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THREE TERM IDENTITIES FOR THE

COEFFICIENTS OF CERTAIN INFINITE PRODUCTS

wei ren

1. Introduction

Let N be an integer. For non-negative integers n, let PN (n) be the coefficients of the
series defined by

∞∏
n=1

1
(1− qn)N

=
∞∑
n=0

PN (n)qn.

and let PN(r) = 0 for a rational number r not equal to any non-negative integer.
Recently Farkas and Kra presented five three-term identities for the coefficients PN(n).

Theorem 1[F-K]. For all non-negative integers n, we have

P−24(2n + 1) = −211P−24

(
n− 1
2

)
− 23 · 3P−24(n),(1.1)

P−12(3n + 1) = −35P−12

(
n − 1
3

)
− 22 · 3P−12(n),(1.2)

P−6(5n + 1) = −52P−6

(
n − 1
5

)
− 2 · 3P−6(n),(1.3)

P−4(7n + 1) = −7P−4

(
n − 1
7

)
− 22P−4(n),(1.4)

P−2(13n + 1) = −P−2

(
n − 1
13

)
− 2P−2(n).(1.5)

Also in the paper, Farkas and Kra mentioned that Mordell [M] proved that for all primes
l and all positive integers n, we have

(1.6) P−24(ln − 1) = P−24(l − 1)P−24(n − 1)− l11P−24

(n

l
− 1

)
.

It is clear that (1.1) is a special case of (1.6) with l = 2 and n replaced by n + 1. The
authors state that “it is not at all clear whether (1.2), (1.3), (1.4) and (1.5) are also special
cases of more general identities.” The purpose of this paper is to show that each of the
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2 WEI REN

above-mentioned three-term identities is just one of an infinite family of identities. Recall
that

(
a
p

)
is the Legendre symbol defined for primes p and integers a as follows:

(
a

p

)
=




1 if a is a quadratic residue mod p and p � a,

0 if p | a,

−1 otherwise.

Our main result is

Theorem 2. For all primes l and all positive integers n, we have

P−12

(
ln − 1

2

)
= P−12

(
l − 1
2

)
P−12

(
n − 1
2

)
−
(
4
l

)
l5P−12

( n
l − 1
2

)
,(1.7)

P−6

(
ln − 1

4

)
= P−6

(
l − 1
4

)
P−6

(
n − 1
4

)
−
(−4

l

)
l2P−6

( n
l − 1
4

)
,(1.8)

P−4

(
ln − 1

6

)
= P−4

(
l − 1
6

)
P−4

(
n − 1
6

)
−
(
36
l

)
lP−4

( n
l − 1
6

)
,(1.9)

P−2

(
ln − 1
12

)
= P−2

(
l − 1
12

)
P−2

(
n − 1
12

)
−
(−36

l

)
P−2

( n
l − 1
12

)
.(1.10)

From Theorem 2, it follows that
(i) our technique also gives a proof of (1.6),
(ii) the statements in (1.2)-(1.5) are all special cases of Theorem 2. For example, if we

let l = 5 and replace n with 4n + 1 in (1.8), we get (1.3).
The next corollary follows from Theorem 2.

Corollary 1. For all primes l and all positive integers n,

if l �≡ 1 (mod 4), then P−6

(
ln − 1

4

)
= −

(−4
l

)
l2P−6

( n
l − 1
4

)
,

if l �≡ 1 (mod 6), then P−4

(
ln − 1

6

)
= −

(
36
l

)
lP−4

( n
l − 1
6

)
,

if l �≡ 1 (mod 12), then P−2

(
ln − 1
12

)
= −

(−36
l

)
P−2

( n
l − 1
12

)
.

2. Preliminaries

We now briefly introduce modular forms. For complete details, see [K]. Let H denote
the upper half of the complex plane, H := {z ∈ C | Im z > 0} . The set SL2(Z) is defined as

SL2(Z) :=
{(

a b
c d

)
| ad− bc = 1; a, b, c, d ∈ Z

}
and is sometimes denoted by Γ. Let N be

a positive integer. One important subgroup of SL2(Z) is

Γ0(N) :=
{(

a b
c d

)
∈ Γ | c ≡ 0 (mod N)

}
.
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Given an element γ =
(

a b

c d

)
∈ SL2(Z), we define the following transformation for z ∈ H:

γz := az+b
cz+d .

Let f be a holomorphic function on the upper half-plane H, and let k be an integer. If γ
is a 2 × 2 matrix with rational entries and positive determinant, then we define f(z) | [γ]k
as

f(z) | [γ]k := (detγ)k/2(cz + d)−kf(γz).

It is easy to verify that

(2.1) f(z) | [γ1γ2]k = (f(z) | [γ1]k) | [γ2]k.

Let f(z) be a holomorphic function on H. Let k be an integer and N be a positive integer.
Recall that a Dirichlet character mod N is a function χ(n) : Z → C, not identically zero,
which satisfies, for all integers n and m,

(i) χ(n) = χ(m) if n ≡ m (mod N),
(ii) χ(n) = 0 if gcd(n,N) > 1,
(iii) χ(nm) = χ(n)χ(m).
Let χ be a Dirichlet character mod N . Then f(z) is called a modular form of weight k

for Γ0(N) with character χ if

(2.2) f(z) | [γ]k = χ(d)f(z) for all γ =
(

a b
c d

)
∈ Γ0(N),

and if for any γ0 ∈ Γ,

(2.3) f(z) | [γ0]k has a Fourier expansion of the form
∞∑

n=0

a(n)qnN , where qN := e2πiz/N .

A modular form f(z) is called a cusp form if in addition we have

(2.4) a(0) = 0 in (2.3) for all γ0 ∈ Γ.

The set of such modular forms is denoted Mk(Γ0(N), χ), and the set of cusp forms is denoted
Sk(Γ0(N), χ). Every modular form has a Fourier expansion at infinity,

f(z) =
∞∑
n=0

a(n)qn, where q := e2πiz.

We will identify f with its expansion.
Note that the conditions (2.2), (2.3) and (2.4) are preserved under addition and scalar

multiplication, so the sets of modular forms and the sets of cusp-forms of fixed weight,
character and N are complex vector spaces.
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Another important ingredient in our study are the Hecke operators. For each space
Mk(Γ0(N), χ), there exists a family of Hecke operators T (p), one operator for each prime p.
These are linear operators which preserve the space of cusp forms:
(2.5) T (p) : Sk(Γ0(N), χ) → Sk(Γ0(N), χ).

They can be defined explicitly as follows: If f(z) =
∑∞

n=0 a(n)qn ∈ Mk(Γ0(N), χ), then

f(z) | T (p) :=
∞∑

n=0

(a(pn) + χ(p)pk−1a(n/p))qn, where a(n/p) = 0 if p � n.

A modular form f(z) is called a primitive eigenform if for every prime p, there exists a scalar
λp such that

(2.6) f(z) | T (p) = λpf(z).
3. Proof of Theorem 2

We first establish the relationship between the coefficients of modular forms and the
coefficients of the functions PN(n). We will use Dedekind’s η-function,

η(z) = q
1
24

∞∏
n=1

(1− qn), q = e2πiz.

For positive integers n, define integers a(n), b(n), c(n) and d(n) by
∞∑

n=1

a(n)qn := η12(2z) = q

∞∏
n=1

(1− q2n)12 = q − 12q3 + 54q5 − 88q7 − 99q9 + · · · ,

∞∑
n=1

b(n)qn := η6(4z) = q

∞∏
n=1

(1− q4n)6 = q − 6q5 + 9q9 + 10q13 − 30q17 + · · · ,

∞∑
n=1

c(n)qn := η4(6z) = q

∞∏
n=1

(1− q6n)4 = q − 4q7 + 2q13 + 8q19 − 5q25 + · · · ,

∞∑
n=1

d(n)qn := η2(12z) = q
∞∏
n=1

(1− q12n)2 = q − 2q13 − q25 + 2q37 + q49 + · · · .

We now state a Theorem that implies Theorem 2.

Theorem 3. For all primes l and positive integers n, we have

a(ln) = a(l)a(n)− l5
(
4
l

)
a
(n

l

)
,(3.1)

b(ln) = b(l)b(n)− l2
(−4

l

)
b
(n

l

)
,(3.2)

c(ln) = c(l)c(n)− l

(
36
l

)
c
(n

l

)
,(3.3)

d(ln) = d(l)d(n)−
(−36

l

)
d
(n

l

)
.(3.4)

The following Lemma shows that Theorem 3 implies Theorem 2.
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Lemma 1. For all positive integers n, we have

a(n) = P−12

(
n − 1
2

)
,

b(n) = P−6

(
n − 1
4

)
,

c(n) = P−4

(
n − 1
6

)
,

d(n) = P−2

(
n − 1
12

)
.

Proof of Lemma 1. By the definitions of PN(n) and a(n), we have

η12(2z) = q

∞∏
n=1

(1− q2n)12 = q

∞∑
n=0

P−12(n)q2n =
∞∑

n=1

a(n)qn.

Therefore, we get a(n) = P−12
(
n−1
2

)
. The same technique can be applied to η6(4z), η4(6z)

and η2(12z) and the other three statements in Lemma 1 can be proved similarly. �

We now define a family of characters which will be used in our proofs. If 4 | N , then
define χN by

χN(d) :=

{
(−1) d−1

2 if gcd(d,N) = 1,
0 if gcd(d,N) �= 1.

We also define the trivial character mod N as the following:

χtriv
N (d) :=

{
1 if gcd(d,N) = 1,
0 if gcd(d,N) �= 1.

Clearly, χN (as well as χtriv
N ) is a Dirichlet character mod N .

To prove Theorem 3, we need the following two Lemmas:

Lemma 2.
η12(2z) ∈ S6

(
Γ0(4), χtriv

4
)
,

η6(4z) ∈ S3 (Γ0(16), χ16) ,

η4(6z) ∈ S2
(
Γ0(36), χtriv

36
)
,

η2(12z) ∈ S1 (Γ0(144), χ144) .
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Lemma 3. All four functions in Lemma 2 are primitive eigenforms.

Proof of Lemma 2. Let f(z) = η6(4z). By the definition of cusp-forms, we have to show
that with N = 16 and χ = χ16, the statements in (2.2), (2.3) and (2.4) hold. We will use
the famous transformation formula for the η-function: (see, for example, [D-K-M] or [R]):

If γ =
(

a b
c d

)
∈ SL2(Z), and c is positive, then η (γz) = ε(a, b, c, d)(cz + d)1/2η(z),

where ε(a, b, c, d) :=
{ ± exp

( 2πi
24 (−3c − bd(c2 − 1) + c(a + d))

)
if c is odd,

± exp
( 2πi

24 (3d− 3− ac(d2 − 1) + d(b − c))
)

if d is odd.

We remark that in the definition of ε, ± is explicitly determined, but the value is not
important for our purpose.

Suppose γ =
(

a b
c d

)
∈ Γ0(16), and c > 0. Then d is odd, and we have

(3.5)

f(γz) = η6(4γz)

= η6
(

a · 4z + 4b
(c/4)(4z) + d

)
= ε6(a, 4b, c/4, d)(cz + d)3η6(4z),

where

(3.6) ε6(a, 4b, c/4, d) = exp
(

πi

2
(3d− 3− c/4 · a(d2 − 1) + 4b · d − d · c/4)

)
= (−1) d−1

2

That is, we get ε6(a, 4b, c/4, d) = χ16(d). Using (3.5) and (3.6), we have verified (2.2) when
c > 0:

(3.7) if γ =
(

a b
c d

)
∈ Γ0(16), then f(z) | [γ]3 = χ16(d)f(z).

Note that we still need to consider the cases when c = 0 and c < 0. If c = 0, then a = d = ±1.
Therefore, (3.7) still holds.

If γ =
(

a b

c d

)
∈ Γ0(N) and c < 0, then by (2.1) and (3.7) we have

(
f(z) |

(−1 0
0 −1

)
3

)
| [γ]3 = f(z) |

(−a −b
−c −d

)
3

= χ16(−d)f(z)

= −χ16(d)f(z).

While on the other hand, we also have

f(z) |
(−1 0

0 −1
)

3
= −f(z).
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Therefore, we proved that f(z) | [γ]3 = χ16(d)f(z) holds for all matrices γ ∈ Γ0(16).

Next we have to check conditions in (2.3) and (2.4). Let g(z) = η6(z). So we have

f(z) = g(4z) =
1

43/2
· g(z) |

(
4 0
0 1

)
3
.

Then for γ0 =
(

a0 b0
c0 d0

)
∈ SL2(Z), where as above we may assume c0 > 0, the identity (2.1)

gives

f(z) | [γ0]3 = 1
8

(
g(z) |

(
4 0
0 1

)
3

)
| [γ0]3

=
1
8
· g(z) |

(
4a0 4b0
c0 d0

)
3
.

To find the Fourier expansion of f(z) | [γ0]3, we first prove that there exist positive integers
A, D and an integer B, such that

(3.8) γ :=
(
4a0 4b0
c0 d0

)(
A B
0 D

)−1

∈ SL2(Z).

By multiplying out, we get

γ =
(
4a0/A (4b0A− 4a0B)/AD
c0/A (d0A− c0B)/AD

)
.

Let A = gcd(c0, 4) and D = 4/A, then A,D ∈ Z+ and AD = 4, so

γ =
(

a0D b0A − a0B
c0/A (d0A − c0B)/4

)
,

and det γ = 1. Also it is clear that c0/A, the lower-left entry of γ, is an integer. Now
we show that the there exists B such that the lower-right entry is also an integer. Since
A = gcd(c0, 4), we have gcd(c0/A, 4/A) = 1. Thus there is a solution to the congruence
(c0/A)x ≡ d0 (mod 4/A). So there exists B ∈ Z such that (d0A − c0B) /4 ∈ Z. This shows
that matrices as in (3.8) exist. Let γ =

(
a b

c d

)
. Note that since c0 > 0, we have c > 0. Then
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we have

f(z) | [γ0]3 = 1
8
· g(z) |

(
4a0 4b0
c0 d0

)
3

=
1
8
(g | [γ]3) |

(
A B
0 D

)
3

=
1
8
(
η6(γz)(cz + d)−3) | (A B

0 D

)
3

=
1
8
ε(a, b, c, d)6

(
η6(z) |

(
A B
0 D

)
3

)

=
1
8
ε(a, b, c, d)6

(
43/2D−3η6

(
Az + B

D

))

= M · η6
(

Az + B

D

)
where M =

1
8
ε(a, b, c, d)643/2D−3

= M ·
(
e2πi

Az+B
D

)1/4 ∞∏
n=1

(1−
(
e2πi

Az+B
D

)n

)6

= eπiB/2DM · qA4D
∞∏
n=1

(
1− e2πiBn/Dq4An

4D

)6
, where qD = e2πiz/D.

It is now clear that the Fourier expansion of f(z) | [γ0]3 has a(n) = 0 for n ≤ 0. Therefore,
conditions in (2.2), (2.3) and (2.4) are satisfied, and f(z) = η6(4z) is a cusp-form of weight
3 on Γ0(16) with the character χ16. In other words,

f(z) ∈ S3(Γ0(16), χ16).

The same techniques can be applied to η12(2z), η4(6z) and η2(12z), and the other three
statements in Lemma 2 can be proved similarly. �

Proof of Lemma 3. Since the four functions are all cusp-forms, we thus can use the follow-
ing formula [C-O] to compute the dimension of their spaces. Let dimMk(Γ0(N), χ) and
dimSk(Γ0(N), χ) denote the dimension of the space of corresponding modular forms and
cusp-forms, respectively. Then we have

dimSk (Γ0(N), χ)− dimM2−k (Γ0(N), χ)

=
k − 1
12

N
∏
p|N

(
1 +

1
p

)
− 1

2

∏
p|N

λ(rp, sp, p) + εk
∑

x mod N
x2+1≡0 mod N

χ(x) + µk

∑
x mod N

x2+x+1≡0 mod N

χ(x),

where rp (resp. sp) denotes the exponent of p in the factorization of N (resp. of the
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conductor of the character χ), and λ(rp, sp, p), ε and µ are defined as

λ(rp, sp, p) :=




pr
′
+ pr

′−1 if 2sp ≤ rp = 2r′,

2pr
′

if 2sp ≤ rp = 2r′ + 1,
2prp−sp if 2sp > rp,

εk :=




0 if k is odd,
− 1

4 if k ≡ 2 (mod 4),
1
4 if k ≡ 0 (mod 4),

µk :=




0 if k ≡ 1 (mod 3),
−1

3 if k ≡ 2 (mod 3),
1
3 if k ≡ 0 (mod 3).

Note that

dimMk(Γ0(N), χ) = 0 if k < 0 or k = 0 and χ is not the trivial character χtriv;

dimM0(Γ0(N), χtriv) = 1.

And we also know that the conductor of the trivial character is 1, and the conductor of
χN , where 4 | N , is 4.

Since η6(4z) ∈ S3(Γ0(16), χ16), we have dimM−1(Γ0(16), χ16) = 0, r2 = 4, s2 = 2, ε3 = 0
and µ3 = 1

3 . We get by the formula above

dimS3(Γ0(16), χ16) = (1/6) · 16 · (3/2)− (1/2)
(
22 + 2

)
= 1.

Similarly, we can find that dimS2(Γ0(36), χtriv
36 ) = 1 and dimS6(Γ0(4), χtriv

4 ) = 1. In addi-
tion, by (2.5), there must exist a scalar λp for every prime p such that f(z) | T (p) = λpf(z),
i.e. η12(2z), η6(4z) and η4(6z) are all primitive eigenforms. By [S], we know that η2(12z) is
also a primitive eigenform. �

Since Theorem 2 immediately follows from Theorem 3, we will conclude our argument by
proving Theorem 3.

Proof of Theorem 3. Let f(z) = η6(4z). Since it is a cusp-form of weight 3 on Γ0(16) with
the character χ16, by lemma 3 it is a primitive eigenform. We know by (2.6) that for each
prime l, there exists a scalar λl such that

f(z) | T (l) =
∞∑
n=1

(
b(ln) + χ16(l)l2b(n/l)

)
qn = λlf(z) =

∞∑
n=1

λlb(n)qn.

It is clear that for all non-negative integers n and primes l, we have

λlb(n) = b(ln) + χ16(l)l2b(n/l).

Since b(1) = 1, we get λl = b(l). Noticing that χ16(l) =
(−4

l

)
for all primes l, we have

b(l)b(n) = b(ln) +
(−4

l

)
l2b(n/l),

for all primes l and positive integers n. Thus we obtain the desired identity (3.2). By
applying the same technique, (3.1), (3.3) and (3.4) can be proved in a similar way. �
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