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Abstract. We consider a nonlinear coupled system of partial differential equa-
tions with asymptotic boundary conditions which is relevant in the field of general
relativity. Specifically, the PDE system relates the factors of a conformally flat
spatial metric obeying the laws of gravity and electromagnetism to its charge and
mass distributions. The solution to the system is shown to be existent, smooth,
and unique. While the discussion of the PDE assumes knowledge of physics and
differential geometry, the proof uses only the PDE theory of flat space.
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1 Introduction

In the Newtonian framework of gravity the gravitational potential, θ, is described by the
equation

∆θ = −4πρm (1)

where ρm is the mass density. In general relativity, gravitational “force” is seen to be
caused by curved spatial geometry which evolves in time. This geometry is governed by a
metric, measuring distances across a spatial slice. An equation similar to (1) arises from an
examination of the conformally flat spatial metric

g = θ4δ,

which arises naturally as a limit of spaces in which many, many Swarzschild solutions are
superimposed (see Benko, Stavrov [1]). The mass density function is defined according to
the metric as

R(g) = 16πρm

where R(g) signifies the scalar curvature of the metric g. We define the form

ω = ω(x1, x2, x3)dx1dx2dx3 = ρmdvolg.

This form captures a metric independent notion of mass density. In the chosen coordi-
nate system, ω(x1, x2, x3) = ρmθ

6. Substituting this expression and evaluating the scalar
curvature gives

−8∆θ/θ5 = 16πω(x1, x2, x3)/θ6

and so
∆θ · θ = −2πω(x1, x2, x3).

We move the 2π factor into the θ functions. Constant factors in the metric are irrelevant
since they can be eliminated by a coordinate change. We are left with

∆θ · θ = −ω(x1, x2, x3). (2)

When θ is required to approach 1 along the boundary (infinity), solutions to this equation
are known to be existent and unique. Furthermore, it is not hard to see that this equation
parallels (1) with the conformal factor θ standing in for the gravitational potential. Equation
(1) also has analogies within the Newtonian model of gravity and electromagnetism and
within a relativistic model incorporating both gravity and electromagnetism, as we will see.

In the presence of charge, the Newtonian gravitational and electric potentials may be
described by two Poisson-type equations:

∆θm = −ρm,

∆θe = −ρe.
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When we let χ = θm + θe, ψ = θm − θe, ω1 = −ρm − ρe, and ω2 = −ρm + ρe, we get

∆χ = ω1,

∆ψ = ω2.
(3)

It is required that ρm ≥ |ρe|, therefore ω1 ≤ 0 and ω2 ≤ 0. Assuming suitable asymptotic
decay of ω1 and ω2 and boundary conditions which require χ and ψ to approach some
constant at infinity, solutions to this equation are once again existent and unique.

Now, in general relativity, a similar equation relating the metric to mass and charge
distributions may be derived by guessing the metric

g = (χψ)2δ

under the constraints
R(g) = 16πρm + 2‖

−→
E ‖2 (4)

div
−→
E = 4πρe,

and a third equation relating ρm to ∆χ and ∆ψ. These constraints, and a definition of ω1

and ω2 as metric independent forms which are related to −ρm−ρe and −ρm+ρe, respectively,
lead to the equations

∆χ · ψ = ω1

∆ψ · χ = ω2

where ω1 ≤ 0 and ω2 ≤ 0. These equations are analogous to both (2) and (3) for relativity
in the absence of electromagnetism, and electromagnetism in the the absence of relativity,
respectively. In analogy/extension of similar results for (1), (2) and (3) this paper proves
the existence, uniqueness, and smoothness of solutions to the following problem:

Given smooth, compactly supported, non-positive functions ω1 and ω2 with

their domain in R3, find χ and ψ for which

χ, ψ > 0

χ, ψ → 1 as ‖x‖ → ∞
∆χ · ψ = ω1,

∆ψ · χ = ω2.

(5)

The techniques used in the existence proof were inspired by a proof of the method of sub
and super solutions from the lecture notes of Professor Iva Stavrov. As these have not been
published, we have included a reference to a similar proof by Kazdan and Warner [2]. The
proof of existence constitutes the bulk of the paper, but we believe the uniqueness proof is
more original and of more value to the reader. To find it, we imagined two sets of solutions
(χ1, ψ1) and (χ2, ψ2) satisfying equations (6) and (7), then simplified the problem by letting
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ω1 = ω2, ψ2 = χ1 and ψ1 = χ2. These equalities reduce the two equations to one. We
changed the form of this equation, and found a new, linear PDE solved by both χ1 and
χ2 by fixing some variables and letting others vary. Since the equation is linear, linearly
combining the the distinct solutions χ1 and χ2 produces a one parameter family of functions
satisfying the equation and the boundary conditions imposed on χ1 and χ2. Some of these
functions will have positive minimums and will therefore be unable to solve the equation
under consideration. This contradiction disproves the assumption of two distinct solutions
to the original problem. The actual proof is, of course, different, since in general it is not
possible to assume ω1 = ω2 or ψ2 = χ1 and ψ1 = χ2, but this method inspired the proof in
full generality.

In the first part of the existence section, Section 2, we build two sequences (χn and ψn)
whose limits (χ∗ and ψ∗) seem to satisfy our PDE system and which have properties allowing
us to prove that their limits actually exist (Theorem 2.1). With this task accomplished, we
prove that not only do the sequences converge pointwise, they also converge within the
Sobolev spaces Hk(B(r)). We break the proof of this result into the base case Theorem
2.2 and an induction argument that follows in the proof of Theorem 2.3. From this result
it follows that the sequence limits are smooth and satisfy the PDE system. In the last
step of the existence proof, we demonstrate that the limits χ∗ and ψ∗ satisfy the boundary
conditions of the problem.

Section 3 presents the uniqueness proof as a single theorem. We use proof by contradiction
and a reformulation of the PDE system to show there is only one solution set solving our
problem, not two.

Lastly, the appendix contains three technical lemmas concerning Cauchy sequences (used
in Theorem 2.2), regularity (in Theorem 2.3), and the continuity of the infimum of a certain
group of continuous functions (in Theorem 3.1).

2 Existence

To prove existence of solutions, we construct sequences χn and ψn which solve PDEs ap-
proaching our PDE as n → ∞. Then we show that χn and ψn are Cauchy in the Sobolev
spaces Hk(B[r]) for all positive integers k and all r > 0. Sequences χn and ψn will therefore
converge to smooth solutions to the problem, χ and ψ.

Theorem 2.1. Given smooth, non-positive, compactly supported functions ω1 and ω2, there
exist sequences of functions χn and ψn and functions ψ+ and χ+ for which

(i) ψ0 = 1,

(ii) ∆χn · ψn = ω1 for each n,

(iii) ∆ψn+1 · χn = ω1 for each n,

(iv) ψn and χn are smooth functions for each n,
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(v) the sequence ψn is non-decreasing.

(vi) the sequence χn is non-increasing.

(vii) ψ+ and χ+ approach 1 at infinity,

(viii) 1 ≤ ψn ≤ ψ+ and 1 ≤ χn ≤ χ+,

(ix) ψ+ and χ+ are bounded above.

Proof. As ω1 and ω2 are continuous and compactly supported, they are also bounded. This
allows us to define χ+ = 1 − 1

4π

∫
R3

ω1(y)
‖y−x‖dy and ψ+ = 1 − 1

4π

∫
R3

ω2(y)
‖y−x‖dy. The integrands

are compactly supported and approach 0 for large x, thus χ+ and ψ+ approach 1 near
infinity. The functions χ+ and ψ+ are differentiable by the Leibniz rule, therefore they are
continuous. Their continuity and their boundary values imply that χ+ and ψ+ are bounded
above. Also, ψ+ ≥ 1 and χ+ ≥ 1, since ω1 and ω2 are non-positive. Note that ∆χ+ = ω1 and
∆ψ+ = ω2. We show that for each k there are partial sequences ψ0,ψ1,...,ψk+1 and χ0,χ1,...,χk
satisfying (i)-(ix). This will demonstrate the existence of non-terminating sequences ψn and
χn satisfying equations (i)-(ix).

Base case: Let ψ0 = 1. Let χ0 = χ+. Clearly 1 ≤ χ0 ≤ χ+, χ0 approaches 1 at infinity,
and χ0 is smooth. Since ∆χ0 = ω1, (i) is satisfied for n = 0. Let ψ1 be the smooth function
approaching 1 at infinity for which ∆ψ1 = ω2/χ0. Such a function exists because ω2/χ0

is bounded and compactly supported. This satisfies (ii) for n = 0. It is also smooth, and
1 ≤ ψ1 ≤ ψ+. Since

∆ψ1 = ω2/χ0 ≤ 0 = ∆ψ0

and
∆ψ1 ≥ ω2 = ∆ψ+

it follows from the weak maximum principle that

ψ0 ≤ ψ1 ≤ ψ+.

Inductive step: Assume that there exist finite sequences of smooth functions ψ0, ψ1,...,ψk
and χ0, χ1,...,χk−1 satisfying equations (i)-(ix). Because ω1/ψk+1 is bounded and compactly
supported, we may define χk as the smooth function approaching 1 at infinity and satisfying
∆χk = ω1/ψk. This function satisfies (ii) for n = k. Furthermore

∆χk = ω1/ψk ≥ ω1/ψk−1 = ∆χk−1

and
∆χk = ω1/ψk ≤ 0.

By the weak maximum principle

1 ≤ χk ≤ χk−1 ≤ χ+.
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The function ω2/χk is bounded and compactly supported. This allows us to define ψk+1 as
the smooth function approaching 1 at infinity and satisfying ∆ψk+1 = ω2/χk. This satisfies
(iii) for n = k. Furthermore

∆ψk+1 = ω1/χk ≤ ω2/χk−1 = ∆ψk

and

∆ψk+1 = ω1/χk ≥ ω1 = ∆ψ+.

By the weak maximum principle

1 ≤ ψk ≤ ψk+1 ≤ ψ+.

This completes our inductive proof.

Since ψn and χn are both bounded and monotonic sequences, they converge pointwise. In
order to prove that their pointwise limits satisfy the PDE, we need convergence in C2(B[r])
(with B[r] the closed ball of radius r centered about the origin) for any choice of r to move a
limit through the Laplacians in equations (ii) and (iii). By proving even stronger regularity
results for ψn and χn we will show that their limits, the functions solving the PDE, are in
fact smooth. We start by proving the base case of the induction proof that ψn and χn are
Cauchy sequences in all Hk and Ck spaces over balls.

Theorem 2.2. Let G1(x, y) = ω1(x)/y. Let G2(x, y) = ω2(x)/y. For all positive r, the
sequences ψn and χn are Cauchy in H2(B[r]) and C0(B[r]), and the sequences G1(x, ψn(x))
and G2(x, χn) are Cauchy in L2(B[r]).

Proof. Let r > 0. Recall that ω1 and ω2 are bounded. Since χn and ψn are bounded below
by 1, ∆χn = ω1/ψn and ∆ψn = ω2/χn−1 are uniformly pointwise bounded, and therefore
uniformly bounded in L2(B[r + 2]). By the Elliptic Regularity Theorem there exists a
constant C such that

‖ψn‖H2(B[r+1]) ≤ C(‖∆ψn‖L2(B[r+2]) + ‖ψn‖L2(B[r+2])).

It follows that the uniform boundedness of ψn and ∆ψn in L2(B[r+ 2]) implies the uniform
boundedness of the sequence ψn in H2(B[r+1]). The Rellich Lemma asserts the existence of a
subsequence ψnk

which converges in H1(B[r+1]) and, in particular, is Cauchy in L2(B[r+1]).
Since the sequence ψn is monotonic and has a Cauchy subsequence in L2(B[r+ 1]), ψn itself
is Cauchy in L2(B[r + 1]). In case this fact is not obvious, it is proven in Lemma 4.1.

Let ψ++ be an upper bound on ψ+ (and let χ++ be an upper bound on χ+). The partial
derivatives of G1 in y are continuous. Because the set B[r] × [1, ψ++] is compact we may
define C ′ = maxB[r]×[1,ψ++] | ∂∂yG1(x, y)|. The Mean Value Theorem then shows

|G1(x, ψm(x))−G1(x, ψl(x))| ≤ C ′|ψm(x)− ψl(x)|.
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Changing this into a statement about norm,

‖G1(x, ψm(x))−G1(x, ψl(x)‖L2(B[r+1]) ≤ C ′‖ψ(x)m − ψ(x)l‖L2(B[r+1]).

Because ψn is Cauchy in L2(B[r + 1]), G1(x, ψn(x)) = ∆χn is Cauchy in L2(B[r + 1]). A
similar argument shows G2(x, χn−1) = ∆ψn is Cauchy in L2(B[r + 1]). By the Elliptic
Regularity Theorem, there is a constant C for which

‖ψm − ψl‖H2(B[r]) ≤ C ′′(‖∆ψm −∆ψl‖L2(B[r+1]) + ‖ψm − ψl‖L2(B[r+1])).

Because ∆ψn and ψn are Cauchy in L2(B[r + 1]), ψn is Cauchy in H2(B[r]). A similar
argument shows χn is Cauchy in H2(B[r]). The Sobolev Embedding Theorem then implies
that ψn and χn are Cauchy under C0(B[r]) norm.

Now comes the induction proof.

Theorem 2.3. For all integers k ≥ 0 and all r > 0, ψn and χn are Cauchy in Hk(B[r]).

Proof. We apply a bootstrap argument to show that ψn and χn are Cauchy in Ck(B[r]) and
Hk(B[r]) for all non-negative integers k and all r > 0. Let r > 0.

Base Case: By Theorem 2.2, ψn and χn are Cauchy in C0(B[r]) and H2(B[r]), G1(x, ψn)
and G2(x, χn) are Cauchy in H0(B[r]) for all positive r.

Inductive Step: Assume ψn and χn are Cauchy in Ck(B[r + 1]) and Hk+2(B[r + 1]) for
all r > 0. The sequence ψn is bounded between the constants 1 and ψ++, and the sequence
χn is bounded between the constants 1 and χ++. The sequences are clearly also Cauchy in
Hk+1(B[r + 1]). From Lemma 4.2 in the appendix it follows that G1(x, ψn) and G2(x, χn)
are Cauchy in Hk+1(B[r + 1]). Therefore ∆χn = G1(x, ψn) and ∆ψn = G2(x, χn) must be
Cauchy in Hk+2(B[r+ 1]). By the Elliptic Regularity Theorem, there exists a C ′′′ for which

‖ψm − ψl‖Hk+3(B[r]) ≤ C ′′′(‖∆ψm −∆ψl‖Hk+1(B[r+1]) + ‖ψm − ψl‖L2(B[r+1]))

It follows that ψn must be Cauchy in Hk+3(B[r]). The Sobolev Embedding Theorem implies
ψn and χn are Cauchy in Ck+1(B[r]). The principle of induction gives us, in particular, that
ψn and χn are Cauchy in Ck+2(B[r]) for all non-negative integers k.

Theorem 2.4. There exist smooth solutions to (5).

Proof. The following remarks hold for any positive r and any non-negative integers k. By
Theorem 2.3, ψn and χn are Cauchy in Hk+2(B[r]). As the Sobolev spaces are complete, ψn
and χn converge in Hk+2(B[r]) for any r and k. By the Sobolev Embedding Theorem, the
limits ψ∗ and χ∗ are elements of Ck(B[r]) and the sequences converge to these functions in
Ck(B[r]). Because this applies for all positive integers k, ψ∗ and χ∗ must be smooth. Taking
the pointwise limit of equations(ii) and (iii) gives

∆χ∗ · ψ∗ = ω1
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∆ψ∗ · χ∗ = ω2

Moving the limit through the product is possible since ψn, χn ∈ C0(B[r]) for all r. Moving
the limit through the laplacians is possible because convergence of χn and ψn occurs in
C2(B[r]). Also, these equations work for all x because each x is a member of some closed
ball centered around the origin. It is only left show that ψ∗ and χ∗ satisfy the boundary
condition. Since, for all n, 1 ≤ ψn ≤ ψ+ and 1 ≤ χn ≤ χ+ it follows that 1 ≤ ψ∗ ≤ ψ+ and
1 ≤ χ∗ ≤ χ+. The functions 1, ψ+, and χ+ all approach 1 at infinity, thus ψ∗ and χ∗ must
also approach 1 at infinity.

3 Uniqueness

We assume the existence of two distinct solutions to the problem, then modify them to
produce a family of solutions to a related system of equations. We show that there must be
members of this family with positive minimums, which yields a contradiction.

Theorem 3.1. Solutions to (5) are unique.

Proof. Assume that two distinct solutions to the problem exist. More explicitly, assume

∆χ1 · ψ1 = ω1 = ∆χ2 · ψ2 (6)

and
∆ψ1 · χ1 = ω2 = ∆ψ2 · χ2 (7)

where χ1, ψ1 and χ2, ψ2 satisfy the problem conditions and χ1 6≡ χ2 or ψ1 6≡ ψ2. It is easily
seen that χ1 ≡ χ2 implies ψ1 ≡ ψ2 and vice-versa. Therefore χ1 6≡ χ2 if and only if ψ1 6≡ ψ2.
From the assumptions that χ1 and ψ2 are positive while ω1 and ω2 are non-positive, it follows
that ∆ψ1 ≤ 0 and ∆χ2 ≤ 0, which implies ψ1 ≥ 1 and χ2 ≥ 1.

Subtracting the far right side of the above equations from the far left gives

∆(χ1 − χ2)ψ1 + ∆χ2(ψ1 − ψ2) = 0

∆ψ1(χ1 − χ2) + ∆(ψ1 − ψ2)χ2 = 0

We set v = χ1 − χ2 and w = ψ1 − ψ2 getting

∆v · ψ1 + ∆χ2 · w = 0 (8)

∆w · χ2 + ∆ψ1 · v = 0 (9)

It must also be true that

∆v(ψ1 + kw) + ∆(χ2 − kv)w = 0 (10)

∆w(χ2 − kv) + ∆(ψ1 + kw)v = 0 (11)



RHIT Undergrad. Math. J., Vol. 18, No. 1 Page 187

for any real k. The functions infx∈R3(χ2 − kv) and infx∈R3(ψ1 + kw) are continuous in k,
by Lemma 4.3. Therefore, min(infx∈R3(χ2 − kv), infx∈R3(ψ1 + kw)) is also continuous in k.
Evaluated at k = 0, min(infx∈R3(χ2 − kv), infx∈R3(ψ1 + kw)) > 1/2. Since v 6≡ 0 there
exists a k ∈ R at which min(infx∈R3(χ2 − kv), infx∈R3(ψ1 + kw)) < 1/2. It follows from the
Intermediate Value Theorem that there exists a k∗ at which

min( inf
x∈R3

(χ2 − k∗v), inf
x∈R3

(ψ1 + k∗w)) = 1/2.

In particular, both χ2 − k∗v > 0 and χ2 + k∗w > 0, and there exists a point p at which
χ2(p)− k∗v(p) < 1 or ψ1(p) + k∗w(p) < 1.

We present the argument in the case where the first inequality holds. The other case
may be treated similarly. At some point q ∈ R3, ∆(χ2 − k∗v)(q) > 0, because otherwise the
weak maximum principle implies that χ2−k∗v ≥ 1 everywhere. Because ∆(χ2−k∗v)(q) > 0
yet ∆χ2 ≤ 0, it follows that k∗∆v(q) < 0. Multiplying (10) by k∗ gives

(k∗∆v)(ψ1 + k∗w) + ∆(χ2 − k∗v)(k∗w) = 0

Since k∗∆v(q) < 0, (ψ1 + k∗w)(q) > 0, and ∆(χ2 − k∗v)(q) > 0, it follows that k∗w(q) > 0.
Multiplying (8) by k∗ gives

k∗∆v · ψ1 + ∆χ2 · k∗w = 0

But plugging k∗∆v(q) < 0, ψ1 > 0, ∆χ2 ≤ 0 and k∗w(q) > 0 into (9) shows 0 < 0, a
contradiction.

The assumed statement, that χ1 6≡ χ2 or ψ1 6≡ ψ2, is false. Solutions to PDE problem
(5) are unique.

4 Appendix

This section contains proofs of three technical lemmas referenced in the paper.

Lemma 4.1. If the sequence of functions fn is monotonic (weakly), and has a subsequence
fnk

Cauchy in L2(B[r]), then fn is Cauchy in L2(B[r]).

Proof. Assume for simplicity that fn is non-decreasing. Let ε > 0. Let K1 be a number
such that for any j, k ≥ K1, ‖fnj

− fnk
‖L2(B[r+1]) < ε. Then for l,m > nK1 there is a K2 for

which nK1 < l,m < nK2 . It follows from the monotonicity of fn that fnK1
≤ fl, fm ≤ fnK2

.
Therefore

‖fm − fl‖L2(B[r+1]) < ‖fmK2
− fmK1

‖L2(B[r+1]) < ε.

Lemma 4.2. If the sequence of functions fn is bounded between constants a and b, is Cauchy
in Ck(B[r]) and Hk+1(B[r]) for some k ≥ 0, and G(x, y) is a smooth function whose argu-
ments are in R3 and R, respectively, then G(x, fn(x)) is Cauchy in Hk+1(B[r]).
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Proof. Let α be a multiset representing derivatives with respect to x for which |α| ≤ k+1. It
suffices to show that DαG(x, fn(x)) is Cauchy in L2(B[r]). By the product rule, the function
DαG(x, fn(x)) is a sum of terms of the form

DXDYG|(x,fn(x)) ·Dβfn

where X and Y represent derivatives of the first and second components of G respectively,
β is a multi-index for which β = (β1, β2, ..., β|Y |) and Dβψn = Dβ1ψn ·Dβ2ψn · ... ·Dβ|Y |ψn,

|X|+ |Y | ≤ k+ 1 and
∑|Y |

i=1 |βi| ≤ k+ 1. Therefore it is enough to show that such terms are
Cauchy in L2(B[r]).

The term is of the form DXDYG|(x,fn(x)) ·Dβfn. The smoothness of G allows us to define
C ′′′ = maxB[r]×[a,b]

∂
∂y
DXDYG. By the Mean Value Theorem

DXDYG|(x,fm(x)) −DXDYG|(x,fl(x)) ≤ C ′′′(fm(x)− fl(x)).

Now DXDYG|(x,fn(x)) is Cauchy in C0(B[r]) since fn is Cauchy in C0(B[r]).

Case 1: |Y | 6= 1. The term has either no derivatives of fn or multiple derivatives of fn
in its product. Crucially, for each βi, |βi| ≤ k and Dβifn ∈ C0(B[r]) since fn ∈ Ck(B[r]).
For reasons mentioned above DXDYG|(x,fn) is also Cauchy in C0(B[r]). It follows that
DXDYG|(x,fn(x)) ·Dβ1fn · ... ·Dβ|Y |fn is Cauchy in C0(B[r]), therefore Cauchy in L2(B[r]).

Case 2: |Y | = 1. In this case it is more difficult to prove that the term is Cauchy, since
it could include a partial derivative of fn of order k + 1. Our previous argument would fail
because fn is not necessarily in Ck+1(B[r]).

Dβfn is Cauchy in L2(B[r]) because |β| ≤ k + 1 and fn is Cauchy in Hk+1(B[r]). Now,
since

DXDYG|(x,fm(x)) ·Dβ|fm −DXDYG|(x,fl(x)) ·D
βfl

= (DXDYG|(x,fm(x)) −DXDYG|(x,fl)) ·D
βfm

+DXDYG|(x,fl(x)) · (D
βfm −Dβfl),

the fact that DXDYG|(x,fn(x)) is Cauchy (and thus bounded) in C0(B[r]) and Dβfn is Cauchy
(and thus bounded) in L2(B[r]) implies DXDYG|(x,fl(x)) ·Dβfn is Cauchy in L2(B[r]).

Lemma 4.3. Let f be some function which is bounded below. Let g be some bounded function.
Then inf(f − kg) is a continuous function of k.

Proof.

inf((k2 − k1)g) ≤ inf(f − k1g)− inf(f − k2g) ≤ sup((k2 − k1)g)

As g is bounded, the function (k2 − k1)g can be made arbitrarily close to zero by choosing
a sufficiently small (k2 − k1). Thus inf(f − kg) is a continuous function of k.
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