mounted on the arm (or 

have motion transmitted via some physical linkage), but have larger work envelopes. Parallel 

manipulators are usually faster, as their motors are housed in the stationary base, but have 

smaller work envelopes [14]. As such, when using parallel manipulators it is essential to select 

the correct robot in order to make full use of the work envelope. 

Another significant difference between serial and parallel manipulators is the way in which 

their kinematics are derived. Serial manipulators often use coordinate transformations, in the 

form of matrices, to relate the position of each link to the previous one [10]. Thus, the end 

position, expressed as a vector, is found by multiplying the initial position by the transformation 

matrices for each link. Many transformations are used, one of the most popular being the 
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Denavit-Hartenberg method. If the full transformation matrix is invertible, then the inverse 

kinematics is performed by multiplying the desired position by the inverted transformation 

matrix. This method is limited to a single solution and does not provide multiple poses.  

Oh the other hand, parallel manipulators are modeled by systems of equations. Starting at 

the base, the end position is expressed with regards to the position of each kinematic chain in the 

robot. For inverse kinematics, the system of equations is solved to determine the required 

actuator inputs. This proves to be a difficult task, with each manipulator often requiring its own 

method [5] [11] [12]. 
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 3. LITERATURE REVIEW 

One of the most popular parallel manipulator designs is the DELTA platform, originally 

developed by Swiss team lead by Reymond Clavel [3]. Driven by three revolute joints located on 

the base, motion is transmitted through three parallelogram arms to a semi-triangular end piece, 

called the delta plate. One of Clavel’s models, shown in Figure 5 below, has a fourth revolute 

joint that allows for rotation of the End Effector about the Z axis. 

 

Figure 5: A Diagram of the Delta Robot from the Original 1990 Patent [3] 
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The defining aspect of Delta manipulators are their parallelogram arms. Two long links are 

connected to the adjoining links by spherical joints at each end, forming a 4-bar mechanism. This 

setup ensures that the two connected links remain parallel, effectively removing one degree of 

freedom from the system. By using three 4-bar mechanisms, Delta platforms lock the pitch, roll, 

and yaw of the Delta plate, such that the end effector has a constant orientation regardless of 

position.  

There are various Delta platform configurations, including linear Delta robots, which swap 

the revolute joints of the original Delta platform for prismatic joints. In most cases, motion is 

achieved through the use of lead screws and rotational motors, though other linear actuation 

methods are also used.  Figure 6 shows a linear delta platform designed by Clavel. Because of 

their high accuracy and rigidity, LDRs are sometimes used for 3-D printing, as seen in Figure 7. 

 

Figure 6: Clavel's Linear Delta Design [3] 
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Figure 7: Linear Delta Robot 3-D Printer [15] 

 

This study focuses on LDRs which use three parallel prismatic joints. The pictures shown 

throughout this paper and the physical LDR all have coplanar axes, though the derivation of 

kinematics in Section 4.2 allows for axes which are not coplanar. Previously, these LDRs have 

been modeled with three spheres, each representing the reach of a single arm, demonstrated in 

Stock and Miller’s work [4]. Theoretically, as each parallelogram arm can rotate to any 

orientation, any intersection of the outer surfaces of all three spheres could be treated as 

reachable position. While this approach is valid for a theoretical system, the assumption that the 

spherical joints can rotate freely to any angle does not apply to most physical systems. Figure 8 

shows the LDR used in Stock and Miller’s paper; Figure 9 shows a top view of the three spheres 

which sweep the reach of each arm. In Figure 9, the top view of the LDR is rotated 180 degrees; 

the green sphere in Figure 9 represents the rightmost slider in Figure 8. 
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Figure 8: The LDR Model Used by Miller and Stock [4] 

 

Figure 9: Modeling LDRs with 3 Spheres [4] 

 

 This method does illustrate the possibility for multiple poses, as any intersection between 

three spheres will be a valid solution. In rare cases, one sphere will lie tangent to the intersection 

of the two other spheres, resulting in a single unique solution. If two spheres do not intersect, 

then no solution exists.  
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 4. DESCRIPTION OF THE MODEL 

4.1 Defining the Mathematical Model 

In order to accurately predict the work envelope of a real LDR, a new model which includes 

physical constraints is required. The model used in this study will focus primarily on the 

restriction of the position of the spherical joints, while also accounting for the end effector 

mounting and the coupling of the prismatic and spherical joints. 

To begin, a Cartesian coordinate system is created, and attached to the base of the LDR as 

shown below in Figure 10. 

 

Figure 10: Location and Orientation of the Coordinate System Origin 

 

Next, the physical parameters of the LDR are mapped to variables. This study uses the 

following convention: constant lengths are assigned lowercase letters, actuator variables are 

x 

y 

z 



19 

 

assigned uppercase letters, and angular measurements are assigned Greek letters. Subscripts 

indicate the kinematic path (joint axis) associated with the variable. Joint axis 1 is the lower left 

prismatic joint, joint axis 2 is the center joint, and joint axis 3 is the far joint. The y and z 

direction offsets, �� and ���, respectively, for each axis are shown in Figure 11. For the LDR 

constructed in this study, ��� is zero for all axes.  

 

Figure 11: Defining Joint Axis Offsets 

 

Each prismatic joint is a slider which connects to the 4-bar mechanism via spherical 

joints. The slider’s x displacement is ��, measured from the y-z plane, shown above. Because the 

two arms in each 4-bar mechanism have a constant length and are always parallel, they are 

modelled as a single link of length a. This study uses three angles to describe the rotation of the 

��� 	 0 

�� 
�� �� 
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spherical joint. In order to measure the same angular displacement for each of the links, an 

angular offset, ��, is used.  �� is the rotation from a hypothetical spherical joint facing along the 

positive x axis. This constant is used to define the base or zero position of each upstream 

spherical joint. ��, the lateral rotation of each spherical joint, is then measured from �� in the x-y 

plane. By using ��, it is possible to directly compare the �� values of each joint and determine if 

they exceed the possible rotation of the physical joints. Figure 12 shows the angular offsets, and 

Figure 13 shows an example �� value measured from one of these offsets. 

 

Figure 12: Top View of the LDR’s Default Position 

 

�� 

�� 

� 	 �    
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Figure 13: �� Measured with regard to �� 

 

The third angle measured, ��, measures the 4-bar mechanisms’ rotation from the negative 

z axis. Length b is the horizontal distance from the center of the delta plate to the center of the 

downstream spherical joint. Two additional z offsets are also needed. The distance from the 

prismatic joint’s axis to the spherical joint is designated ���; the distance from the downstream 

spherical joint to the end effector is labelled ��� . Figure 14 shows the z distance offsets, using the 

bottom of the delta plate as the end effector in the simulations. For the constructed LDR, a 

pointer was made to extend below the bottom of the delta plate to allow easy measurement to the 

center. 

�� 
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Figure 14: Side View of the LDR with Parameters 

 

To simplify future equations, a single parameter, ��, will be used as the z offset, as 

defined in Equation 1 below. 

 �� 	 ��� � ��� � ��� (1) 

 

Of particular concern to this study are b, effective radius of the delta plate, c, the y offset 

of the joint axes, and θ and φ, angles which describe the spherical joints. These parameters are 

often ignored in other analyses but are important when considering an actual robot. Depending 

on the desired size of the end effector its required mounting footprint, the radius of the delta plate 

might be substantial or at least nontrivial. Additionally, few spherical joints exist that provide 

unlimited rotation in all three directions, so limiting the allowable ranges of θ and φ will more 

closely model physical systems. 

�� 

� 

��� 

���  

� 
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4.2 Kinematics 

 Finding the forward kinematic equations is straightforward. Following the kinematic 

chain from the origin to the end position for each axis gives the following result: 

 � 	 �� � � cos���� � � cos��� � ��� sin	���� (2) 

 � 	 �� � � sin���� � � sin��� � ��� sin	���� (3) 

 � 	 �� − �	cos	���� (4) 

 

 Because the three equations above apply to each axis, there are nine equations to solve 

for the nine unknown parameters (L, φ, and θ for each axis). However, as each joint axis is 

independent and can be solved individually, we can consider each axis as its own three degree of 

freedom system.  

 Solving for inverse kinematic equations is accomplished by rearranging the forward 

kinematic equations. Beginning with Equation 4, it is a simple matter to solve for ��. 

 �� 	 cos!� "�� − �� # 
(5) 

 

With �� known, Equation 3 could be rearranged to isolate ��, then solved by substituting 

Equation 5 for ��. However, that would result in the use of an inverse sine function. Previous 

experience has shown that MATLAB’s inverse sine function is unreliable for four-quadrant 

solving. Thus, another method is used, utilizing MATLAB’s more robust, four-quadrant inverse 

tangent function. This requires defining a quantity in terms of its sine and cosine. In order to 

accomplish this, Equations 2 and 3 are rearranged as shown. 
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 �−�� − � cos���� 	 � cos��� � ��� sin	���� (6) 

 �	−	�� − � sin���� 	 � sin��� � ��� sin	���� (7) 

 

Equations 6 and 7 can be solved for cos��� � ��� and sin��� � ���, but Li is still 

unknown and must be solved for first. This is done by squaring Equations 6 and 7, then adding 

them together, resulting in Equation 8. 

 ��−�� − � cos����� � ��	−	�� − � sin����� 	
� cos��� � ��� sin	����+	� sin��� � ��� sin	���� 

(8) 

 

Applying the trigonometric identity in Equation 9 to Equation 8 provides a quadratic 

equation with Li as the only unknown. 

 cos��� � ��� � sin��� � ��� 	 1 (9) 

 ��−�� − � cos����� � ��	−	�� − � sin�����

	 �sin	���� 
(10) 

 

Solving Equation 10 yields the final equation for Li. 

 �� 	 � − � cos����

± &�sin	���� − ��	−	�� − � sin����� 

(11) 

 

With Li solved for, Equations 6 and 7 can be rearranged as shown below, then used to 

solve for �� with MATLAB’s atan2 function. 
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 cos��� � ��� 	
��−�� − � cos�����

�	sin	����  
(12) 

 sin��� � ��� 	
��−�� − � sin�����

�	sin	����  
(13) 

 �� 	 �'�(2�sin��� � ��� , cos��� � ���� − �� (14) 

 

Thus, Equations 5, 11, and 14 model the inverse kinematics for a LDR. Three 

characteristics of these equations are worth noting. First, the angle �� only varies with z position. 

Because of this, if �� is the same for all three joint axes, then the magnitude of  �� will be the 

same (this study assumes that a is constant for all joint axes). Next, each of the equations can 

provide complex solutions, either from a trigonometric inverse or the square root of a negative 

number. In either case, a complex solutions signifies that the position in question would be 

unreachable for a physical robot. Finally, each equation can be solved to provide two solutions. 

For Equations 5 and 14, the two solutions arise from the inverse trigonometric functions when 

their ranges are extended to –π to π. In Equation 11, the two solutions come from the positive 

and negative values that can be the result of the square root terms. The two possible states for 

each axis allow for a total of eight (2�) possible robot poses for a single desired position. Stock 

and Miller provide an excellent illustration of the eight possible poses: 
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Figure 15: All Possible LDR Poses for a Reachable Position [4] 

 

 For this study, the pose in the upper left is chosen, so that � is always greater than �� 
and ��. This choice was made primarily to accommodate the physical robot, which has ψ angles 

most similar to those shown. Thus, the inverse kinematic equations for ��,	�, and �� become: 

 �� 	 � − � cos���� − &�sin	���� − ��	−	�� − � sin����� (15) 

 � 	 � − � cos��� � &�sin	��� − ��	−	� − � sin���� (16) 

 �� 	 � − � cos���� − &�sin	���� − ��	−	�� − � sin����� (17) 
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4.3 Physical Model 

 In order to verify the kinematics equations, a physical LDR was constructed. The 

prismatic joints were created from threaded sliders on lead screws, actuated by stepper motors. 

Ball and socket joints were used for the spherical joints. Kinematics calculations and motor 

control are performed with an Arduino Uno, which receives position commands via USB cable 

from a serial messenger, in this case a laptop computer. This position command was then 

converted to a linear distance for each slider, which in turn was converted to a number of ticks 

for each stepper to rotate. Positional data is stored on the Arduino EEPROM, which retains the 

information even when power is disconnected. Contact switches were placed along the slider 

track at known locations, allowing the robot to be reset to a known position should the positional 

data get corrupted or lost. Figure 16 shows the constructed LDR. 

 

Figure 16: The Constructed LDR 
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 As stated previously, a goal of this study is to determine an equation for inscribed radius 

which accounts for physical limitations of a system. As such, certain attributes of the LDR were 

chosen to be less than ideal. The delta plate is larger than necessary to hold the EoAT used, to 

allow for potentially larger tooling. The ball and socket joints that were chosen had a notable 

restriction on φ rotation, as shown in Figures 17 and 18 below. A complete table of the 

constructed LDR properties can be found in Appendix A. 

 

Figure 17: Rotation Limits on the Spherical Joints 
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Figure 18: Spherical Joints on the Delta Plate 

 To aid in measurement, a pointer was constructed and attached to the delta plate as shown 

in Figure 19. This allowed for easier measurement to the x-y center of the delta plate. 

 

Figure 19: Pointer used as an End Effector 

  

 The tracks to guide the sliders were laser cut from a single piece of acrylic to ensure that 

all three sliders would move in precise, parallel paths. At the end of each path a limit switch was 
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installed. The purpose of these switches, seen in Figure 20, was twofold. First, they allow for 

recalibrating of each prismatic joint’s length. Second, they keep each slider out of the danger 

zone at the end of the track, in which the sliders could hit the end of the track cause the couplers 

to slip, and thus cause the lead screws to slip and lose position. 

 

Figure 20: Limit Switches for the Prismatic Joints 
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 5.  METHODS 

5.1 Overview 

One can see from Equation 2 that the LDR’s reach in the x direction is primarily driven by 

the positions of the three prismatic joints. To increase the LDR’s reach in the x direction, one can 

simply increase the travel of the prismatic joints. However, the LDR’s reach in the y and z 

directions is based on the arm length, delta plate size, joint axis offsets, and angles of the 

spherical joints, whose interactions are not nearly as intuitive. This study therefore focuses on the 

points reachable in a y-z plane at a fixed x value. Due to the nature of the LDR, the reachable 

points in the plane will form a rough semicircle, the minimum radius of which will be the 

inscribed radius for that set of physical parameters.  

The radii found, in conjunction with their corresponding physical parameters, were then 

used in a linear regression model to determine the equation predicting the inscribed radius. The 

resulting coefficients then yielded an equation relating inscribed radius to the physical 

parameters in the form shown below in Equation 18. 

 + 	 ,- � ,�� � ,b � ,�c � ,/�0�1 � ,2�0�1  (18) 

 

5.2 Description of the Data 

Several values of a, b, and c, were chosen for testing, along with different allowable ranges 

for � and θ, called �0�1  and �0�1, respectively. For each combination of these five physical 

parameters, a MATLAB program was written to test a grid of points with the inverse kinematics 

equations. Points within a y-z plane at a constant x value were tested. If the returned values for 

��, ��, and �� were complex, or if �� or �� was outside range of �0�1  or �0�1 , then the point was 
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determined to be unreachable and stored. An origin point (not the robot system origin) was 

selected to be the highest (greatest z value) point that lay along the centerline (the work envelope 

was observed to be symmetric about the z axis). The inscribed radius was calculated as the 

minimum distance from any unreachable to the origin, considering only points below the origin. 

Figure 21, below, shows an example of the unreachable points (blue) and the inscribed radius 

(red). This trial used di=-1, so points with a z value of -1 or higher were not calculated, as it was 

already known that they would be unreachable.  

 

Figure 21: MATLAB Plot of Unreachable Points and the Inscribed Radius 

 

 The inscribed radius r and the values of �, �, �, �0�1 , and �0�1  were stored for processing. 

A complete table of the values for +, �, �, �, �0�1 , and �0�1  can be found in Appendix 2. 

 

 

� 

� 
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5.3 Data Processing 

Linear regression was used to relate the inscribed radius r with �, �, �, �0�1 , and �0�1 . 

Because �0�1  and �0�1  are angles, the values of sin	��0�1�, 	cos	��0�1�, sin	��0�1�, and 	cos	��0�1� 
were also considered. To determine which of the �0�1  and �0�1  terms to use, all possible 

combinations of one �0�1  term and �0�1  term were tested. Any combination which had a 

statistically insignificant term was eliminated. Of those combinations which remained, the 

combination which had the largest absolute sum of t values was chosen. A significance level of 

α=0.05 was chosen and a two-sided confidence interval was used.  

With the proper angular terms selected, a final linear regression was performed to solve for 

the coefficients in Equation 18. The same significance level of α=0.05 was used to determine 

which terms, if any, were not statistically significant. 

5.4 Using the Models 

The models were used to predict the performance of the constructed LDR. Based on the 

values shown in Appendix A the constructed LDR’s inscribed radius was calculated. Testing was 

performed by selecting several points near the edge of the work envelope. The L1, L2, and L3 

needed to reach these positions were calculated by the LDR’s Arduino controller and the LDR 

was then moved to each position. The actual position of the EE was recorded and compared to 

the expected values calculated by the MATLAB kinematics program. 
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6. RESULTS 

Once the data was collected, nine linear regressions were performed to select the best 

possible combination of �0�1 , cos	��0�1�, or  sin	��0�1� and �0�1 , cos	��0�1�, or sin	��0�1�. For 

each regression, the absolute sum of the t scores for the angular terms was computed. As seen 

below in Table 1, the combination which most accurately represents the data is �0�1  and 

cos	��0�1�. 

Table 1: t Scores for Angular Terms 

  �0�1 cos	��0�1� sin	��0�1�  

 �0�1  45.06 45.47 31.06  

 cos	��0�1� 45.04 45.45 31.05  

 sin	��0�1� 44.03 44.42 30.48  

 

 

Thus, the terms �0�1  and cos	��0�1� were selected and a final linear regression was 

performed. The physical parameters, along with their β coefficients, significance levels, and t 

values are shown below in Table 2. 
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Table 2: Linear Regression Results 

 Parameter β p t  

 Constant -1.3789 0.085 -1.72  

 a 0.3789 0.000 7.17  

 b 0.4742 0.000 5.18  

 c -0.5537 0.000 -6.05  

 �0�1  3.677 0.000 12.62  

 cos	��0�1) -20.809 0.000 -32.85  

 

 

Based on the p values for each term, all terms except the constant are statistically 

significant. The linear regression resulted in an R-squared value of 77.23, meaning that over 

three-quarters of the inscribed radius’s value is modelled by the given equation. Therefore, a best 

estimate for the inscribed radius of a LDR’s workspace is 

 + 	 0.3789� � 0.4742b − 0.5537c � 3.677�0�1 − 19.462cos	��0�1) (19) 

   

Based on this result, the inscribed radius for the constructed LDR was calculated to be 

8.74 inches, compared to the 5.59 inches found by the MATLAB simulation, shown below in 

Figure 22. 
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Figure 22: Expected Workspace of the Physical LDR 

 

 Several points were chosen near the bottom of the work envelope for testing. The 

expected values for y and z, the actual y and z values, along with the L1, L2, and L3 lengths 

required to reach each position are shown below in Table 3. All measurements were taken at x=8 

inches. 

 

 

 

 

 

 

� 

� 
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Table 3: Linear LDR Position Testing 

Expected y 

(in) 

Expected z 

(in) 

Measured y 

(in) 

Measured z 

(in) 

L1 

(in) 

L2 

(in) 

L3 

(in) 

-4 -10.5 -2.37 -10.94 2.7005 13.8345 6.4271 

-3 -11 -1.88 -11.25 3.1032 13.6344 5.6543 

-2 -11.4 -1.13 -11.5 3.6894 13.2594 5.6731 

-1 -11.6 -0.75 -11.75 4.1425 13.1371 5.1036 

0 -11.8 0 -11.81 5.434 12.3963 5.434 

1 -11.6 0.69 -11.63 5.1036 13.1371 4.1425 

2 -11.4 1.13 -11.5 5.6731 13.2594 3.6894 

3 -11.0 1.75 -11.31 5.6543 13.6344 3.1032 

4 -10.5 2.75 -10.94 6.4271 13.8345 2.7005 
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 7. DISCUSSION 

From Equation 19 it is immediately apparent that the cos	��0�1) term immensely restricts the 

inscribed radius. Especially for small manipulators, decreasing this term (by increasing �0�1) 

should be the first step to increasing a LDR’s work envelope. As it exists in Equation 19, one 

could theoretically increase the radius by causing �0�1 to cause cos	��0�1) to become negative. In 

practice, this would likely not add any benefit beyond being able to reach a point with a second 

pose. 

Interestingly, increasing the axis separation with c decreases the inscribed radius. Closer 

axes allow for more movement, while spread axes restrict movement to points across the x-z 

plane. However, close axes cause greater θ angles when moving at low φ angles near the x-z 

plane, so care must be taken not to reduce c enough to lessen the inscribed radius. 

As expected, increasing a increases the inscribed radius, as it directly contributes to a joint 

axis’s reach in all directions. Surprisingly, b also has a positive impact on the inscribed radius, 

and has close to the same impact as a. Initially, a large delta plate radius was thought to be a 

detriment, causing more extreme φ and θ angles, but apparently the benefit of increased reach in 

x and y had a greater impact on the radius. A large delta plate could still create issues in motor 

positional or velocity control. Finally, because it directly affects the reach in z, increasing �0�1  

also increases the radius. 

 The regression model is not accurate for all cases. The most obvious example that if 

either of the joint limits were zero, a physical manipulator would have an inscribed radius of 

zero, though the regression would predict a non-zero radius. This can also be seen with an arm 

length of a = 0 or an axis separation of c = 0. 
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The positions of the physical LDR differed from the expected values largely due to 

mechanical slop in the system, primarily due to the rotation of the sliders. While the tracks that 

the sliders move along were intended to stop this, the semi-flexible acrylic did allow for some 

rotation about the joint axis. Additionally, the acme nuts used on the lead screws were found to 

have some wobble which allowed them to rotate along the axis. The ball and socket joints used 

were composed of a metal ball within plastic socket. After some use, the plastic became mildly 

worn down, which allowed a miniscule amount of linear movement as well as rotational 

movement in the spherical joints. The combined effect of this variability lead to the delta plate 

being pulled down (and thus inward) by gravity. Thus, all experimental results had y values 

closer to zero and z values less than the predicted results, shown below in Figure 23. 

 

Figure 23: Positional Results on the Physical LDR 

� 

� 
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Despite these issues, the physical LDR served as a successful sanity check to confirm that 

the kinematics and work envelope calculations were roughly correct. The positional kinematics 

were confirmed by moving the end effector to the expected position (by hand) without moving 

the sliders, proving that the LDR could reach that position with the given L inputs.  Figure 24 

demonstrates this, showing that the experimental results still align with the predicted work 

envelope. 

 

Figure 24: Positional Results within the Work Envelope 

  

� 

� 
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 8. LIMITATIONS 

 On the physical LDR, the largest limitation was the range of L. Because this range was 

too small, points near the top of the work envelope could not be tested, meaning that the 

inscribed radius could not be calculated as the origin could not be found. While unfortunate, this 

oversight was not catastrophic as the LDR could still move around the bottom of the work 

envelope, the most important and commonly used area. Additionally, the platform still acted as a 

useful device to confirm the kinematics. 
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 9. CONCLUSIONS 

Despite some limitations, this study was largely successful in deriving the forward 

kinematics, inverse kinematics, and an equation defining the inscribed radius for a LDR. While 

the lower R-squared value indicates that the regression model does not capture all the variation 

in the inscribed radius, Equation 19 still provides a powerful tool for estimating the inscribed 

radius of a LDR. It affirms the importance of considering the impact of all the selected physical 

parameters, and places heavy emphasis on the spherical joint angle restrictions. Using the 

physical LDR as a reality check confirmed both the kinematics and the edge of the work 

envelope, and was a valuable tool in understanding the capabilities and limitations of LDRs. 

From the evidence shown, it should be clear that understanding and controlling the work 

envelope is an essential step when designing or using a robotic manipulator. Hopefully, the 

methods and equation presented in this thesis will provide insight to those attempting to 

accurately define the workspace or kinematics of a linear delta robot. 
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 10. FUTURE WORK 

In order to improve the models, more physical LDRs should be constructed in order to 

physically verify the equations. This study used a single LDR as a reality check, and while the 

physical model roughly matched the equations, a single data point does not prove a trend. To 

truly confirm the inscribed arc radius equation, an array of LDRs with varying parameters should 

be built and tested, though this would obviously be a substantial investment of materials and 

time. 

Other future work could include LDRs with different ψ configurations. This study 

exclusively used the ψ values shown in Table 4 below. These values were chosen to imitate 

Clavel’s original delta manipulator by being even separated by 
;
�  radians. However, due to the 

nature of the 4-bar mechanisms on the arms, there is no reason that other ψ values could not 

work. 

Table 4: ψ Values 

  �� Value (rads)   

  1 �
3   

  2 �   

  3 −�
3    

 

 Additionally, while Clavel’s original design used constant values of a and b for all three 

arms, Delta robots can be (and sometimes are) constructed with varying arm lengths and delta 

plate sizes.  As Equations 2, 3, and 4, show, each joint axis can be calculated independently, so 
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solving for LDRs that have differing a and b values for each joint would be a simple change that 

could yield interesting results. 

While this study focused on the inverse kinematics to find unreachable points, a robot’s 

Jacobian matrix can also be used to find limits or singularities in a robot’s workspace. Some 

attempts were made to derive a useful Jacobian from the inverse kinematics, but without success. 

If a future study were to calculate the Jacobian, it might be more computationally efficient in 

determining the unreachable points for the inscribed radius calculations. Additionally, the 

Jacobian could provide information about areas within the workspace which would cause a LDR 

to lose rigidity.  

Finally, a more complex regression model could be attempted to find a more suitable 

equation. This study did not include interaction terms or higher order terms in order to limit the 

complexity, as the determination of the inscribed radius equation was done empirically. 

However, looking at the inverse kinematics equations shows a number of interaction terms (some 

with two-degree interactions), as well as higher order terms, so a more complex model could be 

justified. Alternatively, an effort could be made to derive the inscribed radius equation entirely 

from the kinematics. 
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 APPENDIX A: PHYSICAL LDR PARAMETERS 

 

Appendix A shows the complete list of physical parameters for the constructed Linear 

Delta Robot. All lengths are measured in inches; all angles are measured in radians. 

Table A.1: Constructed Linear Delta Physical Parameters 

 Parameter Value  

 a 9.25  

 b 3  

 c1 -3.5  

 c2 0  

 c3 3.5  

 d -2.656  

 �� �
3  

 � �  

 �� −�
3   
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 APPENDIX B: INSCRIBED RADII DATA 

Appendix B shows the calculated inscribed radius for each set of hypothetical physical 

parameters. 

Table B.1: Inscribed Radii from MATLAB Simulation 

a b c <=>? @=>? r 

8 2 3 0.942478 1.256637 2.570992 

8 2 3 0.942478 1.413717 3.059412 

8 2 3 0.942478 1.570796 3.059412 

8 2 3 1.256637 1.256637 2.886174 

8 2 3 1.256637 1.413717 3.962323 

8 2 3 1.256637 1.570796 4.972927 

8 2 3 1.570796 1.256637 3.001666 

8 2 3 1.570796 1.413717 4.20119 

8 2 3 1.570796 1.570796 5.300943 

8 2 4 0.942478 1.256637 2.720294 

8 2 4 0.942478 1.413717 2.720294 

8 2 4 0.942478 1.570796 2.720294 

8 2 4 1.256637 1.256637 3.863936 

8 2 4 1.256637 1.413717 4.640043 

8 2 4 1.256637 1.570796 4.640043 

8 2 4 1.570796 1.256637 4.00125 

8 2 4 1.570796 1.413717 5.200961 

8 2 4 1.570796 1.570796 5.755867 

8 2 5 0.942478 1.256637 2.202272 

8 2 5 0.942478 1.413717 2.202272 

8 2 5 0.942478 1.570796 2.202272 

8 2 5 1.256637 1.256637 3.894868 

8 2 5 1.256637 1.413717 3.894868 

8 2 5 1.256637 1.570796 3.894868 

8 2 5 1.570796 1.256637 4.767599 

8 2 5 1.570796 1.413717 4.767599 

8 2 5 1.570796 1.570796 4.767599 

8 3 3 0.942478 1.256637 1.726268 

8 3 3 0.942478 1.413717 2.594224 

8 3 3 0.942478 1.570796 3.2 

8 3 3 1.256637 1.256637 2.002498 

8 3 3 1.256637 1.413717 3.114482 

8 3 3 1.256637 1.570796 4.123106 

8 3 3 1.570796 1.256637 2.10238 
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8 3 3 1.570796 1.413717 3.301515 

8 3 3 1.570796 1.570796 4.410215 

8 3 4 0.942478 1.256637 2.716616 

8 3 4 0.942478 1.413717 3.008322 

8 3 4 0.942478 1.570796 3.008322 

8 3 4 1.256637 1.256637 3.001666 

8 3 4 1.256637 1.413717 4.1 

8 3 4 1.256637 1.570796 5.096077 

8 3 4 1.570796 1.256637 3.101612 

8 3 4 1.570796 1.413717 4.301163 

8 3 4 1.570796 1.570796 5.408327 

8 3 5 0.942478 1.256637 2.640076 

8 3 5 0.942478 1.413717 2.640076 

8 3 5 0.942478 1.570796 2.640076 

8 3 5 1.256637 1.256637 4.00125 

8 3 5 1.256637 1.413717 4.545327 

8 3 5 1.256637 1.570796 4.545327 

8 3 5 1.570796 1.256637 4.101219 

8 3 5 1.570796 1.413717 5.300943 

8 3 5 1.570796 1.570796 5.600893 

8 4 3 0.942478 1.256637 0.894427 

8 4 3 0.942478 1.413717 1.772005 

8 4 3 0.942478 1.570796 2.505993 

8 4 3 1.256637 1.256637 1.140175 

8 4 3 1.256637 1.413717 2.256103 

8 4 3 1.256637 1.570796 3.298485 

8 4 3 1.570796 1.256637 1.204159 

8 4 3 1.570796 1.413717 2.433105 

8 4 3 1.570796 1.570796 3.601389 

8 4 4 0.942478 1.256637 1.843909 

8 4 4 0.942478 1.413717 2.720294 

8 4 4 0.942478 1.570796 3.2 

8 4 4 1.256637 1.256637 2.12132 

8 4 4 1.256637 1.413717 3.238827 

8 4 4 1.256637 1.570796 4.272002 

8 4 4 1.570796 1.256637 2.202272 

8 4 4 1.570796 1.413717 3.423449 

8 4 4 1.570796 1.570796 4.601087 

8 4 5 0.942478 1.256637 2.828427 

8 4 5 0.942478 1.413717 2.973214 

8 4 5 0.942478 1.570796 2.973214 

8 4 5 1.256637 1.256637 3.114482 

8 4 5 1.256637 1.413717 4.229657 

8 4 5 1.256637 1.570796 5.077401 

8 4 5 1.570796 1.256637 3.201562 
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8 4 5 1.570796 1.413717 4.418144 

8 4 5 1.570796 1.570796 5.600893 

9 2 3 0.942478 1.256637 2.745906 

9 2 3 0.942478 1.413717 3.569314 

9 2 3 0.942478 1.570796 3.569314 

9 2 3 1.256637 1.256637 3.080584 

9 2 3 1.256637 1.413717 4.310452 

9 2 3 1.256637 1.570796 5.434151 

9 2 3 1.570796 1.256637 3.201562 

9 2 3 1.570796 1.413717 4.501111 

9 2 3 1.570796 1.570796 5.800862 

9 2 4 0.942478 1.256637 3.257299 

9 2 4 0.942478 1.413717 3.257299 

9 2 4 0.942478 1.570796 3.257299 

9 2 4 1.256637 1.256637 4.060788 

9 2 4 1.256637 1.413717 5.295281 

9 2 4 1.256637 1.570796 5.403702 

9 2 4 1.570796 1.256637 4.20119 

9 2 4 1.570796 1.413717 5.500909 

9 2 4 1.570796 1.570796 6.747592 

9 2 5 0.942478 1.256637 2.778489 

9 2 5 0.942478 1.413717 2.778489 

9 2 5 0.942478 1.570796 2.778489 

9 2 5 1.256637 1.256637 4.701064 

9 2 5 1.256637 1.413717 4.701064 

9 2 5 1.256637 1.570796 4.701064 

9 2 5 1.570796 1.256637 5.200961 

9 2 5 1.570796 1.413717 5.755867 

9 2 5 1.570796 1.570796 5.755867 

9 3 3 0.942478 1.256637 1.90263 

9 3 3 0.942478 1.413717 2.906888 

9 3 3 0.942478 1.570796 3.640055 

9 3 3 1.256637 1.256637 2.202272 

9 3 3 1.256637 1.413717 3.452535 

9 3 3 1.256637 1.570796 4.609772 

9 3 3 1.570796 1.256637 2.302173 

9 3 3 1.570796 1.413717 3.701351 

9 3 3 1.570796 1.570796 4.909175 

9 3 4 0.942478 1.256637 2.886174 

9 3 4 0.942478 1.413717 3.535534 

9 3 4 0.942478 1.570796 3.535534 

9 3 4 1.256637 1.256637 3.201562 

9 3 4 1.256637 1.413717 4.440721 

9 3 4 1.256637 1.570796 5.565968 

9 3 4 1.570796 1.256637 3.301515 
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9 3 4 1.570796 1.413717 4.701064 

9 3 4 1.570796 1.570796 5.907622 

9 3 5 0.942478 1.256637 3.195309 

9 3 5 0.942478 1.413717 3.195309 

9 3 5 0.942478 1.570796 3.195309 

9 3 5 1.256637 1.256637 4.20119 

9 3 5 1.256637 1.413717 5.315073 

9 3 5 1.256637 1.570796 5.315073 

9 3 5 1.570796 1.256637 4.301163 

9 3 5 1.570796 1.413717 5.700877 

9 3 5 1.570796 1.570796 6.600758 

9 4 3 0.942478 1.256637 1.077033 

9 4 3 0.942478 1.413717 2.088061 

9 4 3 0.942478 1.570796 2.906888 

9 4 3 1.256637 1.256637 1.334166 

9 4 3 1.256637 1.413717 2.601922 

9 4 3 1.256637 1.570796 3.764306 

9 4 3 1.570796 1.256637 1.50333 

9 4 3 1.570796 1.413717 2.801785 

9 4 3 1.570796 1.570796 4.101219 

9 4 4 0.942478 1.256637 2.039608 

9 4 4 0.942478 1.413717 3.036445 

9 4 4 0.942478 1.570796 3.7 

9 4 4 1.256637 1.256637 2.319483 

9 4 4 1.256637 1.413717 3.590265 

9 4 4 1.256637 1.570796 4.729693 

9 4 4 1.570796 1.256637 2.501999 

9 4 4 1.570796 1.413717 3.801316 

9 4 4 1.570796 1.570796 5.10098 

9 4 5 0.942478 1.256637 3.026549 

9 4 5 0.942478 1.413717 3.49285 

9 4 5 0.942478 1.570796 3.49285 

9 4 5 1.256637 1.256637 3.313608 

9 4 5 1.256637 1.413717 4.570558 

9 4 5 1.256637 1.570796 5.700877 

9 4 5 1.570796 1.256637 3.49285 

9 4 5 1.570796 1.413717 4.801042 

9 4 5 1.570796 1.570796 6.10082 

10 2 3 0.942478 1.256637 2.915476 

10 2 3 0.942478 1.413717 3.981206 

10 2 3 0.942478 1.570796 3.981206 

10 2 3 1.256637 1.256637 3.255764 

10 2 3 1.256637 1.413717 4.638965 

10 2 3 1.256637 1.570796 5.913544 

10 2 3 1.570796 1.256637 3.40147 
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10 2 3 1.570796 1.413717 4.90102 

10 2 3 1.570796 1.570796 6.300794 

10 2 4 0.942478 1.256637 3.7 

10 2 4 0.942478 1.413717 3.7 

10 2 4 0.942478 1.570796 3.7 

10 2 4 1.256637 1.256637 4.242641 

10 2 4 1.256637 1.413717 5.632051 

10 2 4 1.256637 1.570796 6.161169 

10 2 4 1.570796 1.256637 4.401136 

10 2 4 1.570796 1.413717 5.900847 

10 2 4 1.570796 1.570796 7.300685 

10 2 5 0.942478 1.256637 3.264966 

10 2 5 0.942478 1.413717 3.264966 

10 2 5 0.942478 1.570796 3.264966 

10 2 5 1.256637 1.256637 5.234501 

10 2 5 1.256637 1.413717 5.515433 

10 2 5 1.256637 1.570796 5.515433 

10 2 5 1.570796 1.256637 5.400926 

10 2 5 1.570796 1.413717 6.747592 

10 2 5 1.570796 1.570796 6.747592 

10 3 3 0.942478 1.256637 2.061553 

10 3 3 0.942478 1.413717 3.162278 

10 3 3 0.942478 1.570796 4 

10 3 3 1.256637 1.256637 2.402082 

10 3 3 1.256637 1.413717 3.801316 

10 3 3 1.256637 1.570796 5.069517 

10 3 3 1.570796 1.256637 2.501999 

10 3 3 1.570796 1.413717 4.00125 

10 3 3 1.570796 1.570796 5.408327 

10 3 4 0.942478 1.256637 3.041381 

10 3 4 0.942478 1.413717 3.945884 

10 3 4 0.942478 1.570796 3.945884 

10 3 4 1.256637 1.256637 3.40147 

10 3 4 1.256637 1.413717 4.785394 

10 3 4 1.256637 1.570796 6.041523 

10 3 4 1.570796 1.256637 3.501428 

10 3 4 1.570796 1.413717 5.001 

10 3 4 1.570796 1.570796 6.407027 

10 3 5 0.942478 1.256637 3.640055 

10 3 5 0.942478 1.413717 3.640055 

10 3 5 0.942478 1.570796 3.640055 

10 3 5 1.256637 1.256637 4.401136 

10 3 5 1.256637 1.413717 5.770615 

10 3 5 1.256637 1.570796 6.080296 

10 3 5 1.570796 1.256637 4.501111 
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10 3 5 1.570796 1.413717 6.000833 

10 3 5 1.570796 1.570796 7.406079 

10 4 3 0.942478 1.256637 1.204159 

10 4 3 0.942478 1.413717 2.34094 

10 4 3 0.942478 1.570796 3.264966 

10 4 3 1.256637 1.256637 1.513275 

10 4 3 1.256637 1.413717 2.927456 

10 4 3 1.256637 1.570796 4.22019 

10 4 3 1.570796 1.256637 1.702939 

10 4 3 1.570796 1.413717 3.201562 

10 4 3 1.570796 1.570796 4.601087 

10 4 4 0.942478 1.256637 2.202272 

10 4 4 0.942478 1.413717 3.289377 

10 4 4 0.942478 1.570796 4.1 

10 4 4 1.256637 1.256637 2.507987 

10 4 4 1.256637 1.413717 3.920459 

10 4 4 1.256637 1.570796 5.197115 

10 4 4 1.570796 1.256637 2.701851 

10 4 4 1.570796 1.413717 4.20119 

10 4 4 1.570796 1.570796 5.600893 

10 4 5 0.942478 1.256637 3.17805 

10 4 5 0.942478 1.413717 3.905125 

10 4 5 0.942478 1.570796 3.905125 

10 4 5 1.256637 1.256637 3.50571 

10 4 5 1.256637 1.413717 4.916299 

10 4 5 1.256637 1.570796 6.168468 

10 4 5 1.570796 1.256637 3.701351 

10 4 5 1.570796 1.413717 5.200961 

10 4 5 1.570796 1.570796 6.600758 

11 2 3 0.942478 1.256637 3.080584 

11 2 3 0.942478 1.413717 4.254409 

11 2 3 0.942478 1.570796 4.393177 

11 2 3 1.256637 1.256637 3.452535 

11 2 3 1.256637 1.413717 4.981967 

11 2 3 1.256637 1.570796 6.378871 

11 2 3 1.570796 1.256637 3.601389 

11 2 3 1.570796 1.413717 5.261179 

11 2 3 1.570796 1.570796 6.800735 

11 2 4 0.942478 1.256637 4.060788 

11 2 4 0.942478 1.413717 4.123106 

11 2 4 0.942478 1.570796 4.123106 

11 2 4 1.256637 1.256637 4.440721 

11 2 4 1.256637 1.413717 5.968249 

11 2 4 1.256637 1.570796 6.92026 

11 2 4 1.570796 1.256637 4.601087 
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11 2 4 1.570796 1.413717 6.2514 

11 2 4 1.570796 1.570796 7.800641 

11 2 5 0.942478 1.256637 3.757659 

11 2 5 0.942478 1.413717 3.757659 

11 2 5 0.942478 1.570796 3.757659 

11 2 5 1.256637 1.256637 5.433231 

11 2 5 1.256637 1.413717 6.293648 

11 2 5 1.256637 1.570796 6.293648 

11 2 5 1.570796 1.256637 5.600893 

11 2 5 1.570796 1.413717 7.244308 

11 2 5 1.570796 1.570796 7.752419 

11 3 3 0.942478 1.256637 2.22036 

11 3 3 0.942478 1.413717 3.448188 

11 3 3 0.942478 1.570796 4.360046 

11 3 3 1.256637 1.256637 2.601922 

11 3 3 1.256637 1.413717 4.130375 

11 3 3 1.256637 1.570796 5.531727 

11 3 3 1.570796 1.256637 2.701851 

11 3 3 1.570796 1.413717 4.401136 

11 3 3 1.570796 1.570796 5.907622 

11 3 4 0.942478 1.256637 3.214032 

11 3 4 0.942478 1.413717 4.356604 

11 3 4 0.942478 1.570796 4.356604 

11 3 4 1.256637 1.256637 3.601389 

11 3 4 1.256637 1.413717 5.11957 

11 3 4 1.256637 1.570796 6.511528 

11 3 4 1.570796 1.256637 3.701351 

11 3 4 1.570796 1.413717 5.400926 

11 3 4 1.570796 1.570796 6.906519 

11 3 5 0.942478 1.256637 4.080441 

11 3 5 0.942478 1.413717 4.080441 

11 3 5 0.942478 1.570796 4.080441 

11 3 5 1.256637 1.256637 4.601087 

11 3 5 1.256637 1.413717 6.1 

11 3 5 1.256637 1.570796 6.841053 

11 3 5 1.570796 1.256637 4.701064 

11 3 5 1.570796 1.413717 6.400781 

11 3 5 1.570796 1.570796 7.905694 

11 4 3 0.942478 1.256637 1.403567 

11 4 3 0.942478 1.413717 2.624881 

11 4 3 0.942478 1.570796 3.635932 

11 4 3 1.256637 1.256637 1.711724 

11 4 3 1.256637 1.413717 3.275668 

11 4 3 1.256637 1.570796 4.687217 

11 4 3 1.570796 1.256637 1.90263 
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11 4 3 1.570796 1.413717 3.501428 

11 4 3 1.570796 1.570796 5.10098 

11 4 4 0.942478 1.256637 2.376973 

11 4 4 0.942478 1.413717 3.573514 

11 4 4 0.942478 1.570796 4.465423 

11 4 4 1.256637 1.256637 2.707397 

11 4 4 1.256637 1.413717 4.257934 

11 4 4 1.256637 1.570796 5.67186 

11 4 4 1.570796 1.256637 2.901724 

11 4 4 1.570796 1.413717 4.501111 

11 4 4 1.570796 1.570796 6.10082 

11 4 5 0.942478 1.256637 3.354102 

11 4 5 0.942478 1.413717 4.341659 

11 4 5 0.942478 1.570796 4.341659 

11 4 5 1.256637 1.256637 3.705401 

11 4 5 1.256637 1.413717 5.246904 

11 4 5 1.256637 1.570796 6.640783 

11 4 5 1.570796 1.256637 3.901282 

11 4 5 1.570796 1.413717 5.500909 

11 4 5 1.570796 1.570796 7.100704 

12 2 3 0.942478 1.256637 3.238827 

12 2 3 0.942478 1.413717 4.531004 

12 2 3 0.942478 1.570796 4.805206 

12 2 3 1.256637 1.256637 3.634556 

12 2 3 1.256637 1.413717 5.315073 

12 2 3 1.256637 1.570796 6.824954 

12 2 3 1.570796 1.256637 3.801316 

12 2 3 1.570796 1.413717 5.600893 

12 2 3 1.570796 1.570796 7.300685 

12 2 4 0.942478 1.256637 4.229657 

12 2 4 0.942478 1.413717 4.554119 

12 2 4 0.942478 1.570796 4.554119 

12 2 4 1.256637 1.256637 4.627094 

12 2 4 1.256637 1.413717 6.296825 

12 2 4 1.256637 1.570796 7.580237 

12 2 4 1.570796 1.256637 4.801042 

12 2 4 1.570796 1.413717 6.600758 

12 2 4 1.570796 1.570796 8.300602 

12 2 5 0.942478 1.256637 4.204759 

12 2 5 0.942478 1.413717 4.204759 

12 2 5 0.942478 1.570796 4.204759 

12 2 5 1.256637 1.256637 5.622277 

12 2 5 1.256637 1.413717 7 

12 2 5 1.256637 1.570796 7 

12 2 5 1.570796 1.256637 5.800862 
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12 2 5 1.570796 1.413717 7.600658 

12 2 5 1.570796 1.570796 8.746428 

12 3 3 0.942478 1.256637 2.402082 

12 3 3 0.942478 1.413717 3.733631 

12 3 3 0.942478 1.570796 4.720169 

12 3 3 1.256637 1.256637 2.801785 

12 3 3 1.256637 1.413717 4.455334 

12 3 3 1.256637 1.570796 5.990826 

12 3 3 1.570796 1.256637 2.901724 

12 3 3 1.570796 1.413717 4.716991 

12 3 3 1.570796 1.570796 6.412488 

12 3 4 0.942478 1.256637 3.373426 

12 3 4 0.942478 1.413717 4.661545 

12 3 4 0.942478 1.570796 4.767599 

12 3 4 1.256637 1.256637 3.801316 

12 3 4 1.256637 1.413717 5.445181 

12 3 4 1.256637 1.570796 6.957011 

12 3 4 1.570796 1.256637 3.901282 

12 3 4 1.570796 1.413717 5.714018 

12 3 4 1.570796 1.570796 7.410803 

12 3 5 0.942478 1.256637 4.356604 

12 3 5 0.942478 1.413717 4.522168 

12 3 5 0.942478 1.570796 4.522168 

12 3 5 1.256637 1.256637 4.785394 

12 3 5 1.256637 1.413717 6.432729 

12 3 5 1.256637 1.570796 7.516648 

12 3 5 1.570796 1.256637 4.90102 

12 3 5 1.570796 1.413717 6.71193 

12 3 5 1.570796 1.570796 8.409518 

12 4 3 0.942478 1.256637 1.529706 

12 4 3 0.942478 1.413717 2.912044 

12 4 3 0.942478 1.570796 3.996248 

12 4 3 1.256637 1.256637 1.90263 

12 4 3 1.256637 1.413717 3.605551 

12 4 3 1.256637 1.570796 5.141984 

12 4 3 1.570796 1.256637 2.10238 

12 4 3 1.570796 1.413717 3.901282 

12 4 3 1.570796 1.570796 5.600893 

12 4 4 0.942478 1.256637 2.517936 

12 4 4 0.942478 1.413717 3.848376 

12 4 4 0.942478 1.570796 4.825971 

12 4 4 1.256637 1.256637 2.901724 

12 4 4 1.256637 1.413717 4.589118 

12 4 4 1.256637 1.570796 6.113101 

12 4 4 1.570796 1.256637 3.101612 
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12 4 4 1.570796 1.413717 4.90102 

12 4 4 1.570796 1.570796 6.600758 

12 4 5 0.942478 1.256637 3.512834 

12 4 5 0.942478 1.413717 4.751842 

12 4 5 0.942478 1.570796 4.751842 

12 4 5 1.256637 1.256637 3.901282 

12 4 5 1.256637 1.413717 5.57315 

12 4 5 1.256637 1.570796 7.083078 

12 4 5 1.570796 1.256637 4.101219 

12 4 5 1.570796 1.413717 5.900847 

12 4 5 1.570796 1.570796 7.600658 
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 APPENDIX C: INSCRIBED RADII SIMULATION CODE 

Appendix C shows the MATLAB script used to calculate the inscribed radii. 

% This program calculates the inscribed radius for numerous 

% LDRs of varying parameters 

  

% Prepare workspace 

clear all 

close all 

  

% Set constants 

x=20; 

psi=[pi/3,pi,-pi/3]; 

d=[-1,-1,-1]; 

  

% Set empty variables 

L=[0,0,0]; 

phi=[0,0,0]; 

theta=[0,0,0]; 

origin=-1; 

  

% Set up data storage 

data=zeros(5*3^4,6); 

dataSetCount=1; 

  

% Set up flags 

posReachable=0; 

UR_count=1; 

originFound=0; 

  

% Loop through parameters 

for a=8:1:12 

    for b=2:1:4 

        for c=3:1:5 

            for phi_lim=0.3*pi:0.1*pi:0.5*pi 

                for theta_lim=0.4*pi:0.05*pi:0.5*pi 

                    UR_count=1; 

                    origin=-1; 

                    originFound=0; 

                    for y= -20:0.1:20 

                        for z= -1:-0.1:-14 

                            posReachable=1; 

                            testPos=[x,y,z]; 

                            

[L,theta,phi]=inverseKinematicsATAN(testPos,a,b,[-c,0,c],d,psi); 

                            if((max(imag([L,theta,phi])))~=0) 

                                posReachable=0; 

                            end 

                            if(max(abs(theta))>theta_lim) 

                                posReachable=0; 

                            end 

                            if(max(abs(phi))>phi_lim) 

                                posReachable=0; 
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                            end 

                            if (posReachable==0) 

                                UR_y(UR_count)=y; 

                                UR_z(UR_count)=z; 

                                UR_count=UR_count+1; 

                            end 

                            if (posReachable && y==0 && originFound==0) 

                                origin=z; 

                                originFound=1; 

                            end 

                        end 

                    end 

                    % Calculate inscribed radius 

                    radius=findInscribedRadius(UR_y,UR_z,origin); 

                    % Plot if desired 

%                     figure 

%                     plot(UR_y,UR_z,'.') 

%                     title(dataSetCount); 

%                     xlabel(origin); 

%                     ylabel(radius); 

                    data(dataSetCount,:)=[a,b,c,phi_lim,theta_lim,radius]; 

                    dataSetCount=dataSetCount+1; 

                end 

            end 

        end 

    end 

end 

 

function [length,theta,phi]=inverseKinematicsATAN(position,a,b,c,d,psi) 

% Calculates the prismatic joint lengths, thetas, and phis for a LDR when 

% given input position and physical parameters. 

  

  

x=position(1); 

y=position(2); 

z=position(3); 

  

  

for i=1:1:3 

    phi(i)=acos((d(i)-z)/a); 

    length(i)=x-b*cos(psi(i))-sqrt(a^2*sin(phi(i))^2-(y-c(i)-

b*sin(psi(i)))^2); 

    if(i==2) 

        length(i)=x-b*cos(psi(i))+sqrt(a^2*sin(phi(i))^2-(y-c(i)-

b*sin(psi(i)))^2); 

    end 

    sinterm=(y-c(i)-b*sin(psi(i)))/(a*sin(phi(i))); 

    costerm=(x-length(i)-b*cos(psi(i)))/(a*sin(phi(i))); 

    if(imag(sinterm)==0 && imag(costerm)==0) 

        theta(i)=atan2(sinterm,costerm)-psi(i); 

        if(y<=0 && i==2) 

            theta(i)=atan2(sinterm,costerm)+psi(i); 

            % Psi(2)= pi and pi=-pi for trig functions.  

            % Necessary so that theta(2) doesn't become 

            % approx -2pi instead of zero for negative 

            % y positions. 

        end 
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    else 

        theta(i)=10+10*i; 

        % Set theta as a large complex number if out of bounds. 

    end 

end 

end 

 

% Finds the max radius when given an array of points  

% that CANNOT be reached. Also requires an origin  

% z position to calculate distance. 

  

function radius=findInscribedRadius(y,z,origin) 

numPoints=length(y); 

  

radius=10000; 

currentRadius=0; 

for i=1:numPoints 

    if (z(i)<origin) 

        currentRadius=sqrt((z(i)-origin)^2+(y(i))^2); 

        if(currentRadius<radius) 

            radius=currentRadius; 

        end 

    end 

end  
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 APPENDIX D: PHYSICAL LDR CODE 

Appendix D shows the Arduino code used on the constructed Linear Delta Robot. 

// A program to control the constructed LDR 

// Include libraries 

#include <math.h> 

#include <EEPROM.h> 

#include <Wire.h> 

#include <Adafruit_MotorShield.h> 

#include "utility/Adafruit_PWMServoDriver.h" 

#include <LinearDeltaCom.h> 

#include <AccelStepper.h> 

 

// Add all the #defines and global variables that would be class variables here 

 

//////////////////////////////////////////////////////////////////// 

// Constants 

//////////////////////////////////////////////////////////////////// 

 

// Memory Constants 

#define EEPROM_ADDRESS_BACK_TICKS_START   0x0018 

#define EEPROM_ADDRESS_MID_TICKS_START   0x0020 

#define EEPROM_ADDRESS_FRONT_TICKS_START  0x0028 

// Define default physical parameters 

#define DEFAULT_a 9.25 

#define DEFAULT_b 3 

#define DEFAULT_c1 -3.5 

#define DEFAULT_c2 0 

#define DEFAULT_c3 3.5 

#define DEFAULT_d1 -2.656 

#define DEFAULT_d2 -2.656 

#define DEFAULT_d3 -2.656 

#define DEFAULT_psi1 1.04719 

#define DEFAULT_psi2 3.14159 

#define DEFAULT_psi3 -1.04719 

#define DEFAULT_ticksPerRev 200 

#define DEFAULT_threadsPerInch 10 

// Define I/O Assignments 

#define L1_switch_pin 2 

#define L2_switch_pin 3 

#define L3_switch_pin 4 

 

//////////////////////////////////////////////////////////////////// 

// Variables 

//////////////////////////////////////////////////////////////////// 

 

// Physical parameters 

float a; 

float b; 

float c1; 

float c2; 

float c3; 

float d1; 

float d2; 

float d3; 

float psi1; 

float psi2; 

float psi3; 

 

long ticksPerRev; 

long threadsPerInch; 

float currentPosition[3]; 

long currentTicks[3]; 

 

Adafruit_MotorShield AFMSbot(0x60);  
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Adafruit_MotorShield AFMStop(0x61); 

Adafruit_StepperMotor *frontStepper = AFMStop.getStepper(200, 2); 

Adafruit_StepperMotor *midStepper = AFMSbot.getStepper(200, 1); 

Adafruit_StepperMotor *backStepper = AFMStop.getStepper(200, 1); 

LinearDeltaCom deltaCom; 

AccelStepper stepperFront(forwardstep1, backwardstep1); 

AccelStepper stepperMid(forwardstep2, backwardstep2); 

AccelStepper stepperBack(forwardstep3, backwardstep3); 

 

 

 

 

void setup(){ 

  AFMSbot.begin(); 

  AFMStop.begin(); 

  setDefaultParams(); 

  loadEEPROM(); 

  Serial.begin(115200); 

  delay(1000); 

  deltaCom.registerMoveCallback(movePos); 

  deltaCom.registerXMoveCallback(xMove); 

  deltaCom.registerYMoveCallback(yMove); 

  deltaCom.registerZMoveCallback(zMove); 

  deltaCom.registerHomeCallback(resetLengths); 

  deltaCom.registerRequestPositionCallback(sendPositionData); 

} 

 

void loop(){ 

  stepperFront.run(); 

  stepperMid.run(); 

  stepperBack.run(); 

} 

 

 

 

//////////////////////////////////////////////////////////////////// 

// Setup Functions 

//////////////////////////////////////////////////////////////////// 

void setDefaultParams(){ 

  a=DEFAULT_a; 

  b=DEFAULT_b; 

  c1=DEFAULT_c1; 

  c2=DEFAULT_c2; 

  c3=DEFAULT_c3; 

  d1=DEFAULT_d1; 

  d2=DEFAULT_d2; 

  d3=DEFAULT_d3; 

  psi1=DEFAULT_psi1; 

  psi2=DEFAULT_psi2; 

  psi3=DEFAULT_psi3; 

  ticksPerRev=DEFAULT_ticksPerRev; 

  threadsPerInch=DEFAULT_threadsPerInch; 

  pinMode(L1_switch_pin,INPUT_PULLUP); 

  pinMode(L2_switch_pin,INPUT_PULLUP); 

  pinMode(L3_switch_pin,INPUT_PULLUP); 

  stepperFront.setAcceleration(100); 

  stepperMid.setAcceleration(100); 

  stepperBack.setAcceleration(100); 

  stepperFront.setMaxSpeed(600); 

  stepperMid.setMaxSpeed(600); 

  stepperBack.setMaxSpeed(600); 

} 

// AccelStepper functions 

void forwardstep1() {   

  frontStepper->onestep(FORWARD, SINGLE); 

} 

void backwardstep1() {   

  frontStepper->onestep(BACKWARD, SINGLE); 

} 

void forwardstep2() {   
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  midStepper->onestep(FORWARD, SINGLE); 

} 

void backwardstep2() {   

  midStepper->onestep(BACKWARD, SINGLE); 

} 

void forwardstep3() {   

  backStepper->onestep(FORWARD, SINGLE); 

} 

void backwardstep3() {   

  backStepper->onestep(BACKWARD, SINGLE); 

} 

 

void serialEvent(){ 

  while(Serial.available()){ 

    deltaCom.handleRxByte(Serial.read()); 

  } 

} 

 

 

//////////////////////////////////////////////////////////////////// 

// Movement Functions 

//////////////////////////////////////////////////////////////////// 

void movePos(float targetX, float targetY, float targetZ){ 

  Serial.print("Order received: Move"); 

  Serial.print("\n"); 

  //Calculate lengths 

  int positionReachable=1; 

  float targetPosition[]={ 

    targetX,targetY,targetZ  }; 

  float finalLengths[3]; 

  long finalTicks[3]; 

  long deltaTicks[3]; 

  inverseKinematics(targetPosition,finalLengths); 

  for (int i=0; i <3; i++){ 

    if((finalLengths[i]<1.75) || (finalLengths[i]>15.25)){ 

      positionReachable=0; 

      Serial.println(); 

      Serial.print("Position Unreachable!"); 

      Serial.println(); 

    } 

  } 

  for(int i=0; i < 3; i++){ 

    finalTicks[i]=length2ticks(finalLengths[i]); 

    deltaTicks[i]=finalTicks[i]-currentTicks[i]; 

  } 

  // Make the move 

  if(positionReachable==1){ 

    stepperFront.move(deltaTicks[0]); 

    stepperMid.move(deltaTicks[1]); 

    stepperBack.move(deltaTicks[2]); 

    // Update position 

    for (int i=0; i < 3; i++){ 

      currentPosition[i]=targetPosition[i]; 

      currentTicks[i]=finalTicks[i]; 

    } 

  } 

  updateEEPROM(); 

} 

 

void xMove(float deltaX){ 

  Serial.print("Order received: MoveX"); 

  Serial.print("\n"); 

  float targetPosition[3]={ 

    currentPosition[0],currentPosition[1],currentPosition[2]          }; 

  targetPosition[0]=targetPosition[0]+deltaX; 

  movePos(targetPosition[0],targetPosition[1],targetPosition[2]); 

} 

 

void yMove(float deltaY){ 

  Serial.print("Order received: MoveY"); 
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  Serial.print("\n"); 

  float targetPosition[3]={ 

    currentPosition[0],currentPosition[1],currentPosition[2]          }; 

  targetPosition[1]=targetPosition[1]+deltaY; 

  movePos(targetPosition[0],targetPosition[1],targetPosition[2]); 

} 

 

void zMove(float deltaZ){ 

  Serial.print("Order received: MoveZ"); 

  Serial.print("\n"); 

  float targetPosition[3]={ 

    currentPosition[0],currentPosition[1],currentPosition[2]          }; 

  targetPosition[2]=targetPosition[2]+deltaZ; 

  movePos(targetPosition[0],targetPosition[1],targetPosition[2]); 

} 

 

 

void moveHome(){ 

  float homePos[]={ 

    8,0,-11  }; 

  movePos(homePos[0],homePos[1],homePos[2]);   

} 

 

void resetLengths(){ 

  Serial.print("Order received: ReHome"); 

  Serial.print("\n"); 

  while(!(digitalRead(L1_switch_pin)&&digitalRead(L2_switch_pin)&&digitalRead(L3_switch_pin))){ 

    if(digitalRead(L1_switch_pin)==0){ 

      stepperFront.move(-1); 

    }  

    else { 

      stepperFront.move(0); 

    } 

    if(digitalRead(L2_switch_pin)==0){ 

      stepperMid.move(1); 

    }  

    else { 

      stepperMid.move(0); 

    } 

    if(digitalRead(L3_switch_pin)==0){ 

      stepperBack.move(-1); 

    }  

    else { 

      stepperBack.move(0); 

    } 

    stepperFront.run(); 

    stepperMid.run(); 

    stepperBack.run(); 

  } 

  currentTicks[0]=3813; 

  currentTicks[1]=30438; 

  currentTicks[2]=3938; 

  moveHome(); 

} 

 

 

//////////////////////////////////////////////////////////////////// 

// Memory Functions 

//////////////////////////////////////////////////////////////////// 

void loadEEPROM(){ 

  // Ticks 

  currentTicks[0]=256*(unsigned long) EEPROM.read(EEPROM_ADDRESS_BACK_TICKS_START)+ (unsigned long) 

EEPROM.read(EEPROM_ADDRESS_BACK_TICKS_START+1); 

  currentTicks[1]=256*(unsigned long) EEPROM.read(EEPROM_ADDRESS_MID_TICKS_START)+(unsigned long) 

EEPROM.read(EEPROM_ADDRESS_MID_TICKS_START+1); 

  currentTicks[2]=256*(unsigned long) EEPROM.read(EEPROM_ADDRESS_FRONT_TICKS_START)+(unsigned long) 

EEPROM.read(EEPROM_ADDRESS_FRONT_TICKS_START+1); 

} 

 

void updateEEPROM(){ 
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  // Ticks 

  EEPROM.write(EEPROM_ADDRESS_BACK_TICKS_START, currentTicks[0]/256); 

  EEPROM.write(EEPROM_ADDRESS_BACK_TICKS_START+1, currentTicks[0]%256); 

  EEPROM.write(EEPROM_ADDRESS_MID_TICKS_START, currentTicks[1]/256); 

  EEPROM.write(EEPROM_ADDRESS_MID_TICKS_START+1, currentTicks[1]%256); 

  EEPROM.write(EEPROM_ADDRESS_FRONT_TICKS_START, currentTicks[2]/256); 

  EEPROM.write(EEPROM_ADDRESS_FRONT_TICKS_START+1, currentTicks[2]%256); 

} 

 

 

//////////////////////////////////////////////////////////////////// 

// Helper Functions 

//////////////////////////////////////////////////////////////////// 

long length2ticks(float length){ 

  long ticks=length*ticksPerRev*threadsPerInch; 

  return ticks;  

} 

 

float ticks2length(float ticks){ 

  float length=ticks/ticksPerRev/threadsPerInch; 

  return length;  

}  

 

void inverseKinematics(float targetPosition[], float lengths[]){ 

  float x=targetPosition[0]; 

  float y=targetPosition[1]; 

  float z=targetPosition[2]; 

  float t1=a*a-d1*d1+2*d1*z-z*z; 

  float t2=a*a-d2*d2+2*d2*z-z*z; 

  float t3=a*a-d3*d3+2*d3*z-z*z; 

  float L1=x-b*cos(psi1)-sqrt(1/t1*(t1-sin(psi1)*sin(psi1)*b*b-2*sin(psi1)*b*c1+2*sin(psi1)*b*y-c1*c1+2*c1*y-y*y))*sqrt(t1); 

  float L2=x-b*cos(psi2)+sqrt(1/t2*(t2-sin(psi2)*sin(psi2)*b*b-2*sin(psi2)*b*c2+2*sin(psi2)*b*y-c2*c2+2*c2*y-y*y))*sqrt(t2); 

  float L3=x-b*cos(psi3)-sqrt(1/t3*(t3-sin(psi3)*sin(psi3)*b*b-2*sin(psi3)*b*c3+2*sin(psi3)*b*y-c3*c3+2*c3*y-y*y))*sqrt(t3); 

  lengths[0]=L1; 

  lengths[1]=L2; 

  lengths[2]=L3; 

} 

 

void sendPositionData(){ 

  Serial.println(); 

  Serial.print("Position Request Received"); 

  Serial.println(""); 

  Serial.print(" x="); 

  Serial.print(currentPosition[0]); 

  Serial.print(" y="); 

  Serial.print(currentPosition[1]); 

  Serial.print(" z="); 

  Serial.print(currentPosition[2]); 

  Serial.println(""); 

  Serial.print("J1 ticks="); 

  Serial.print(currentTicks[0]); 

  Serial.println(""); 

  Serial.print("J2 ticks="); 

  Serial.print(currentTicks[1]); 

  Serial.println(""); 

  Serial.print("J3 ticks="); 

  Serial.print(currentTicks[2]); 

  Serial.println(""); 

  Serial.print("\n"); 

} 
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 APPENDIX E: PHYSICAL LDR COMMUNICATION LIBRARY 

Appendix E shows the LinearDeltaCom Arduino library source file used to communicate 

via USB serial with the constructed Linear Delta Robot. 

#include "Arduino.h" 

#include "LinearDeltaCom.h" 

 

// Communication Functions 

LinearDeltaCom::LinearDeltaCom() { 

 _nextOpenByteInMessageBuffer = 0; 

} 

 

/** 

 * Convenience method to handle multiple bytes. 

 * Just calls the handleRxByte method with each byte individually. 

 */ 

void LinearDeltaCom::handleRxBytes(byte newRxBytes[], int length) { 

 for (int i = 0; i < length; i++) { 

  handleRxByte(newRxBytes[i]); 

 } 

} 

 

/** 

 * Handle a newly received byte. 

 * If the byte is the MESSAGE_TERMINATOR process the message. 

 * If the byte is not the MESSAGE_TERMINATOR then just save it. 

 */ 

void LinearDeltaCom::handleRxByte(byte newRxByte) { 

 if (newRxByte == MESSAGE_TERMINATOR) { 

  // Convert the rx message buffer to a String and parse. 

  _rxMessageBuffer[_nextOpenByteInMessageBuffer] = '\0'; 

  String rxStr = String(_rxMessageBuffer); 

  _parseStringCommand(rxStr);  // The real work happens here. 

  _nextOpenByteInMessageBuffer = 0; 

 } else { 

  // Mid message.  Save the byte. 

  _rxMessageBuffer[_nextOpenByteInMessageBuffer] = newRxByte; 

  _nextOpenByteInMessageBuffer++; 

 } 

} 

 

 

/** 

 * Process the complete message. 

 */ 

void LinearDeltaCom::_parseStringCommand(String command) { 

 int spaceIndex = command.indexOf(' '); 

 //String commandStr; 

 if (command.startsWith("MOVE ")) { 

  int direction = 1; 

  float coordinates[4];  

  String moveStr = command; 

  while (spaceIndex != -1 && direction < 4) { 

   moveStr = moveStr.substring(spaceIndex + 1); 

   coordinates[direction] = _str2flt(moveStr); 

   direction++; 

   spaceIndex = moveStr.indexOf(' '); 

  } 

  if(_moveCallback != NULL){ 

   _moveCallback(coordinates[1],coordinates[2],coordinates[3]); 
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  } 

 } else if (command.startsWith("XMOVE")) { 

  String xMoveStr = command.substring(spaceIndex + 1); 

  if (_xMoveCallback != NULL) { 

   _xMoveCallback(_str2flt(xMoveStr)); 

  } 

 } else if (command.startsWith("YMOVE")) { 

  String yMoveStr = command.substring(spaceIndex + 1); 

  if (_yMoveCallback != NULL) { 

   _yMoveCallback(_str2flt(yMoveStr)); 

  } 

 } else if (command.startsWith("ZMOVE")) { 

  String zMoveStr = command.substring(spaceIndex + 1); 

  if (_zMoveCallback != NULL) { 

   _zMoveCallback(_str2flt(zMoveStr)); 

  } 

 } else if (command.startsWith("SMOOTHMOVE")) { 

  int smoothDirection = 1; 

  float smoothCoordinates[4];  

  String smoothMoveStr = command; 

  while (spaceIndex != -1 && smoothDirection < 4) { 

   smoothMoveStr = smoothMoveStr.substring(spaceIndex + 1); 

   smoothCoordinates[smoothDirection] = _str2flt(smoothMoveStr); 

   smoothDirection++; 

   spaceIndex = smoothMoveStr.indexOf(' '); 

  } 

  if(_smoothMoveCallback != NULL){ 

   _smoothMoveCallback(smoothCoordinates[1],smoothCoordinates[2],smoothCoordinates[3]); 

  } 

 } else if (command.startsWith("SPEED")) { 

  String speedStr = command.substring(spaceIndex + 1); 

  if (_setSpeedCallback != NULL) { 

   _setSpeedCallback(_str2flt(speedStr)); 

  } 

 } else if (command.startsWith("SMOOTHSPEED")) { 

  String smoothSpeedStr = command.substring(spaceIndex + 1); 

  if (_setSmoothSpeedCallback != NULL) { 

   _setSmoothSpeedCallback(_str2flt(smoothSpeedStr)); 

  } 

 } else if (command.startsWith("HOME")) { 

  if (_homeCallback != NULL) { 

   _homeCallback(); 

  } 

 } else if (command.startsWith("POSITION")) { 

  if (_requestPositionCallback != NULL) { 

   _requestPositionCallback(); 

  } 

 } 

} 

 

// Attach the callbacks 

void LinearDeltaCom::registerMoveCallback( 

  void (*moveCallback)(float x, float y, float z)){ 

 _moveCallback=moveCallback; 

} 

 

void LinearDeltaCom::registerXMoveCallback( 

  void (*xMoveCallback)(float x)){ 

 _xMoveCallback=xMoveCallback; 

} 

 

void LinearDeltaCom::registerYMoveCallback( 

  void (*yMoveCallback)(float y)){ 

 _yMoveCallback=yMoveCallback; 

} 

 

void LinearDeltaCom::registerZMoveCallback( 

  void (*zMoveCallback)(float z)){ 

 _zMoveCallback=zMoveCallback; 

} 
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void LinearDeltaCom::registerSmoothMoveCallback( 

  void (*smoothMoveCallback)(float x, float y, float z)){ 

 _smoothMoveCallback=smoothMoveCallback; 

} 

 

void LinearDeltaCom::registerSetSpeedCallback( 

  void (*setSpeedCallback)(float speed)){ 

 _setSpeedCallback=setSpeedCallback; 

} 

 

void LinearDeltaCom::registerSetSmoothSpeedCallback( 

  void (*setSmoothSpeedCallback)(float smoothSpeed)){ 

 _setSmoothSpeedCallback=setSmoothSpeedCallback; 

} 

 

void LinearDeltaCom::registerHomeCallback( 

  void (*homeCallback)()){ 

 _homeCallback=homeCallback; 

} 

 

void LinearDeltaCom::registerRequestPositionCallback( 

  void (*requestPositionCallback)()){ 

 _requestPositionCallback=requestPositionCallback; 

} 

  

// Helper function 

float LinearDeltaCom::_str2flt(String inputString){ 

 char charArray[inputString.length()+1]; 

 inputString.toCharArray(charArray,sizeof(charArray)); 

 float outputFloat=atof(charArray); 

 return outputFloat; 

} 
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