Rose-Hulman Institute of Technology
Rose-Hulman Scholar

Graduate Theses - Mechanical Engineering Mechanical Engineering

Fall 11-2014

Workspace Analysis of a Linear Delta Robot:
Calculating the Inscribed Radius

Michael Louis Pauly

Follow this and additional works at: http://scholar.rose-hulman.edu/
mechanical engineering grad theses

b Part of the Other Mechanical Engineering Commons

Recommended Citation

Pauly, Michael Louis, "Workspace Analysis of a Linear Delta Robot: Calculating the Inscribed Radius" (2014). Graduate Theses -
Mechanical Engineering. Paper 1.

This Thesis is brought to you for free and open access by the Mechanical Engineering at Rose-Hulman Scholar. It has been accepted for inclusion in
Graduate Theses - Mechanical Engineering by an authorized administrator of Rose-Hulman Scholar. For more information, please contact

bernier@rose-hulman.edu.

http://scholar.rose-hulman.edu?utm_source=scholar.rose-hulman.edu%2Fmechanical_engineering_grad_theses%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/mechanical_engineering_grad_theses?utm_source=scholar.rose-hulman.edu%2Fmechanical_engineering_grad_theses%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/mechanical_engineering?utm_source=scholar.rose-hulman.edu%2Fmechanical_engineering_grad_theses%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/mechanical_engineering_grad_theses?utm_source=scholar.rose-hulman.edu%2Fmechanical_engineering_grad_theses%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/mechanical_engineering_grad_theses?utm_source=scholar.rose-hulman.edu%2Fmechanical_engineering_grad_theses%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/304?utm_source=scholar.rose-hulman.edu%2Fmechanical_engineering_grad_theses%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/mechanical_engineering_grad_theses/1?utm_source=scholar.rose-hulman.edu%2Fmechanical_engineering_grad_theses%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bernier@rose-hulman.edu

Workspace Analysis of a Linear Delta Robot:

Calculating the Inscribed Radius

A Thesis
Submitted to the Faculty
of

Rose-Hulman Institute of Technology

by

Michael Louis Pauly

In Partial Fulfillment of the Requirements for the Degree
of

Master of Science in Mechanical Engineering

November 2014

© 2014 Michael Louis Pauly

i1

ABSTRACT

Pauly, Michael Louis

M.S.M.E.

Rose-Hulman Institute of Technology

November 2014

Workspace Analysis of a Linear Delta Robot: Calculating the Inscribed Radius

Thesis Advisor: Dr. Dave Fisher

One of the most important traits of a robotic manipulator is its work envelope, the space
in which the robot can position its end effector. Parallel manipulators, while generally faster, are
restricted by smaller work envelopes [1]. As such, understanding the parameters defining a
physical robot’s work envelope is essential to the optimal design, selection, and use of robotic

parallel manipulators.

A Linear Delta Robot (LDR) is a type of parallel manipulator in which three prismatic
joints move separate arms which connect to a single triangular end plate [2]. In this study,
general inverse kinematics were derived for a linear delta robot. These kinematics were then
used to determine the reachable points within a plane in the robot’s work envelope, incorporating
the physical constraints imposed by a real robot. After simulating several robots of varying
parameters, a linear regression was performed in order to relate the robot’s physical parameters

to the inscribed radius of the area reachable in a plane of the LDR’s work envelope. Finally, a

v

physical robot was constructed and used as a reality check to confirm the kinematics and

inscribed radius.

This study demonstrates the relationship between the LDR’s physical dimensions and the
inscribed radius of its work envelope. Building a physical robot allowed confirmation of the
resulting equation, validating an accurate representation of the LDR’s physical constraints. By
doing so, the resulting equation provides a powerful tool for correctly sizing a LDR based on a

desired work envelope.

ACKNOWLEDGEMENTS

I would like to thank the following persons for sharing their expertise, kind words, and

motivation, without whom it is unlikely that this thesis would ever have been written.

In no particular order:

Dr. Dave Fisher

Dr. Carlotta Berry

Dr. Jerry Fine

Jerry Leturgez

Ron Hofmann

Tom Rogge

The Rose-Hulman Robotics Team

TABLE OF CONTENTS
Contents:
LIST OF FIGURES ..ottt ettt ettt et e et e e st e e es 2
LIST OF TABLES ...ttt ettt et ettt et e et e et e e st e e saaeees 4
LIST OF ABBREVIATIONS......coiiitiiitteeitte ettt ettt sttt ettt e stae e es 5
LIST OF SYMBOLS ...ttt ettt ettt e st e e st e e s s 6
1. INTRODUCGTION.......ctiiiittiiittentte ettt ettt et ettt e et e et e e it e e saaeeesabeeesabeeesbneenas 7
2. BACKGROUND ...ttt ettt et ettt et e et e e st eesaaees 10
3. LITERATURE REVIEWcoiiitiiiiiiiiie ettt et e et e e e et e e e e abaeeaeenes 14
4. DESCRIPTION OF THE MODREL.........ooiiiiiiiiiiiiiiiee ettt 18
4.1 Defining the Mathematical Modelccoooiiiiiiiiiiiiiiiiii e 18
4.2 KANEINALICS ...vvvvtteeeeeeeeeaiiiittteeeeeee e sttt et eeeeeeesaaaaattaeeeeeeeeesaaassbbbeeeeeeessanannsbsseeeeeeesssnnnsrsaees 23
4.3 PhySiCal MOEL....cccoiiiiiiiiiiiiiiee et e e et e e e e e e e 27
5. METHODS ...ttt ettt et e bt e e bt e e bt e e st e e st e e naane s 31
ST OVETVIEW ...ttt ettt e ettt e e e e e ettt e e e e e e e ettt eeeeeeeseanabbbaaeeeeeeens 31
5.2 Description Of the Data.........cooviiiiiiiiiiiiiiiie e 31
5.3 DAt PrOCESSINE ..coiiiiiiiieeeee ettt e ettt e e e e e e ettt e e e e e e e abbtbaeeeeeeens 33
5.4 USING the MOAEIS ...ttt e et e e e e e e et aaeeeeeeeas 33
6. RESULTS ...ttt ettt et e et e e bt e e bt e e e bt e e sabee e sabaeesanaees 34
7. DISCUSSIONttt et ettt e e e sttt e st e s bt e e e bt e e sbbeeesabeeesabeeenaeee 38
8. LIMITATIONS ...ttt ettt ettt ettt et e e bt e e s b e e sabaeesabeeesanneenas 41
0. CONCLUSIONS ...ttt ettt ettt ettt e et e et e e bt et e ebteeenabeeesabeeesabaeesaaaeas 42
10. FUTURE WORKcooiiiiiiiiii ettt ettt et e e 43
LIST OF REFERENCES ..ottt et 45
APPENDICES ...ttt ettt ettt e et e bt e et e e sabe e e e e 48
APPENDIX A: Physical LDR Parametersuuiiiiiiiiiiiiiiiiiiieeieeeeeiiieeeee e 49
APPENDIX B: Inscribed Radii Data.........cccoooiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee e 50
APPENDIX C: Inscribed Radii Simulation Codeccoovriiiiiiiiiiiiiiiiiiiiiiceeeeeeeeieeeeee e 60
APPENDIX D: Physical LDR COdE........ccoiiiiiiiiiiiiiiiiiiiieeeeiiteeee ettt e e 63

APPENDIX E: Physical LDR Communication Libraryccccoccveeiiniiiiiiiniiiieinieeceneeeenn 68

LIST OF FIGURES
Figure 1: A Linear Delta RODOT..........coiiriiiiiiiiiiiiiiiiecceeecc e 7
Figure 2: Inscribed Radius of a LDR Work Envelope.........cccooiiiiiiiiiniiiiiicicceieeeee 8
Figure 3: Example Work Envelope of a Serial Manipulator [9]cccoooiiiiiniiiiiiiniieen 11
Figure 4: The Stewart Platform [13]coooiiiiiiiiiii e 12
Figure 5: A Diagram of the Delta Robot from the Original 1990 Patent [3]cccoccvveeennneeen. 14
Figure 6: Clavel's Linear Delta Design [3]......coooiiiiiiiiiiiiiiiieeee e 15
Figure 7: Linear Delta Robot 3-D Printer [15]uviiiiiiiiiiieeee e 16
Figure 8: The LDR Model Used by Miller and Stock [4]......c..uvviiieeiiiiiiiiiiiiiiieeeeeeieeeeeeen 17
Figure 9: Modeling LDRs with 3 Spheres [4]coooiiiiiiiiieiieeeeeeeee e 17
Figure 10: Location and Orientation of the Coordinate System Origin............cccceeeevvvviivereeeeennn. 18
Figure 11: Defining JoInt AXiS OffSES ..coouvviiiiiiiiiiiiiiiie e 19
Figure 12: Top View of the LDR’s Default POSItION........cccoccuiiiiiiiiiiiiiiiieeeiieccceee e 20
Figure 13: 8i Measured with re@ard tO Wiooooiiiiiiiiiiiiiiiiee e 21
Figure 14: Side View of the LDR with Parameterscccccccoiviiiiiiiiiiiiiinciee e 22
Figure 15: All Possible LDR Poses for a Reachable Position [4]ccccoiiiiiiiiiiiiiniiiiiiieeeennn. 26
Figure 16: The Constructed LDRccoooiiiiiiiiiii e 27
Figure 17: Rotation Limits on the Spherical JOINtScoocciiiiiiiiiiiiiiieecee e 28
Figure 18: Spherical Joints on the Delta Plate.............cccccooiiiiiiiiiiiiiiee e 29
Figure 19: Pointer used as an End Effector............ooooiiiiiiiiicec e 29
Figure 20: Limit Switches for the Prismatic JOINES..........ccooviiiiiiiniiiiiiiiiceecceee e 30
Figure 21: MATLAB Plot of Unreachable Points and the Inscribed Radius..........c.cccceeeennneeee. 32
Figure 22: Expected Workspace of the Physical LDR.............ccccoiiiiiiiiii e 36

Figure 23: Positional Results on the Physical LDR

Figure 24: Positional Results within the Work Envelope ...,

LIST OF TABLES
Table 1: t Scores for Angular Terms..................oooiiiiiiiiiiiiiiie e 34
Table 2: Linear Regression ReSults..............ccoooiiiiiiiiiiiiiiiee e 35
Table 3: Linear LDR Position TeStingcccooooiiiiiiiiiiiiiiceeeeeeeeeee e 37

Table d: W VAIUESoooiiiiiiii ettt e e e e e et e e e e e e e e 43

LIST OF ABBREVIATIONS

EE: End Effector

EoAT: End of Arm Tooling

LDR: Linear Delta Robot

LIST OF SYMBOLS

da

de

ds

Arm length

Delta plate circumscribed radius

Joint axis y offset

Total joint axis z offset

Joint axis z offset

Joint axis z offset to end effector
Joint axis z offset from the slider
Prismatic joint extension

Inscribed radius of the workspace
Significance level for regression
Linear regression term coefficient
Rotation of the spherical joint in the x-
y plane, measured from y

Rotation of the spherical joint
measured from the negative z axis
Angular offset of the spherical joint in

the x-y plane

1. INTRODUCTION

This study focuses on describing the work envelope of a Linear Delta Robot (LDR), a type
of parallel manipulator. Driven by three prismatic joints, this platform uses the same 4-bar
mechanism used in other delta robots to maintain the orientation of the End Effector (EE) plate,

while still allowing three degrees of translational freedom [3] [4].

Figure 1: A Linear Delta Robot

A robot’s workspace, often called a work envelope, describes the volume a robot can
reach with its End of Arm Tooling (EoAT). For LDRs it is often convenient to quantify the

workspace in terms of an inscribed radius, taken from a single plane within the workspace [5]

[6]. Measuring this radius is a simple task on a physical LDR but difficult to calculate for a
theoretical robot [7]. The objective of this study is to determine the relationship between the
inscribed radius of a LDR’s workspace and the robot’s physical parameters. Figure 2 shows the
LDR from Figure 1 when viewed from the right. The LDR’s work envelope is shown in blue,

with the inscribed radius shown as the red arrow.

Figure 2: Inscribed Radius of a LDR Work Envelope

One objective of this study is to place an emphasis on studying the physical workspace of

a LDR, rather than the theoretical workspace, so additional factors such as joint angle limits and

end effector mounting are considered. Using the calculated inverse kinematics, a simulation
program was written to measure the inscribed radius empirically using several different sets of
physical parameters. A linear regression was performed comparing the arm length, delta plate
radius, joint axis offsets, and spherical joint limits to the inscribed radius, resulting in an equation
defining the inscribed radius in terms of the physical parameters of a LDR. Finally, a physical
LDR was built to test the inverse kinematics and measure the inscribed radius. This platform was
essential to confirm the kinematics and ensure that the assumptions about physical constraints

made in the mathematical model were valid, acting as a reality check for the simulation.

The single resulting equation can be used to evaluate a Linear Delta Robot’s work
envelope inscribed radius based only on easily measurable physical characteristics of the robot.
No kinematic equations are required, meaning that this equation can be used quickly without
requiring iterations to evaluate several possible robots quickly. Thus, the found equation is a

powerful tool for easily approximating the inscribed radius of a Linear Delta Robot.

10

2. BACKGROUND

In recent years, robotic manipulators have gained popularity in many industries. Providing
high strength, speed, repeatability, and robustness, robots have gained widespread acceptance for
jobs deemed too labor-intensive, dangerous, monotonous, or difficult for humans. The growing
number of robot models and manufacturers means that users have a plethora of potential robotic

candidates for any task, making the selection of an ideal robot a difficult task.

A defining characteristic of any robotic manipulator is its work envelope. This term refers
to any point that the robot can reach with its EOAT. Because the work envelope represents the
space in which the robot can effectively interact with the environment, it is an essential aspect to
consider when selecting or placing a robot. Designing a robot for a prescribed workspace can be
an especially difficult problem, depending on the manipulator in question [8]. It is important to
note that generally the work envelope only considers the EOAT position, but not orientation.
Many times a robot will be able to reach a location, but cannot interact with a part or fixture
because it has the wrong orientation. While work envelopes are a three dimensional space, they

are often described with a radius (or radii) within a cross-sectional plane, as seen in Figure 3.

11

J5-AXIS ROTATION CENTER

L0

A+1528,02280)

F‘_\ﬂ\
. - < _{edsa31300

T

MOTION RANGE
OF J5-AXIS ROTATION CENTER

.

Figure 3: Example Work Envelope of a Serial Manipulator [9]

An essential tool for describing a robot’s position are forward and inverse kinematics [10].
Forward kinematics are used to determine a robot’s end effector position based on the state of the
robots actuators. Inverse kinematics are used to calculate the required actuator states to achieve a
desired end position. Depending on the manipulator in question, both the forward and inverse
kinematics may provide multiple solutions. All valid actuator configurations which reach a
single end point are the set of viable poses. Serial manipulators generally have a unique solution
to the forward kinematics problem, while having multiple poses which satisfy the inverse
kinematics. Parallel manipulators, depending on the type, can have numerous solutions to both

forward and inverse kinematics [11]. The Stewart Platform, shown in Figure 4 below, has 40

direct forward kinematic solutions [12].

12

Figure 4: The Stewart Platform [13]

Robotic manipulators are generally categorized into one of two groups: serial and parallel
[12]. Serial robots have one path of joints and links from the base to the end effector, whereas
parallel robots have multiple paths from the base to the end effector. In general, serial
manipulators are heavier and slower because each joints” motor must be mounted on the arm (or
have motion transmitted via some physical linkage), but have larger work envelopes. Parallel
manipulators are usually faster, as their motors are housed in the stationary base, but have
smaller work envelopes [14]. As such, when using parallel manipulators it is essential to select

the correct robot in order to make full use of the work envelope.

Another significant difference between serial and parallel manipulators is the way in which
their kinematics are derived. Serial manipulators often use coordinate transformations, in the
form of matrices, to relate the position of each link to the previous one [10]. Thus, the end
position, expressed as a vector, is found by multiplying the initial position by the transformation

matrices for each link. Many transformations are used, one of the most popular being the

13

Denavit-Hartenberg method. If the full transformation matrix is invertible, then the inverse
kinematics is performed by multiplying the desired position by the inverted transformation

matrix. This method is limited to a single solution and does not provide multiple poses.

Oh the other hand, parallel manipulators are modeled by systems of equations. Starting at
the base, the end position is expressed with regards to the position of each kinematic chain in the
robot. For inverse kinematics, the system of equations is solved to determine the required
actuator inputs. This proves to be a difficult task, with each manipulator often requiring its own

method [5] [11] [12].

14

3. LITERATURE REVIEW

One of the most popular parallel manipulator designs is the DELTA platform, originally
developed by Swiss team lead by Reymond Clavel [3]. Driven by three revolute joints located on
the base, motion is transmitted through three parallelogram arms to a semi-triangular end piece,
called the delta plate. One of Clavel’s models, shown in Figure 5 below, has a fourth revolute

joint that allows for rotation of the End Effector about the Z axis.

Figure 5: A Diagram of the Delta Robot from the Original 1990 Patent [3]

15

The defining aspect of Delta manipulators are their parallelogram arms. Two long links are
connected to the adjoining links by spherical joints at each end, forming a 4-bar mechanism. This
setup ensures that the two connected links remain parallel, effectively removing one degree of
freedom from the system. By using three 4-bar mechanisms, Delta platforms lock the pitch, roll,
and yaw of the Delta plate, such that the end effector has a constant orientation regardless of

position.

There are various Delta platform configurations, including linear Delta robots, which swap
the revolute joints of the original Delta platform for prismatic joints. In most cases, motion is
achieved through the use of lead screws and rotational motors, though other linear actuation
methods are also used. Figure 6 shows a linear delta platform designed by Clavel. Because of

their high accuracy and rigidity, LDRs are sometimes used for 3-D printing, as seen in Figure 7.

Figure 6: Clavel's Linear Delta Design [3]

16

Figure 7: Linear Delta Robot 3-D Printer [15]

This study focuses on LDRs which use three parallel prismatic joints. The pictures shown
throughout this paper and the physical LDR all have coplanar axes, though the derivation of
kinematics in Section 4.2 allows for axes which are not coplanar. Previously, these LDRs have
been modeled with three spheres, each representing the reach of a single arm, demonstrated in
Stock and Miller’s work [4]. Theoretically, as each parallelogram arm can rotate to any
orientation, any intersection of the outer surfaces of all three spheres could be treated as
reachable position. While this approach is valid for a theoretical system, the assumption that the
spherical joints can rotate freely to any angle does not apply to most physical systems. Figure 8
shows the LDR used in Stock and Miller’s paper; Figure 9 shows a top view of the three spheres
which sweep the reach of each arm. In Figure 9, the top view of the LDR is rotated 180 degrees;

the green sphere in Figure 9 represents the rightmost slider in Figure 8.

17

Figure 8: The LDR Model Used by Miller and Stock [4]

Intersection of
Spheres | & 2
1

‘ Intersection of
{ *. ;| \ Spheres 1 & 3
\\ @ \‘

T

Solutions

Intersection of
Spheres 2 & 3

Figure 9: Modeling LDRs with 3 Spheres [4]

This method does illustrate the possibility for multiple poses, as any intersection between
three spheres will be a valid solution. In rare cases, one sphere will lie tangent to the intersection
of the two other spheres, resulting in a single unique solution. If two spheres do not intersect,

then no solution exists.

18

4. DESCRIPTION OF THE MODEL

4.1 Defining the Mathematical Model

In order to accurately predict the work envelope of a real LDR, a new model which includes
physical constraints is required. The model used in this study will focus primarily on the
restriction of the position of the spherical joints, while also accounting for the end effector

mounting and the coupling of the prismatic and spherical joints.

To begin, a Cartesian coordinate system is created, and attached to the base of the LDR as

shown below in Figure 10.

Figure 10: Location and Orientation of the Coordinate System Origin

Next, the physical parameters of the LDR are mapped to variables. This study uses the

following convention: constant lengths are assigned lowercase letters, actuator variables are

19

assigned uppercase letters, and angular measurements are assigned Greek letters. Subscripts
indicate the kinematic path (joint axis) associated with the variable. Joint axis 1 is the lower left
prismatic joint, joint axis 2 is the center joint, and joint axis 3 is the far joint. The y and z
direction offsets, ¢; and d,;, respectively, for each axis are shown in Figure 11. For the LDR

constructed in this study, d; is zero for all axes.

Figure 11: Defining Joint Axis Offsets

Each prismatic joint is a slider which connects to the 4-bar mechanism via spherical
joints. The slider’s x displacement is L;, measured from the y-z plane, shown above. Because the
two arms in each 4-bar mechanism have a constant length and are always parallel, they are

modelled as a single link of length a. This study uses three angles to describe the rotation of the

20

spherical joint. In order to measure the same angular displacement for each of the links, an
angular offset, V;, is used. ; is the rotation from a hypothetical spherical joint facing along the
positive x axis. This constant is used to define the base or zero position of each upstream
spherical joint. 8;, the lateral rotation of each spherical joint, is then measured from ; in the x-y
plane. By using ;, it is possible to directly compare the 6; values of each joint and determine if
they exceed the possible rotation of the physical joints. Figure 12 shows the angular offsets, and

Figure 13 shows an example 6; value measured from one of these offsets.

al
|

Figure 12: Top View of the LDR’s Default Position

21

Figure 13: 8; Measured with regard to \;

The third angle measured, ¢;, measures the 4-bar mechanisms’ rotation from the negative
z axis. Length b is the horizontal distance from the center of the delta plate to the center of the
downstream spherical joint. Two additional z offsets are also needed. The distance from the
prismatic joint’s axis to the spherical joint is designated d;; the distance from the downstream
spherical joint to the end effector is labelled d,;. Figure 14 shows the z distance offsets, using the
bottom of the delta plate as the end effector in the simulations. For the constructed LDR, a
pointer was made to extend below the bottom of the delta plate to allow easy measurement to the

center.

22

Figure 14: Side View of the LDR with Parameters

To simplify future equations, a single parameter, d;, will be used as the z offset, as

defined in Equation 1 below.

d; =dg; +dg + dg (1)

Of particular concern to this study are b, effective radius of the delta plate, c, the y offset
of the joint axes, and 0 and ¢, angles which describe the spherical joints. These parameters are
often ignored in other analyses but are important when considering an actual robot. Depending
on the desired size of the end effector its required mounting footprint, the radius of the delta plate
might be substantial or at least nontrivial. Additionally, few spherical joints exist that provide
unlimited rotation in all three directions, so limiting the allowable ranges of 6 and ¢ will more

closely model physical systems.

23

4.2 Kinematics

Finding the forward kinematic equations is straightforward. Following the kinematic

chain from the origin to the end position for each axis gives the following result:

x = L; + bcos(y;) + acos(y; + 6;) sin(¢;) (2)
y = ¢; + bsin(y;) + asin(y; + 6;) sin(p;) 3)
z=d; — a cos(¢g;) “4)

Because the three equations above apply to each axis, there are nine equations to solve
for the nine unknown parameters (L, ¢, and 0 for each axis). However, as each joint axis is
independent and can be solved individually, we can consider each axis as its own three degree of

freedom system.

Solving for inverse kinematic equations is accomplished by rearranging the forward

kinematic equations. Beginning with Equation 4, it is a simple matter to solve for ¢;.

d; — Z) (5

-1
; = COS
2 (%=

With ¢; known, Equation 3 could be rearranged to isolate 8;, then solved by substituting
Equation 5 for ¢;. However, that would result in the use of an inverse sine function. Previous
experience has shown that MATLAB’s inverse sine function is unreliable for four-quadrant
solving. Thus, another method is used, utilizing MATLAB’s more robust, four-quadrant inverse
tangent function. This requires defining a quantity in terms of its sine and cosine. In order to

accomplish this, Equations 2 and 3 are rearranged as shown.

24

x—L; — b cos(¥);) = acos(¥p; + 6;) sin(g;) (6)

y —¢; — bsin(y;) = asin(y; + ;) sin(¢;) (7

Equations 6 and 7 can be solved for cos(y; + 6;) and sin(y); + 6;), but L; is still
unknown and must be solved for first. This is done by squaring Equations 6 and 7, then adding

them together, resulting in Equation 8.

(x—L; —bcos(@;))?> + (y — ¢; — bsin(y;))? = (8)

a? cos(y; + 0,)? sin(@;)*+ a? sin(y; + 0,)? sin(¢;)?

Applying the trigonometric identity in Equation 9 to Equation 8 provides a quadratic

equation with L; as the only unknown.

cos(; + ;)% + sin(y; + 6,)> =1 &)
(x—L; — b cos(;))* + (y — ¢; — bsin(y);))? (10)
= a’sin(¢;)?

Solving Equation 10 yields the final equation for L.

L; = x — b cos(y);) (11)

+ \/azsin((pi)z — (y —¢; — bsin(y;))?

With L; solved for, Equations 6 and 7 can be rearranged as shown below, then used to

solve for 8; with MATLAB’s atan2 function.

25

_ (x—L; — beos(yy) (12)
cos(y; +0;) = Zsin(y)

| _ (y—c;— bsin() (13)
sin(y; + 6;) = asin(e)

0; = atan2(sin(y; + 6;),cos(yY; + 6,)) — Y; (14)

Thus, Equations 5, 11, and 14 model the inverse kinematics for a LDR. Three
characteristics of these equations are worth noting. First, the angle ¢; only varies with z position.
Because of this, if d; is the same for all three joint axes, then the magnitude of ¢; will be the
same (this study assumes that a is constant for all joint axes). Next, each of the equations can
provide complex solutions, either from a trigonometric inverse or the square root of a negative
number. In either case, a complex solutions signifies that the position in question would be
unreachable for a physical robot. Finally, each equation can be solved to provide two solutions.
For Equations 5 and 14, the two solutions arise from the inverse trigonometric functions when
their ranges are extended to —x to w. In Equation 11, the two solutions come from the positive
and negative values that can be the result of the square root terms. The two possible states for
each axis allow for a total of eight (23) possible robot poses for a single desired position. Stock

and Miller provide an excellent illustration of the eight possible poses:

26

Arms

Traveling Plate

Actuators

Figure 15: All Possible LDR Poses for a Reachable Position [4]

For this study, the pose in the upper left is chosen, so that L, is always greater than L,
and L. This choice was made primarily to accommodate the physical robot, which has y angles

most similar to those shown. Thus, the inverse kinematic equations for L, L,, and L; become:

Ly = x — bcos(yy) — +/a?sin(g,)% — (y — ¢; — bsin(i),))? (15)

L, = x — bcos(i,) + +/a?sin(p,)2 — (v — ¢, — bsin(),))? (16)

Ly = x — bcos(i3) — y/a?sin(p3)2 — (v — c5 — bsin(ih3))? (17)

27

4.3 Physical Model

In order to verify the kinematics equations, a physical LDR was constructed. The
prismatic joints were created from threaded sliders on lead screws, actuated by stepper motors.
Ball and socket joints were used for the spherical joints. Kinematics calculations and motor
control are performed with an Arduino Uno, which receives position commands via USB cable
from a serial messenger, in this case a laptop computer. This position command was then
converted to a linear distance for each slider, which in turn was converted to a number of ticks
for each stepper to rotate. Positional data is stored on the Arduino EEPROM, which retains the
information even when power is disconnected. Contact switches were placed along the slider
track at known locations, allowing the robot to be reset to a known position should the positional

data get corrupted or lost. Figure 16 shows the constructed LDR.

Figure 16: The Constructed LDR

28

As stated previously, a goal of this study is to determine an equation for inscribed radius
which accounts for physical limitations of a system. As such, certain attributes of the LDR were
chosen to be less than ideal. The delta plate is larger than necessary to hold the EoAT used, to
allow for potentially larger tooling. The ball and socket joints that were chosen had a notable
restriction on ¢ rotation, as shown in Figures 17 and 18 below. A complete table of the

constructed LDR properties can be found in Appendix A.

Figure 17: Rotation Limits on the Spherical Joints

29

Figure 18: Spherical Joints on the Delta Plate

To aid in measurement, a pointer was constructed and attached to the delta plate as shown

in Figure 19. This allowed for easier measurement to the x-y center of the delta plate.

Figure 19: Pointer used as an End Effector

The tracks to guide the sliders were laser cut from a single piece of acrylic to ensure that

all three sliders would move in precise, parallel paths. At the end of each path a limit switch was

30

installed. The purpose of these switches, seen in Figure 20, was twofold. First, they allow for
recalibrating of each prismatic joint’s length. Second, they keep each slider out of the danger
zone at the end of the track, in which the sliders could hit the end of the track cause the couplers

to slip, and thus cause the lead screws to slip and lose position.

/ . ™
i lﬂ:lzl;lﬂft,“ﬂ“.“n”"“'l

NN

Figure 20: Limit Switches for the Prismatic Joints

31

S. METHODS

5.1 Overview

One can see from Equation 2 that the LDR’s reach in the x direction is primarily driven by
the positions of the three prismatic joints. To increase the LDR’s reach in the x direction, one can
simply increase the travel of the prismatic joints. However, the LDR’s reach in the y and z
directions is based on the arm length, delta plate size, joint axis offsets, and angles of the
spherical joints, whose interactions are not nearly as intuitive. This study therefore focuses on the
points reachable in a y-z plane at a fixed x value. Due to the nature of the LDR, the reachable
points in the plane will form a rough semicircle, the minimum radius of which will be the

inscribed radius for that set of physical parameters.

The radii found, in conjunction with their corresponding physical parameters, were then
used in a linear regression model to determine the equation predicting the inscribed radius. The
resulting coefficients then yielded an equation relating inscribed radius to the physical

parameters in the form shown below in Equation 18.

r = fo+ Bra + B2b+ B3¢+ Laiim + PsOim (18)

5.2 Description of the Data

Several values of a, b, and c, were chosen for testing, along with different allowable ranges
for ¢ and 0, called ¢,;,, and 6,;,,, respectively. For each combination of these five physical
parameters, a MATLAB program was written to test a grid of points with the inverse kinematics
equations. Points within a y-z plane at a constant x value were tested. If the returned values for

L;, ;, and 8; were complex, or if ¢; or 8; was outside range of ¢;;,, or 6;;,, then the point was

32

determined to be unreachable and stored. An origin point (not the robot system origin) was
selected to be the highest (greatest z value) point that lay along the centerline (the work envelope
was observed to be symmetric about the z axis). The inscribed radius was calculated as the
minimum distance from any unreachable to the origin, considering only points below the origin.
Figure 21, below, shows an example of the unreachable points (blue) and the inscribed radius
(red). This trial used di=-1, so points with a z value of -1 or higher were not calculated, as it was

already known that they would be unreachable.

-10

-12

14
15 -10 5 0 5 10 15

Figure 21: MATLAB Plot of Unreachable Points and the Inscribed Radius

The inscribed radius r and the values of a, b, ¢, ¢y, and 6;;,,, were stored for processing.

A complete table of the values for r, a, b, ¢, ¢;;m, and 6;;,,, can be found in Appendix 2.

33

5.3 Data Processing

Linear regression was used to relate the inscribed radius r with a, b, ¢, ;im, and 6y, .
Because @y, and 8;;,,, are angles, the values of sin(®;;,), cos(®im), sin(O;;m), and cos(Gyim,)
were also considered. To determine which of the ¢;;,,, and 6;;,,, terms to use, all possible
combinations of one ¢y;;,, term and 8y;,,, term were tested. Any combination which had a
statistically insignificant term was eliminated. Of those combinations which remained, the
combination which had the largest absolute sum of ¢ values was chosen. A significance level of

0=0.05 was chosen and a two-sided confidence interval was used.

With the proper angular terms selected, a final linear regression was performed to solve for
the coefficients in Equation 18. The same significance level of a=0.05 was used to determine

which terms, if any, were not statistically significant.

5.4 Using the Models

The models were used to predict the performance of the constructed LDR. Based on the
values shown in Appendix A the constructed LDR’s inscribed radius was calculated. Testing was
performed by selecting several points near the edge of the work envelope. The L;, L2, and L;
needed to reach these positions were calculated by the LDR’s Arduino controller and the LDR
was then moved to each position. The actual position of the EE was recorded and compared to

the expected values calculated by the MATLAB kinematics program.

34

6. RESULTS

Once the data was collected, nine linear regressions were performed to select the best
possible combination of @y, c0S(im), Or Sin(@yiy,) and 8y, , c0s(8;im), or sin(6y;,,). For
each regression, the absolute sum of the 7 scores for the angular terms was computed. As seen

below in Table 1, the combination which most accurately represents the data is ¢y;,,, and
cos(Oim)-

Table 1: t Scores for Angular Terms

O1im cos(6yim) sin(6yim)
Plim 45.06 45.47 31.06
cos(Pum) 45.04 4545 31.05
Sin(ern) 3403 FYWy) 3043

Thus, the terms ¢;;,,, and cos(8;;,,) were selected and a final linear regression was
performed. The physical parameters, along with their B coefficients, significance levels, and ¢

values are shown below in Table 2.

35

Table 2: Linear Regression Results

Parameter B p t
Constant -1.3789 0.085 -1.72
a 0.3789 0.000 7.17
b 0.4742 0.000 5.18
c -0.5537 0.000 -6.05
Piim 3.677 0.000 12.62
cos(6yim) -20.809 0.000 -32.85

Based on the p values for each term, all terms except the constant are statistically
significant. The linear regression resulted in an R-squared value of 77.23, meaning that over
three-quarters of the inscribed radius’s value is modelled by the given equation. Therefore, a best

estimate for the inscribed radius of a LDR’s workspace is

r = 0.3789a + 0.4742b — 0.5537¢ + 3.677¢@m — 19.462c08(Oim) (19)

Based on this result, the inscribed radius for the constructed LDR was calculated to be

8.74 inches, compared to the 5.59 inches found by the MATLAB simulation, shown below in

Figure 22.

36

-15 -10 -5 0 5 10 15

y
Figure 22: Expected Workspace of the Physical LDR

Several points were chosen near the bottom of the work envelope for testing. The
expected values for y and z, the actual y and z values, along with the L;, L>, and L3 lengths
required to reach each position are shown below in Table 3. All measurements were taken at x=8

inches.

Table 3: Linear LDR Position Testing

37

Expectedy | Expected z | Measured y | Measured z L; L L;s

(in) (in) (in) (in) (in) (in) (in)
-4 -10.5 -2.37 -10.94 2.7005 13.8345 6.4271
-3 -11 -1.88 -11.25 3.1032 13.6344 5.6543
-2 -11.4 -1.13 -11.5 3.6894 13.2594 5.6731
-1 -11.6 -0.75 -11.75 4.1425 13.1371 5.1036
0 -11.8 0 -11.81 5.434 12.3963 5.434
1 -11.6 0.69 -11.63 5.1036 13.1371 4.1425
2 -11.4 1.13 -11.5 5.6731 13.2594 3.6894
3 -11.0 1.75 -11.31 5.6543 13.6344 3.1032
4 -10.5 2.75 -10.94 6.4271 13.8345 2.7005

38

7. DISCUSSION

From Equation 19 it is immediately apparent that the cos(8;;,,) term immensely restricts the
inscribed radius. Especially for small manipulators, decreasing this term (by increasing 6;;,,)
should be the first step to increasing a LDR’s work envelope. As it exists in Equation 19, one
could theoretically increase the radius by causing 6;;,,, to cause cos(8;;,,) to become negative. In
practice, this would likely not add any benefit beyond being able to reach a point with a second

pose.

Interestingly, increasing the axis separation with ¢ decreases the inscribed radius. Closer
axes allow for more movement, while spread axes restrict movement to points across the x-z
plane. However, close axes cause greater 6 angles when moving at low ¢ angles near the x-z

plane, so care must be taken not to reduce ¢ enough to lessen the inscribed radius.

As expected, increasing a increases the inscribed radius, as it directly contributes to a joint
axis’s reach in all directions. Surprisingly, b also has a positive impact on the inscribed radius,
and has close to the same impact as a. Initially, a large delta plate radius was thought to be a
detriment, causing more extreme ¢ and 0 angles, but apparently the benefit of increased reach in
x and y had a greater impact on the radius. A large delta plate could still create issues in motor
positional or velocity control. Finally, because it directly affects the reach in z, increasing @,

also increases the radius.

The regression model is not accurate for all cases. The most obvious example that if
either of the joint limits were zero, a physical manipulator would have an inscribed radius of
zero, though the regression would predict a non-zero radius. This can also be seen with an arm

length of a = 0 or an axis separation of ¢ = 0.

39

The positions of the physical LDR differed from the expected values largely due to
mechanical slop in the system, primarily due to the rotation of the sliders. While the tracks that
the sliders move along were intended to stop this, the semi-flexible acrylic did allow for some
rotation about the joint axis. Additionally, the acme nuts used on the lead screws were found to
have some wobble which allowed them to rotate along the axis. The ball and socket joints used
were composed of a metal ball within plastic socket. After some use, the plastic became mildly
worn down, which allowed a miniscule amount of linear movement as well as rotational
movement in the spherical joints. The combined effect of this variability lead to the delta plate
being pulled down (and thus inward) by gravity. Thus, all experimental results had y values

closer to zero and z values less than the predicted results, shown below in Figure 23.

= Experimental
© Theoretical

sl

-10

-12

-'];_'1 |]]] | |

Figure 23: Positional Results on the Physical LDR

40

Despite these issues, the physical LDR served as a successful sanity check to confirm that
the kinematics and work envelope calculations were roughly correct. The positional kinematics
were confirmed by moving the end effector to the expected position (by hand) without moving
the sliders, proving that the LDR could reach that position with the given L inputs. Figure 24
demonstrates this, showing that the experimental results still align with the predicted work

envelope.

-15 -10 -5 0 5 10 15

Figure 24: Positional Results within the Work Envelope

41

8. LIMITATIONS

On the physical LDR, the largest limitation was the range of L. Because this range was
too small, points near the top of the work envelope could not be tested, meaning that the
inscribed radius could not be calculated as the origin could not be found. While unfortunate, this
oversight was not catastrophic as the LDR could still move around the bottom of the work
envelope, the most important and commonly used area. Additionally, the platform still acted as a

useful device to confirm the kinematics.

42

9. CONCLUSIONS

Despite some limitations, this study was largely successful in deriving the forward
kinematics, inverse kinematics, and an equation defining the inscribed radius for a LDR. While
the lower R-squared value indicates that the regression model does not capture all the variation
in the inscribed radius, Equation 19 still provides a powerful tool for estimating the inscribed
radius of a LDR. It affirms the importance of considering the impact of all the selected physical
parameters, and places heavy emphasis on the spherical joint angle restrictions. Using the
physical LDR as a reality check confirmed both the kinematics and the edge of the work
envelope, and was a valuable tool in understanding the capabilities and limitations of LDRs.
From the evidence shown, it should be clear that understanding and controlling the work
envelope is an essential step when designing or using a robotic manipulator. Hopefully, the
methods and equation presented in this thesis will provide insight to those attempting to

accurately define the workspace or kinematics of a linear delta robot.

43
10. FUTURE WORK

In order to improve the models, more physical LDRs should be constructed in order to
physically verify the equations. This study used a single LDR as a reality check, and while the
physical model roughly matched the equations, a single data point does not prove a trend. To
truly confirm the inscribed arc radius equation, an array of LDRs with varying parameters should
be built and tested, though this would obviously be a substantial investment of materials and

time.

Other future work could include LDRs with different y configurations. This study
exclusively used the y values shown in Table 4 below. These values were chosen to imitate
Clavel’s original delta manipulator by being even separated by 2?" radians. However, due to the
nature of the 4-bar mechanisms on the arms, there is no reason that other y values could not

work.

Table 4: y Values

0, Value (rads)
1 T
3
2 s
3 -
3

Additionally, while Clavel’s original design used constant values of a and b for all three
arms, Delta robots can be (and sometimes are) constructed with varying arm lengths and delta

plate sizes. As Equations 2, 3, and 4, show, each joint axis can be calculated independently, so

44

solving for LDRs that have differing a and b values for each joint would be a simple change that

could yield interesting results.

While this study focused on the inverse kinematics to find unreachable points, a robot’s
Jacobian matrix can also be used to find limits or singularities in a robot’s workspace. Some
attempts were made to derive a useful Jacobian from the inverse kinematics, but without success.
If a future study were to calculate the Jacobian, it might be more computationally efficient in
determining the unreachable points for the inscribed radius calculations. Additionally, the
Jacobian could provide information about areas within the workspace which would cause a LDR

to lose rigidity.

Finally, a more complex regression model could be attempted to find a more suitable
equation. This study did not include interaction terms or higher order terms in order to limit the
complexity, as the determination of the inscribed radius equation was done empirically.
However, looking at the inverse kinematics equations shows a number of interaction terms (some
with two-degree interactions), as well as higher order terms, so a more complex model could be
justified. Alternatively, an effort could be made to derive the inscribed radius equation entirely

from the kinematics.

(1]

(2]

(3]

[4]

[5]

[6]

45

LIST OF REFERENCES

M. J. Uddin, S. Refaat, S. Nahavandi and H. Trinh, "Kinematic Modelling of a Robotic
Head with Linear Motors," Deakin University, School of Engineering and Technology,

Geelong.

R. Clavel, "A Fast Robot with Parallel Geometry," in 18th International Symposium on

Industrial Robotics, Lausanne (Switzerland), 1998.

R. Clavel, "Device for the positioning of an element in space". U.S. Patent 4,976,582, 11

Dec 1990.

M. Stock and K. Miller, "Optimal Kinematic Design of Spatial Parallel Manipulators:
Application to the Linear Delta Robot," ASME Journal of Mechanical Design, vol. 125,

2003.

Q. Yuan, S. Ji, Z. Wang, G. Wang, Y. Wan and L. Zhan, "Optimal Design of the Linear
Delta Robot for a Prescribed Cuboid Dexterous Workspace based on Performance Chart,"
in WSEAS Int. Conf. on Robotics, Control, and Manufacturing Technology, Hangzhou,

2008.

X.-J. Liu, J. Wang, K.-K. Oh and J. Kim, "A New Approach to the Design of a DELTA
Robot with a Desired Workspace," Journal of Intelligent and Robotic Systems, vol. 39, pp.

209-225, 2004.

46

[7] Y. Zhao, "Dynamic optimum design of a three translational degrees of freedom parallel
robot while considering anisotrophic property," Robotics and Computer-Integrated

Manufacturing., vol. 29, pp. 100-112, 2012.

[8] M. A. Laribi, L. Romdhane and S. Zeghloul, "Analysis and dimensional synthesis of the
DELTA robot for a prescribed workspace," Mechanism and Machine Theory, vol. 42, pp.

859-870, 2007.

[9] FANUC Robotics, FANUC Robot M-2000iA Mechanical Unit Operators Manual,

Rochester Hills, MI: FANUC America, 2014.

[10] S. Kucuk and Z. Bingul, Industrial Robotics: Theory, Modelling, and Control, Berlin,

2006.

[11] Y.-J. Chiu and M.-H. Perng, "Forward Kinematics of a General Fully Parallel Manipulator

with Auxillary Sensors," The International Journal of Robotics Research, 1 May 2001.

[12] L.-W. Tsai, Robot Analysis, New York: John Wiley & Sons, 1999.

[13] J.-H. Ryu, Parallel Manipulators, New Developments, I-Tech Education, 2008.

[14] E. A. Baran, T. E. Kurt and A. Sabanovic, Lightweight Design and Encoderless Control of

a Minature Direct Drive Linear Delta Robot, Istanbul: Sabanci University.

[15]J. L. Irwin, J. M. Pearce, G. Anzolone and D. E. Oppliger, "The RepRap 3-D Printer
Evolution in STEM Education," in 121st ASEE Annual Conference & Exposition,

Indianapolis, 2014.

47

48

APPENDICES

49

APPENDIX A: PHYSICAL LDR PARAMETERS

Appendix A shows the complete list of physical parameters for the constructed Linear

Delta Robot. All lengths are measured in inches; all angles are measured in radians.

Table A.1: Constructed Linear Delta Physical Parameters

Parameter

Value

Ci
Cc2

C3

V1

2P
Vs

9.25

3

-3.5

0

3.5

-2.656

Wl 3

50

APPENDIX B: INSCRIBED RADII DATA

Appendix B shows the calculated inscribed radius for each set of hypothetical physical

parameters.

Table B.1: Inscribed Radii from MATLAB Simulation

a b ¢ Piim elim r

0.942478 | 1.256637 | 2.570992
0.942478 | 1.413717 | 3.059412
0.942478 | 1.570796 | 3.059412
1.256637 | 1.256637 | 2.886174
1.256637 | 1.413717 | 3.962323
1.256637 | 1.570796 | 4.972927
1.570796 | 1.256637 | 3.001666
1.570796 | 1.413717 | 4.20119
1.570796 | 1.570796 | 5.300943
0.942478 | 1.256637 | 2.720294
0.942478 | 1.413717 | 2.720294
0.942478 | 1.570796 | 2.720294
1.256637 | 1.256637 | 3.863936
1.256637 | 1.413717 | 4.640043
1.256637 | 1.570796 | 4.640043
1.570796 | 1.256637 | 4.00125
1.570796 | 1.413717 | 5.200961
1.570796 | 1.570796 | 5.755867
0.942478 | 1.256637 | 2.202272
0.942478 | 1.413717 | 2.202272
0.942478 | 1.570796 | 2.202272
1.256637 | 1.256637 | 3.894868
1.256637 | 1.413717 | 3.894868
1.256637 | 1.570796 | 3.894868
1.570796 | 1.256637 | 4.767599
1.570796 | 1.413717 | 4.767599
1.570796 | 1.570796 | 4.767599
0.942478 | 1.256637 | 1.726268
0.942478 | 1.413717 | 2.594224
0.942478 | 1.570796 3.2
1.256637 | 1.256637 | 2.002498
1.256637 | 1.413717 | 3.114482
1.256637 | 1.570796 | 4.123106
1.570796 | 1.256637 | 2.10238

00O 0O 00 00 OO0 00O 0O OO OO0 OO0 00O 00O OO OO OO OO 00O 00O OO OO OO 00O 00O 0O OO OO OO 00O 00O 0O 00O OO0 00 00
W w wwwowwuuuouou oo oo bbb DPDWWWWWWWWW

W W W W W W WNDNDNNNNDNDNNDNNDNDNDNDNNNDNDNNNNDNDNDDNDNDNDNDN

00O 0O 00 00 00 00O 0O OO OO0 OO0 00O 00O OO OO OO OO 00O 0O OO OO OO 00O 00O OO OO OO OO 00O 00O OO OO OO OO 00O 0O OO OO OO 00O 00O 0O 00O OO0 00 00

A AP DEDEDDEDDWWWMWWMWWMWWWWWWWWWWWWW

o v oo unn o bbb, LOVWLWWWWWWWWOLOLOUVMOUGEU OOV O OSSPSR PPWW

1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796

1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637

3.301515
4.410215
2.716616
3.008322
3.008322
3.001666
4.1
5.096077
3.101612
4.301163
5.408327
2.640076
2.640076
2.640076
4.00125
4.545327
4.545327
4.101219
5.300943
5.600893
0.894427
1.772005
2.505993
1.140175
2.256103
3.298485
1.204159
2.433105
3.601389
1.843909
2.720294
3.2
2.12132
3.238827
4.272002
2.202272
3.423449
4.601087
2.828427
2.973214
2.973214
3.114482
4.229657
5.077401
3.201562

51

52

O O OV LV LV LV OV OV VLoV ovouovVuuwvVuuowVuwoovouovouuwvuuwuowuwowuowuuwuuwuuwuwowuououwuouwuuwuowuowuowuouwuuouwuuwuwowuouowuuwuuwow o

W W W W WWwWwWWWWWWWWWNNNNNNDNNDNNNNDNNDNNNDNNDNDNNNDNNNNDNDADS

A A PP POWOWWWWLWWLWWWWOLOLOVOU OOGOOO>SDDDEEBSEPBEDEEDEDWWWWWWWWWOUW

1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796

1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637

4.418144
5.600893
2.745906
3.569314
3.569314
3.080584
4.310452
5.434151
3.201562
4.501111
5.800862
3.257299
3.257299
3.257299
4.060788
5.295281
5.403702

4.20119
5.500909
6.747592
2.778489
2.778489
2.778489
4.701064
4.701064
4.701064
5.200961
5.755867
5.755867

1.90263
2.906888
3.640055
2.202272
3.452535
4.609772
2.302173
3.701351
4.909175
2.886174
3.535534
3.535534
3.201562
4.440721
5.565968
3.301515

O O OV OV LV OV OV OV LV ovouovouuwvVuuowVuowVuovouovouuwvuuwuuwuwowuowuuwuuouwuouwuouwuwououwuouwuuowuuwuwowuouowuouwuo

[= e S T S T Sy T
O O O O O o o

N NNNNNMNNNDEDEEDEDEEEDEDEEEEEEEEEEEEEEEEEEEEEEEEEEEEEDEDEDDWWWWWWWWWWW

W w wwwowwuuuououououou o bbb EEPPWWWWWWWWWOL OGO OoououououobdDS

1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796

1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637

4.701064
5.907622
3.195309
3.195309
3.195309
4.20119
5.315073
5.315073
4.301163
5.700877
6.600758
1.077033
2.088061
2.906888
1.334166
2.601922
3.764306
1.50333
2.801785
4.101219
2.039608
3.036445
3.7
2.319483
3.590265
4.729693
2.501999
3.801316
5.10098
3.026549
3.49285
3.49285
3.313608
4.570558
5.700877
3.49285
4.801042
6.10082
2.915476
3.981206
3.981206
3.255764
4.638965
5.913544
3.40147

53

54

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

W W W W W WwWwWwWwwwwwwwwwwowwwwwwowwnNNdNNNNNNNDNNDNNNNNDNDNMNNDNDNDN

o v oo unn o bbb, LOVWLWWWWWWWWOLOLOUVMOUGEU OOV O OSSPSR PPWW

1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796

1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637

4,90102
6.300794
3.7

3.7

3.7
4.242641
5.632051
6.161169
4.401136
5.900847
7.300685
3.264966
3.264966
3.264966
5.234501
5.515433
5.515433
5.400926
6.747592
6.747592
2.061553
3.162278
4
2.402082
3.801316
5.069517
2.501999
4.00125
5.408327
3.041381
3.945884
3.945884
3.40147
4,785394
6.041523
3.501428
5.001
6.407027
3.640055
3.640055
3.640055
4.401136
5.770615
6.080296
4,501111

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

N NN NNNNNNNNNNNMNNMNNAEDEEEEAEEDWW

A A PP POWOWWWWLWWLWWWWOLOLOVOU OOGOOO>SDDDEEBSEPBEDEEDEDWWWWWWWWWOUW

1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796

1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637

6.000833
7.406079
1.204159
2.34094
3.264966
1.513275
2.927456
4.22019
1.702939
3.201562
4.601087
2.202272
3.289377
4.1
2.507987
3.920459
5.197115
2.701851
4.20119
5.600893
3.17805
3.905125
3.905125
3.50571
4.916299
6.168468
3.701351
5.200961
6.600758
3.080584
4.254409
4.393177
3.452535
4.981967
6.378871
3.601389
5.261179
6.800735
4.060788
4.123106
4.123106
4.440721
5.968249
6.92026
4.601087

55

56

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

A A P DD DA P WWWWWWWWWWWWWWWWWWWWWWWWWWWNNNNNNDNMNDNDNDNdNN

W w wwwowwuuuououououou o bbb EEPPWWWWWWWWWOL OGO OoououououobdDS

1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796

1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637

6.2514
7.800641
3.757659
3.757659
3.757659
5.433231
6.293648
6.293648
5.600893
7.244308
7.752419

2.22036
3.448188
4.360046
2.601922
4.130375
5.531727
2.701851
4.401136
5.907622
3.214032
4.356604
4.356604
3.601389

5.11957
6.511528
3.701351
5.400926
6.906519
4.080441
4.080441
4.080441
4.601087

6.1
6.841053
4.701064
6.400781
7.905694
1.403567
2.624881
3.635932
1.711724
3.275668
4.687217
1.90263

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

N NN NDNNNNMNNNMNNNNDNNMDNMNMNNNMNNNMNNNNMNNMNNNMNNNNSNSNNSEREEPAEPAPAEPAPEPEAPAPAAPEAPEAPEAPEAPEAEAPEAEEEB

o v oo unn o bbb, LOVWLWWWWWWWWOLOLOUVMOUGEU OOV O OSSPSR PPWW

1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796

1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637

3.501428
5.10098
2.376973
3.573514
4.465423
2.707397
4.257934
5.67186
2.901724
4.501111
6.10082
3.354102
4.341659
4.341659
3.705401
5.246904
6.640783
3.901282
5.500909
7.100704
3.238827
4.531004
4.805206
3.634556
5.315073
6.824954
3.801316
5.600893
7.300685
4.229657
4.554119
4.554119
4.627094
6.296825
7.580237
4.801042
6.600758
8.300602
4.204759
4.204759
4.204759
5.622277
7

7
5.800862

57

58

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

A~ P PSP PAEPEEDDWWWWWWWWWWWWWWWWWWWWWWWWWWWNN

A A PP POWOWWWWLWWLWWWWOLOLOVOU OOGOOO>SDDDEEBSEPBEDEEDEDWWWWWWWWWOUW

1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796

1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637

7.600658
8.746428
2.402082
3.733631
4.720169
2.801785
4.455334
5.990826
2.901724
4.716991
6.412488
3.373426
4.661545
4.767599
3.801316
5.445181
6.957011
3.901282
5.714018
7.410803
4.356604
4.522168
4.522168
4.785394
6.432729
7.516648

4.90102

6.71193
8.409518
1.529706
2.912044
3.996248

1.90263
3.605551
5.141984

2.10238
3.901282
5.600893
2.517936
3.848376
4.825971
2.901724
4.589118
6.113101
3.101612

12
12
12
12
12
12
12
12
12
12
12

EE R S R L LT T LT S T~

(2T O O B O B O, RO B @ B O (R O [g S

1.570796
1.570796
0.942478
0.942478
0.942478
1.256637
1.256637
1.256637
1.570796
1.570796
1.570796

1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796
1.256637
1.413717
1.570796

4.90102
6.600758
3.512834
4.751842
4.751842
3.901282

5.57315
7.083078
4.101219
5.900847
7.600658

59

60
APPENDIX C: INSCRIBED RADII SIMULATION CODE

Appendix C shows the MATLAB script used to calculate the inscribed radii.

% This program calculates the inscribed radius for numerous
% LDRs of varying parameters

% Prepare workspace

clear all

close all

Set constants
=20;
i=[pi/3,pi,-pi/31;
[71171171];

o\

Set empty variables

LZ[OI Or O];

]_Ohl=[0, 0,01;

theta=[0,0,07;

origin=-1;

% Set up data storage

data=zeros(5*374,06);

dataSetCount=1;

% Set up flags

posReachable=0;

UR_count=1;

originFound=0;

% Loop through parameters

for a=8:1:12

for b=2:1:4

for c=3:1:5
for phi_1im=0.3*pi:0.1*pi:0.5*pi
for theta_1im=0.4*pi:0.05*pi:0.5%pi
UR_count=1;
origin=-1;
originFound=0;
for y= -20:0.1:20
for z= -1:-0.1:-14
posReachable=1;
testPos=[x,v,2];

[L,theta,phi]=inverseKinematicsATAN (testPos,a,b, [-c,0,c],d,psi);

if ((max (imag([L, theta,phi])))~=0)
posReachable=0;

end

if (max (abs(theta))>theta_lim)
posReachable=0;

end

if (max (abs (phi))>phi_lim)
posReachable=0;

o° 0P o o

o\

end
end
end

end
if (posReachable==0)
UR_y (UR_count)=y;
UR_z (UR_count)=z;
UR_count=UR_count+1;
end
if (posReachable && y==0 && originFound==0)
origin=z;
originFound=1;
end
end
end
% Calculate inscribed radius
radius=findInscribedRadius (UR_y,UR_z,origin);
% Plot if desired
figure
plot (UR_y,UR_2z,"'.")
title (dataSetCount) ;
xlabel (origin);
ylabel (radius) ;
data (dataSetCount, :)=[a,b,c,phi_lim, theta_lim,radius];
dataSetCount=dataSetCount+1;
end

end

function [length,theta,phi]l=inverseKinematicsATAN (position,a,b,c,d,psi)
% Calculates the prismatic joint lengths, thetas, and phis for a LDR when
% given input position and physical parameters.

x=position(1l)

y=position(2);

z=position(3)

for i=1:1:3

phi(i)=acos((d(i)-z)/a);

length(i)=x-b*cos(psi(i))-sgrt(a®2*sin(phi(i))*2-(y-c(i)-
b*sin(psi(i)))"2);

if (i==2)

length(i)=x-b*cos(psi(i))+sgrt(a”2*sin(phi(i))"2-(y-c(i)-

b*sin(psi(i)))"2);

end

sinterm=(y-c(i)-b*sin(psi(i)))/(a*sin(phi(i)));

costerm=(x-length(i)-b*cos(psi(i)))/(a*sin(phi(i)));

if (imag(sinterm)==0 && imag(costerm)==0)

theta(i)=atan2(sinterm, costerm)-psi(1i);
if (y<=0 && i==2)
theta(i)=atan2(sinterm, costerm)+psi(1i);

end

o° o oe

o\

Psi(2)= pi and pi=-pi for trig functions.
Necessary so that theta(2) doesn't become
approx -2pi instead of zero for negative
y positions.

61

62

else
theta(i)=10+10%*1;
% Set theta as a large complex number if out of bounds.
end

end

end

o\

Finds the max radius when given an array of points
that CANNOT be reached. Also requires an origin
z position to calculate distance.

o\

o\

function radius=findInscribedRadius(y, z,origin)
numPoints=length(y);

radius=10000;
currentRadius=0;
for i=1:numPoints
if (z(i)<origin)
currentRadius=sqrt ((z(i)-origin) "2+ (y(1))"2);
if (currentRadius<radius)
radius=currentRadius;
end
end
end

APPENDIX D: PHYSICAL LDR CODE

Appendix D shows the Arduino code used on the constructed Linear Delta Robot.

/I A program to control the constructed LDR

// Include libraries

#include <math.h>

#include <EEPROM.h>

#include <Wire.h>

#include <Adafruit_ MotorShield.h>

#include "utility/Adafruit. PWMServoDriver.h"
#include <LinearDeltaCom.h>

#include <AccelStepper.h>

/I Add all the #defines and global variables that would be class variables here

T N
// Constants
T N

// Memory Constants

#define EEPROM_ADDRESS_BACK_TICKS_START 0x0018
#define EEPROM_ADDRESS_MID_TICKS_START 0x0020
#define EEPROM_ADDRESS_FRONT_TICKS_START 0x0028
// Define default physical parameters

#define DEFAULT _a 9.25

#define DEFAULT_b 3

#define DEFAULT _cl -3.5

#define DEFAULT _c2 0

#define DEFAULT _c3 3.5

#define DEFAULT_dI1 -2.656

#define DEFAULT_d2 -2.656

#define DEFAULT_d3 -2.656

#define DEFAULT _psil 1.04719

#define DEFAULT _psi2 3.14159

#define DEFAULT _psi3 -1.04719

#define DEFAULT _ticksPerRev 200

#define DEFAULT_threadsPerInch 10

// Define I/O Assignments

#define L1_switch_pin 2

#define L2_switch_pin 3

#define L3_switch_pin 4

T N
/] Variables
T N

// Physical parameters
float a;
float b;
float cl;
float ¢2;
float ¢3;
float d1;
float d2;
float d3;
float psil;
float psi2;
float psi3;

long ticksPerRev;

long threadsPerInch;
float currentPosition[3];
long currentTicks[3];

Adafruit_MotorShield AFMSbot(0x60);

63

Adafruit_MotorShield AFMStop(0x61);

Adafruit_StepperMotor *frontStepper = AFMStop.getStepper(200, 2);
Adafruit_StepperMotor *midStepper = AFMSbot.getStepper(200, 1);
Adafruit_StepperMotor *backStepper = AFMStop.getStepper(200, 1);
LinearDeltaCom deltaCom;

AccelStepper stepperFront(forwardstepl, backwardstepl);
AccelStepper stepperMid(forwardstep2, backwardstep2);
AccelStepper stepperBack(forwardstep3, backwardstep3);

void setup(){
AFMSbot.begin();
AFMStop.begin();
setDefaultParams();
loadEEPROM();
Serial.begin(115200);
delay(1000);
deltaCom.registerMoveCallback(movePos);
deltaCom.registerXMoveCallback(xMove);
deltaCom.registerYMoveCallback(yMove);
deltaCom.registerZMoveCallback(zMove);
deltaCom.registerHomeCallback(resetLengths);
deltaCom.registerRequestPositionCallback(sendPositionData);

}

void loop(){
stepperFront.run();
stepperMid.run();
stepperBack.run();
}

s
// Setup Functions
s
void setDefaultParams(){
a=DEFAULT_a;
b=DEFAULT_b;
c1=DEFAULT _cl;
c2=DEFAULT_c2;
c3=DEFAULT _c3;
d1=DEFAULT_dI;
d2=DEFAULT_d2;
d3=DEFAULT_d3;
psil=DEFAULT _psil;
psi2=DEFAULT_psi2;
psi3=DEFAULT_psi3;
ticksPerRev=DEFAULT _ticksPerRev;
threadsPerInch=DEFAULT _threadsPerInch;
pinMode(L1_switch_pin,INPUT_PULLUP);
pinMode(L2_switch_pin,INPUT_PULLUP);
pinMode(L3_switch_pin,INPUT_PULLUP);
stepperFront.setAcceleration(100);
stepperMid.setAcceleration(100);
stepperBack.setAcceleration(100);
stepperFront.setMaxSpeed(600);
stepperMid.setMaxSpeed(600);
stepperBack.setMaxSpeed(600);
}
/I AccelStepper functions
void forwardstep1() {
frontStepper->onestep(FORWARD, SINGLE);
}
void backwardstep1() {
frontStepper->onestep(BACKWARD, SINGLE);
}
void forwardstep2() {

midStepper->onestep(FORWARD, SINGLE);

}

void backwardstep2() {
midStepper->onestep(BACKWARD, SINGLE);

void forwardstep3() {
backStepper->onestep(FORWARD, SINGLE);

}

void backwardstep3() {
backStepper->onestep(BACKWARD, SINGLE);

}

void serialEvent(){
while(Serial.available()){
deltaCom.handleRxByte(Serial.read());
}
}

T
// Movement Functions
T
void movePos(float targetX, float targetY, float targetZ){
Serial.print("Order received: Move");
Serial.print("\n");
//Calculate lengths
int positionReachable=1;
float targetPosition[]={
targetX,targetY,targetZ };
float finalLengths[3];
long finalTicks[3];
long deltaTicks[3];
inverseKinematics(targetPosition,finalLengths);
for (int i=0; i <3; i++){
if((finalLengths[i]<1.75) Il (finalLengths[i]>15.25)){
positionReachable=0;
Serial.println();
Serial.print("Position Unreachable!");
Serial.println();
}
}
for(int i=0; i < 3; i++){
finalTicks[i]=length2ticks(finalLengths[i]);
deltaTicks[i]=finalTicks[i]-currentTicks[i];
}
// Make the move
if(positionReachable==1){
stepperFront.move(deltaTicks[0]);
stepperMid.move(deltaTicks[1]);
stepperBack.move(deltaTicks[2]);
/I Update position
for (int i=0; i < 3; i++){
currentPosition[i]=targetPosition[i];
currentTicks[i]=finalTicks[i];
}
}
updateEEPROMY();

}

void xMove(float deltaX){
Serial.print("Order received: MoveX");
Serial.print("\n");
float targetPosition[3]={
currentPosition[0],currentPosition[1],currentPosition[2] 1N
targetPosition[0]=targetPosition[0]+deltaX;
movePos(targetPosition[0],targetPosition[1],targetPosition[2]);

}

void yMove(float deltaY){
Serial.print("Order received: MoveY");

65

66

Serial.print("\n");

float targetPosition[3]={
currentPosition[0],currentPosition[1],currentPosition[2] 1N

targetPosition[1]=targetPosition[1]+deltaY;

movePos(targetPosition[0],targetPosition[1],targetPosition[2]);

}

void zMove(float deltaZ){
Serial.print("Order received: MoveZ");
Serial.print("\n");
float targetPosition[3]={
currentPosition[0],currentPosition[1],currentPosition[2] 1N
targetPosition[2]=targetPosition[2]+deltaZ;
movePos(targetPosition[0],targetPosition[1],targetPosition[2]);

void moveHome(){
float homePos[]={
8,0,-11 };
movePos(homePos[0],homePos[1],homePos[2]);

}

void resetLengths(){
Serial.print("Order received: ReHome");
Serial.print("\n");
while(!(digitalRead(L1_switch_pin)&&digitalRead(L2_switch_pin)&&digitalRead(L3_switch_pin))){
if(digitalRead(L1_switch_pin)==0){
stepperFront.move(-1);
}
else {
stepperFront.move(0);

}
if(digitalRead(L2_switch_pin)==0){
stepperMid.move(1);
}
else {
stepperMid.move(0);
}
if(digitalRead(L3_switch_pin)==0){
stepperBack.move(-1);
}
else {
stepperBack.move(0);
}
stepperFront.run();
stepperMid.run();
stepperBack.run();
}
currentTicks[0]=3813;
currentTicks[1]=30438;
currentTicks[2]=3938;
moveHome();

i
/ Memory Functions
i
void loadEEPROM(){
/I Ticks
currentTicks[0]=256*(unsigned long) EEPROM.read(EEPROM_ADDRESS_BACK_TICKS_START)+ (unsigned long)
EEPROM.read(EEPROM_ADDRESS_BACK_TICKS_START+1);
currentTicks[1]=256*(unsigned long) EEPROM.read(EEPROM_ADDRESS_MID_TICKS_START)+(unsigned long)
EEPROM.read(EEPROM_ADDRESS_MID_TICKS_START+1);
currentTicks[2]=256*(unsigned long) EEPROM.read(EEPROM_ADDRESS_FRONT_TICKS_START)+(unsigned long)
EEPROM.read(EEPROM_ADDRESS_FRONT_TICKS_START+1);

}

void updateEEPROM(){

/Il Ticks

EEPROM.write(EEPROM_ADDRESS_BACK_TICKS_START, currentTicks[0]/256);
EEPROM.write(EEPROM_ADDRESS_BACK_TICKS_START+1, currentTicks[0]%256);
EEPROM.write(EEPROM_ADDRESS_MID_TICKS_START, currentTicks[1]/256);
EEPROM.write(EEPROM_ADDRESS_MID_TICKS_START+1, currentTicks[1]%256);
EEPROM.write(EEPROM_ADDRESS_FRONT_TICKS_START, currentTicks[2]/256);
EEPROM.write(EEPROM_ADDRESS_FRONT_TICKS_START+1, currentTicks[2]%256);

s
// Helper Functions
s
long length2ticks(float length){
long ticks=length*ticksPerRev*threadsPerInch;
return ticks;

}

float ticks2length(float ticks){
float length=ticks/ticksPerRev/threadsPerInch;
return length;

}

void inverseKinematics(float targetPosition[], float lengths[]){
float x=targetPosition[0];
float y=targetPosition[1];
float z=targetPosition[2];
float t1=a*a-d1*d1+2%*d1*z-z*z;
float t2=a*a-d2*d2+2*d2*z-z*z;
float t3=a*a-d3*d3+2*d3*z-z%z;
float L1=x-b*cos(psil)-sqrt(1/t1*(t1-sin(psil)*sin(psil)*b*b-2*sin(psil)*b*cl1+2*sin(psil)*b*y-cl*cl1+2%cl*y-y*y))*sqrt(tl);
float L2=x-b*cos(psi2)+sqrt(1/t2*(t2-sin(psi2) *sin(psi2) *b*b-2 *sin(psi2) *b*c2+2 *sin(psi2) *b*y-c2 #c2+2 *c2 *y-y*y)) *sqrt(t2);
float L3=x-b*cos(psi3)-sqrt(1/t3*(t3-sin(psi3)*sin(psi3)*b*b-2 *sin(psi3) *b*c3+2 *sin(psi3) *b*y-c3 *c3+2*c3 *y-y*y)) *sqrt(t3);
lengths[0]=L1;
lengths[1]=L2;
lengths[2]=L3;
}

void sendPositionData(){
Serial.println();
Serial.print("Position Request Received");
Serial.println("");
Serial.print(" x=");
Serial.print(currentPosition[0]);
Serial.print(" y=");
Serial.print(currentPosition[1]);
Serial.print(" z=");
Serial.print(currentPosition[2]);
Serial.println("");
Serial.print("J1 ticks=");
Serial.print(currentTicks[0]);
Serial.println("");
Serial.print("J2 ticks=");
Serial.print(currentTicks[1]);
Serial.println("");
Serial.print("J3 ticks=");
Serial.print(currentTicks[2]);
Serial.println("");
Serial.print("\n");

68

APPENDIX E: PHYSICAL LDR COMMUNICATION LIBRARY

Appendix E shows the LinearDeltaCom Arduino library source file used to communicate

via USB serial with the constructed Linear Delta Robot.

#include "Arduino.h"
#include "LinearDeltaCom.h"

// Communication Functions
LinearDeltaCom::LinearDeltaCom() {
_nextOpenByteInMessageBuffer = 0;

}

%

* Convenience method to handle multiple bytes.

* Just calls the handleRxByte method with each byte individually.

#/

void LinearDeltaCom::handleRxBytes(byte newRxBytes[], int length) {
for (int i = 0; i < length; i++) {

handleRxByte(newRxBytes[i]);

}

}

/**
* Handle a newly received byte.
*If the byte is the MESSAGE_TERMINATOR process the message.
*If the byte is not the MESSAGE_TERMINATOR then just save it.
#/
void LinearDeltaCom::handleRxByte(byte newRxByte) {
if (newRxByte == MESSAGE_TERMINATOR) {
/I Convert the rx message buffer to a String and parse.
_rxMessageBuffer[_nextOpenByteInMessageBuffer] = "\0';
String rxStr = String(_rxMessageBuffer);
_parseStringCommand(rxStr); // The real work happens here.
_nextOpenByteInMessageBuffer = 0;
} else {
// Mid message. Save the byte.
_rxMessageBuffer[_nextOpenByteInMessageBuffer] = newRxByte;
_nextOpenByteInMessageBuffer++;

/**
* Process the complete message.
#/
void LinearDeltaCom::_parseStringCommand(String command) {
int spacelndex = command.indexOf(' ');
//String commandStr;
if (command.startsWith("MOVE ")) {
int direction = 1;
float coordinates[4];
String moveStr = command;
while (spacelndex != -1 && direction < 4) {
moveStr = moveStr.substring(spacelndex + 1);
coordinates[direction] = _str2flt(moveStr);
direction++;
spacelndex = moveStr.indexOf(' ');

if(_moveCallback != NULL){
_moveCallback(coordinates[1],coordinates[2],coordinates[3]);

}
} else if (command.startsWith("XMOVE")) {
String xMoveStr = command.substring(spacelndex + 1);
if (_xMoveCallback !=NULL) {
_xMoveCallback(_str2flt(xMoveStr));

}
} else if (command.startsWith("YMOVE")) {
String yMoveStr = command.substring(spacelndex + 1);
if (_yMoveCallback !=NULL) {
_yMoveCallback(_str2flt(yMoveStr));
}
} else if (command.startsWith("ZMOVE")) {
String zMoveStr = command.substring(spacelndex + 1);
if (_zMoveCallback != NULL) {
_zMoveCallback(_str2flt(zMoveStr));
}
} else if (command.startsWith("SMOOTHMOVE")) {
int smoothDirection = 1;
float smoothCoordinates[4];
String smoothMoveStr = command;
while (spacelndex != -1 && smoothDirection < 4) {
smoothMoveStr = smoothMoveStr.substring(spacelndex + 1);
smoothCoordinates[smoothDirection] = _str2flt(smoothMoveStr);
smoothDirection++;
spacelndex = smoothMoveStr.indexOf(' ');
}
if(_smoothMoveCallback != NULL){
_smoothMoveCallback(smoothCoordinates[1],smoothCoordinates[2],smoothCoordinates[3]);
}
} else if (command.startsWith("SPEED")) {
String speedStr = command.substring(spacelndex + 1);
if (_setSpeedCallback != NULL) {
_setSpeedCallback(_str2flt(speedStr));
}
} else if (command.startsWith("SMOOTHSPEED")) {
String smoothSpeedStr = command.substring(spacelndex + 1);
if (_setSmoothSpeedCallback != NULL) {
_setSmoothSpeedCallback(_str2flt(smoothSpeedStr));
}
} else if (command.startsWith("HOME")) {
if (_homeCallback != NULL) {
_homeCallback();
}
} else if (command.startsWith("POSITION")) {
if (_requestPositionCallback != NULL) {
_requestPositionCallback();

}

/I Attach the callbacks
void LinearDeltaCom::registerMoveCallback(

void (*moveCallback)(float x, float y, float z)){
_moveCallback=moveCallback;

void LinearDeltaCom::register XMoveCallback(

void (*xMoveCallback)(float x)){
_xMoveCallback=xMoveCallback;

void LinearDeltaCom::registerY MoveCallback(

void (*yMoveCallback)(float y)){
_yMoveCallback=yMoveCallback;

void LinearDeltaCom::registerZMoveCallback(

void (*zMoveCallback)(float z)){
_zMoveCallback=zMoveCallback;

69

70

void LinearDeltaCom::registerSmoothMoveCallback(
void (*smoothMoveCallback)(float x, float y, float z)){
_smoothMoveCallback=smoothMoveCallback;

}

void LinearDeltaCom::registerSetSpeedCallback(
void (*setSpeedCallback)(float speed)){
_setSpeedCallback=setSpeedCallback;
}

void LinearDeltaCom::registerSetSmoothSpeedCallback(
void (*setSmoothSpeedCallback)(float smoothSpeed)){
_setSmoothSpeedCallback=setSmoothSpeedCallback;

}

void LinearDeltaCom::registerHomeCallback(
void (*homeCallback)()){
_homeCallback=homeCallback;

}

void LinearDeltaCom::registerRequestPositionCallback(
void (*requestPositionCallback)()){
_requestPositionCallback=requestPositionCallback;

}

// Helper function

float LinearDeltaCom::_str2flt(String inputString){
char charArray[inputString.length()+1];
inputString.toCharArray(charArray,sizeof(charArray));
float outputFloat=atof(charArray);
return outputFloat;

	Rose-Hulman Institute of Technology
	Rose-Hulman Scholar
	Fall 11-2014

	Workspace Analysis of a Linear Delta Robot: Calculating the Inscribed Radius
	Michael Louis Pauly
	Recommended Citation

