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An identity of derangements

Le Anh Vinh
School of Mathematics

University of New South Wales
Sydney 2052 NSW

Abstract

In this note, we present a new identity for derangements. As a corrolary, we
have a combinatorial proof of the irreducibility of the standard representation of
symmetric groups.

1 Introduction

A derangement is the permutation σ of {1, 2, . . . , n} that there is no i satisfying σ(i) = i.
It is well-known that the number d(n) of dereangements equals:

d(n) =
n∑

k=0

(−1)k n!

k!

and satisfies the following identity (since both sides are the number of permutations on n
letters)

n∑
k=0

(
n

k

)
d(k) = n!. (1)

The Stirling set number S(n, m) is the number of ways of partitioning a set of n
elements into m nonempty sets. We definte [x]r = x(x− 1) . . . (x− r + 1) (by convention
[x]0 = 1). Then (see [4])

xn =
n∑

m=0

S(n, m)[x]r. (2)

The number of ways a set of n elements can be partitioned into nonempty subsets is
called a Bell number and is denoted Bn. We use the convention that B0 = 1. The integer
Bn can also be define by the sum (see [3])

Bn =
n∑

m=0

S(n, m) (3)

The main result of this note is the following generalization of (1).
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Theorem 1 Suppose that n ≥ m are two natural numbers. Then
n∑

k=0

km

(
n

k

)
d(n− k) = Bmn!. (4)

We use the convention that
(

n
m

)
= 0 if m < 0 or n < m. Also set d(k) = 0 if k < 0

and d(0) = 1. Note that taking m = 0 in (4) implies (1) since B0 = 1. Furthermore, by
linearity we have the following corollary.

Corollary 1 Suppose that n ≥ m are two natural numbers. Let g(x) = amxm + . . . + a0

be a polynomial with integer coefficients. Then

n∑
k=0

g(k)

(
n

k

)
d(n− k) =

{
m∑

i=0

aiBi

}
n!. (5)

2 Some Lemmas

We define fn(k) to be the number of permutations of {1, . . . , n} that fix exactly k positions.
By convention, fn(k) = 0 if k < 0 or k > n. We have the following recursion for fn(k).

Lemma 1 Suppose that n, k are positive integers. Then

fn+1(k) = fn(k − 1) + (n− k)fn(k) + (k + 1)fn(k + 1).

Proof Let σ be any permutation of {1, . . . , n + 1} which has exactly k fixed points. We
have two cases.

1. Suppose that σ(n + 1) = n + 1. Then σ corresponds to a restricted permutation on
{1, . . . , n} which fixes k− 1 points of {1, . . . , n}. This case applies to the first term
in the statement of the lemma.

2. Suppose that σ(n + 1) = i for some i ∈ {1, . . . , n}. Then there exists j ∈ {1, . . . , n}
such that σ(j) = n + 1. There are two separate subcases.

(a) If i = j then we can obtain a correspondence between σ and a permutation σ′

of {1, . . . , n} from σ as follows: σ′(i) = i and σ′(t) = σ(t) for t 6= i. It is clear
that σ′ has k + 1 fixed points. Conversely, for each permutation of {1, . . . , n}
that has k + 1 fixed points, we can choose i to be any of its fixed points and
then swapping i and n + 1 to have a permutation of {1, . . . , n + 1} that has k
fixed points. This case applies to the third term in the statement of the lemma.

(b) If i 6= j then we can obtain a correspondence between σ and a permutation σ′

of {1, . . . , n} from σ as follows: σ′(j) = i and σ′(t) = σ(t) for t 6= j. It is clear
that σ′ has k fixed points. Conversely, for each permutation σ′ of {1, . . . , n}
that has k fixed points, we can choose any j such that σ′(j) = i 6= j, and
get back a permutation σ of {1, . . . , n + 1} that has k fixed points by letting
σ(t) = σ′(t) for t 6= j, n + 1, σ(j) = n + 1 and σ(n + 1) = σ′(j) = i. This case
applies to the second term in the statement of the lemma.
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Hence fn+1(k) = fn(k − 1) + (n− k)fn(k) + (k + 1)fn(k + 1) for all n, k. This concludes
the proof. �

Lemma 1 can be applied to obtain the following identity for fn(k) (Note that fn(k) = 0
whenever k < 0 or k > n).

Lemma 2 Suppose that n, k, t are integers, t ≥ −1. Then

n∑
k=0

[k]t+1fn(k) =

{
n! if n > t + 1,

0 otherwise

Proof We prove this using a double induction. The outer induction is on t and the inner
one is on n. By convention, [k]0 = 1. Also we have

∑
k fn(k) = n! which is trivial from

the definition of fn(k). Hence the claim holds for t = −1. Next, suppose that the claim
holds for t− 1. We prove that it holds for t. Define

F (n, t) :=
n∑

k=0

[k]t+1fn(k) =
n∑

k=0

k(k − 1) . . . (k − t)fn(k).

Suppose that n ≤ t. If fn(k) 6= 0 then 0 6 k 6 n 6 t. But this implies that
k(k − 1) . . . (k − t) = 0. Hence F (n, t) = 0 if n 6 t.

Suppose that n = t + 1. Then

F (n, t) =
n∑

k=0

k(k − 1) . . . (k − (n− 1))fn(k) = n!fn(n) = n!

since all but the last term of the sum equal zero. Hence the claim holds for n = t + 1.
For the inner induction, suppose that F (n, t) = n! for some n ≥ t + 1. We will show that
F (n + 1, t) = (n + 1)!. From Lemma 1, we have

F (n + 1, t) =
n+1∑
k=0

k(k − 1) . . . (k − t)fn+1(k)

=
n+1∑
k=0

k(k − 1) . . . (k − t) [fn(k − 1) + (n− k)fn(k) + (k + 1)fn(k + 1)]

= nF (n, t) +
n+1∑
k=0

k(k − 1) . . . (k − t) [fn(k − 1)− kfn(k) + (k + 1)fn(k + 1)]

Since fn(−1) = 0, we have

n+1∑
k=0

k(k − 1) . . . (k − t)fn(k − 1) =
n∑

k=0

(k + 1)k . . . (k − t + 1)fn(k).
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Similarly fn(n + 1) = 0 implies that

n+1∑
k=0

k(k − 1) . . . (k − t)kfn(k) =
n∑

k=0

k(k − 1) . . . (k − t)kfn(k).

And fn(n + 1) = fn(n + 2) = 0 implies that

n+1∑
k=0

k(k − 1) . . . (k − t)(k + 1)fn(k + 1) =
n∑

k=0

(k − 1) . . . (k − t− 1)kfn(k).

Therefore, we have

F (n + 1, t) = nF (n, t)

+
n∑

k=0

k(k − 1) . . . (k − t + 1)[(k + 1)− (k − t)k + (k − t)(k − t− 1)]fn(k)

= nF (n, t) +
n∑

k=0

k(k − 1) . . . (k − t + 1)[(k + 1)− (k − t)(t + 1)]fn(k)

= nF (n, t) +
n∑

k=0

k(k − 1) . . . (k − t + 1)[(t + 1)− (k − t)t]fn(k)

= nF (n, t) + (t + 1)F (n, t− 1)− tF (n, t)

= nn! + (t + 1)n!− tn! (6)

= (n + 1)!.

To see (6), note that the claim is true for t−1 by the outer induction. So F (n, t−1) =
n!. Also F (n, t) = n! by the inner inductive hypothesis. Hence the claim holds for n + 1.
Therefore, it holds for every n, t. This concludes the proof of the lemma. �

3 Proof of Theorem 1

Suppose that n ≥ m are two natural numbers. From (2), we have

n∑
k=0

kmfn(k) =
n∑

k=0

m∑
j=0

S(m, j)[k]jfn(k)

=
m∑

j=0

S(m, j)

(
n∑

k=0

[k]jfn(k)

)

=
m∑

j=0

S(m, j)F (n, j − 1). (7)
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From Lemma 2, F (n, j−1) = n! for all 0 ≤ j ≤ n. Aslo, from (3) Bm =
∑m

j=0 S(m, j).
Thus, (7) implies that

n∑
k=0

kmfn(k) =
m∑

j=0

S(m, j)n!

= Bmn!. (8)

To have a permutation with exactly k fixed points, we can first choose k fixed points
in
(

n
k

)
ways. Then for each set of k fixed points, we have d(n − k) ways to arrange the

n− k remaining numbers such that we have no more fixed points. Hence

fn(k) =

(
n

k

)
d(n− k). (9)

Substituting (9) into (8), we obtain (4). This concludes the proof of the theorem.

4 An application

In this section, we will apply Theorem 1 to prove the irreducibility of the standard repre-
sentation of symmetric groups. Let G = Sn be the symmetric group on X = {1, . . . , n}.
Let C denote the complex numbers. Let GL(d) stand for the group of all d× d complex
matrices that are invertible with respect to multiplication.

Definition 1 A matrix representation of a group G is a group homomorphism

ρ : G → GL(d).

Equivalently, to each g ∈ G is assigned ρ(g) ∈ GL(d) such that

1. ρ(1) = I, the identity matrix,

2. ρ(gh) = ρ(g)ρ(h) for all g, h ∈ G.

The parameter d is called the degree or dimension of the representation and is denoted by
deg(ρ). All groups have the trivial representation of degree 1 which sends every g ∈ G to
the matrix (1). We denote the trivial representation by 1. An important representation
of the symmetric group Sn is the permutation representation π, which is of degree n. If
δ ∈ Sn then we let π(δ) = (ri,j)n×n where

ri,j =

{
1 if δ(j) = i,

0 otherwise.

Definition 2 Let G be a finite group and let ρ be a matrix representation of G. Then
the character of ρ is

χρ(g) = tr ρ(g),

where tr denotes the trace of a matrix.
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It is clear from Definition 2 that if δ ∈ Sn then

χ1(δ) = 1,

χπ(δ) = number of fixed points of δ.

Definition 3 Let χ and φ be characters of a finite group G. Then

〈χ, φ〉 =
1

|G|
∑
g∈G

χ(g)φ(g−1).

A matrix representation ρ of a group is called irreducible if 〈χρ, χρ〉 = 1. Maschke’s
Theorem (see [2, 5]) states that every representation of a finite group having positive
dimension can be written as a direct sum of irreducible representations. The permutation
representation π can be written as a direct sum of the trivial representation 1 and another
representation σ. The representation σ is called the standard representation of Sn. We
have χπ = χ1 +χσ since for any δ ∈ Sn then π(δ) = 1(δ)⊕σ(δ). Thus, for all δ ∈ Sn then

χσ(δ) = (number of fixed points of δ)− 1.

Now we want to prove that σ is irreducible. In other words, we need to show 〈χσ, χσ〉 =
1, which is equivalent to

n∑
k=0

(k − 1)2fn(k) = n! (10)

Identity (10) can be obtained easily from Corollary 1 as follows.

n∑
k=0

(k − 1)2fn(k) =
n∑

k=0

(k2 − 2k + 1)fn(k)

= (2− 2 + 1)n! = n!

since B0 = B1 = 1 and B2 = 2. This implies the irreducibility of standard representation
of symmetric groups.
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