Rose-Hulman Undergraduate Mathematics Journal

Volume 3

Issue T Article 5

Iterated Perpendicular Constructions from Interior Points on N-
gons

Ivan Corwin
Arlington HS, Poughkeepsie, NY, icorwin@idsi.net

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj

Recommended Citation

Corwin, Ivan (2002) "lterated Perpendicular Constructions from Interior Points on N-gons," Rose-Hulman
Undergraduate Mathematics Journal: Vol. 3 :1ss. 1, Article 5.

Available at: https://scholar.rose-hulman.edu/rhumj/vol3/iss1/5


https://scholar.rose-hulman.edu/rhumj
https://scholar.rose-hulman.edu/rhumj/vol3
https://scholar.rose-hulman.edu/rhumj/vol3/iss1
https://scholar.rose-hulman.edu/rhumj/vol3/iss1/5
https://scholar.rose-hulman.edu/rhumj?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol3%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/rhumj/vol3/iss1/5?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol3%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages

Iterated Perpendicular Constructions from Interior Points on N-gons Ivan Corwin
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lvan Corwin

Arlington High School

Two years ago | came across a very beautiful geometric construction (Figure 1), on atee-shirt |
received from the Upstate New Y ork math team. Written on the shirt was a surprising result of iterating
acertain construction multiple times. The coaches told me that the proof for the result which they had
was very long and very complex. Such abeautiful problem deserves a beautiful answer. So, | came up
with avery nice proof which took less than a minute to present to the team the following year. Since
then | have delved further into the construction, arriving at some very interesting results. This paper
proves some of those results which arise from iterating the geometric construction. For the purpose of
this paper P(n,x) will denote a polygon with n sides (an n-gon) after iterating the construction x times.
By iterating the construction | mean taking the resulting polygon created by a construction and applying

the construction to that resulting polygon.
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Figure 1

Figure 2

D,

The construction: Convex quadrilateral AjBoCoDy is given, and apoint P is placed in the interior of
AoBoCoDg such that perpendiculars can be drawn to all sides. From point P to the four sides of
quadrilateral AoBoCoDo lines perpendicular to the sides are drawn. The intersection points with the sides
of AgBoCoDy are labeled Aq, B1, Cy, D1, and are connected to form quadrilateral A;B,C;D; (Figure 1).
The same process using interior point P is repeated now with quadrilateral A;B;C,D; to form

quadrilateral A;B,C,D,. After twice repeating the construction, A;B,C4D, is created (Figure 2).



Iterated Perpendicular Constructions from Interior Points on N-gons Ivan Corwin

Now that we understand the construction and iteration process, we can investigate some

interesting results.

Theorem 1: Theinitial quadrilateral AjBoCoDo has equal anglesto quadrilateral A;B4C4Da.

First we will look at quadrilateral D1A0A:P. Observe that this quadrilateral is cyclic (Figure 2
provides a proof of this and an explanation for cyclic quadrilaterals is found below).

A quadrilateral which iscyclic can be
inscribed in acircle. A quadrilateral iscyclicif
opposite angles sum to 180 degrees. Since
segment PD; is perpendicular to segment AgD,
and since segment PA; is perpendicular to
segment AoA;, quadrilateral ApA;PD; iscyclic (as

shown in figure 3).

Figure 3

Without loss of generalization we will just be dealing with [0BpADy, of theinitial quadrilateral.
S0, OBpAsDy is composed of two angles which are [1ByAoP and [IDpAP. Now, since D1AAP isa
cyclic quadrilateral, it has the property that [1A;AqP (which can also be called [IByAP) = OA;D,P. This
occurs because both angles subtend the same arc and both have vertices which lie on the circle's
circumference. This showswhy [0BoAGP of theinitial quadrilateral is equal to [JA;D1P of the first
constructed quadrilateral. The same argument shows that [1D;AqP (which can aso be called O0DyAP) =
UD1AP.

Now, we apply the same reasoning for quadrilateral A;B,;C,D; and for each subsequently formed

quadrilateral. If welook at how a given angle from theinitial quadrilateral moves to each subsequently
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formed quadrilateral we see that [1DpAP = [ID;A1P = TOD,AP = OD3AsP = OD4AP. The same
appliesfor CIBoAP = OA1D,P = [OD,C,P = OC3B3P = OB4A4P. Thebasic idea hereisthat the angles
which constitute the initial angle [1BsA(Do move around the subsequently formed quadrilaterals and
come back together after four constructionsto form 00BsA4D4. Had we chosen any other initial angle,

the same result would hold. Since each angle which isin theinitial quadrilateral isreformed in the

fourth construction, and since the angles are in the same order, the quadrilaterals are similar. Therefore,

AoBoCoDy has congruent anglesto A4B4sC4Dg4. [

Figure 3

Theorem 2: An initial polygon with n sides, denoted as P(n,o), has equal anglesto the polygon
P(n,n) which iscreated by iterating the previously discussed construction n times. Thiscan bealso
written as polygon AoB¢Co.....Zo..... has equal angles as polygon A,B.C.....Zn.....

The proof for Theorem 2 follows in the same manner as Theorem 1's proof. Every anglein the
initial quadrilateral, P(n,p), are divided into two angles by the segment from the point P to the vertex of

the quadrilateral. Like inthe quadrilateral, the perpendiculars which are extended to each side of the
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polygon create cyclic quadrilaterals. In the same manner as with the quadrilateral, the two angles which
constituted the initial polygon’s angle, move in opposite directions around each subsequently formed
polygon through each construction. In the quadrilateral there were eight different anglesin each
guadrilateral (each of the quadrilateral’ s angles was split by the segment to P). Generadly there are twice
as many angles of that manner as there are sides. So, since there are 2n positions for angles, and each of
the two angles moves through one position every time the construction is iterated, it takes n iterations of
the construction until the split angles reform to create the same angle as theinitial polygon had. This

holds true for each set of two angles, and therefore all of the polygon’s angles, after n iterated
construction, will be the same asthe initial polygon’sangles. Thisimpliesthat the two polygons have

egual angles or that P(n,p) has equal angles as P(n,).

Now that we have examined the angles which result from iterative constructions, we should look
at the side lengths.

Theorem 3: Theratio of thelength of a given side of P(n,o) to the length of the analogous side of
P(n,n) isconstant and equal to the product of the sin’s of each angle in polygon P(n,o), or
sin(JBoAoP) x Sin(LJCoBoP) X ...... X SiN(OZpYoP) X ......

Let ustake any edge of P(n,0), say AoBo. That isaside of the triangle AoBoP, formed by
connecting points Ap and By to point P. Triangle AoBoP is similar to triangle A.B,P because they contain
the same angles(this is sufficient to show similarity for triangles). So, it is sufficient to find the ratio,
which we will call r, of any side of triangle AqBoP to the similar side on triangle A,B,P. Sincetheratio
of the length of segment ByP to the length of segment B,P is equal to r (the two lengths are in the similar

triangles), triangle BoCoP is not only similar to triangle BoCoP, but aso has the same ratio r asthe first
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triangle. Using the same argument, it can be shown that the ratio of the length of any given side of
P(n,o) to the analogous side in P(n,,) isthe same, and isequal tor.

With out loss of generality, we can now select segment AgP from triangle AoBoP. That segment
is the hypotenuse of the right triangle AjA1P. So, the product of the length of segment AP and the sin of
angle BoAgP is, by right triangle trigonometry, the length of segment A;P. Now we can apply the same
ideafor P(n,;), or the first constructed polygon. Segment A;P is the hypotenuse of the right triangle
A1AP. So, the product of the length of segment A;P and the sin of angle B1A;P is, by right triangle
trigonometry, the length of segment A,P. This continues until the length of segment AP isarrived at.
That length will be equal to A..1P X sin(Bn.1An-1P). Observe that for agiven iteration i, the length of
segment AP is Ai.1P x sin(B;.1Ai.1P). So, working backward for A,P we see that the length of segment
AP = AgP x Sin(BpAoP) X Sin(B1A:1P) X ..... X SIN(B.1A-1P). Also we know that [ B;A;P isequal to
(0CoBoP. This pattern continues and [1B,A:P = [1DoCoP and so on. So, by substituting in the
equivaent angles from P(n,p) into the equation for the length of segment AP, we find that the segment’s
length is AgP x Sin(BoAgP) X SIN(CoBoP) X ..... X SIN(ZoYoP) X...... Therefore, the ratio of the length of a
given side of P(n,o) to the length of the analogous side of P(n,) is equal to the product of the sin’s of

each angle in polygon P(n,g), or sin({LJBpAP) X Sin(LJCoBgP) X ...... X Sin([JZpYoP) X ......

Coroallary 1: P(n,o) ~ P(n,y), or theinitial polygon issimilar to the polygon which is created by
iterating the given construction n times.

Theorem 2 proves that all anglesin the two polygons are equal and in the same order and Theorem 3
proves that the ratio between lengths of al the analogous sides of the polygonsis equal.

The next question to ask is about the orientation of polygon P(n,).
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Theorem 4: The polygon P(n,,) hasrotated 90n - OBpAP - OCoBoP - .... - 0ZoYoP -.... degrees
around P, from polygon P(n,).

We will first see that this holds true for our original quadrilateral where n=4. It sufficesfor the
proof to show that a single segment, say segment AgP rotates the given degree amount, because each
other segment rotates the same amount. So, segment AoP initially rotates through C1A(PA; until it lieson
segment AjP. Sincetriangle AcA1P isaright triangle APA; is equal to 90°-0A; AP = 90° - [IBoAP
(we get this by extending the end point from A; to Bg). Now, we continue for segment A;P, which
rotates 90° - [1B;A;P until it lies on segment A,P. Segment A,P rotates a measure of 90° - [1B,A:P until
segment AgP, which then rotates an additional measure of 90° - [1B3AsP. So, the segment AgP rotated a
total angle of 90° - [1ByAGP + 90° - [IB1A1P + 90° - [IB,AP + 90° - [IB3AsP. Lastly, using the same
angle substitution as Theorem 3 used, [1B;A1P = OCoBoP, and [1B,A;P = [1DoCoP, and B3AsP =
OADoP. So, the angle which segment AP isrotated is actually 360° - [1BoAgP - 1CoBoP - [(IDoCoP -
UADoP.

For P(n,), there are n different rotations which segment AoP goes through until it reaches A,P.
Asfor the quadrilateral, the total rotation is 90° - 0BgAP + 90° - [IB1A1P +.....+ 90° - OB.1AN1P.
Using the same angle substitution as used above and as used in Theorem 3, this total rotation is equal to

90Nn° - LIBpAP - UCoBoP -....- UZpYoP-.....
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