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Abstract.The isoperimetric problem asks, among all figures with the same perime-
ter (iso-perimetric means “same perimeter”), which has the greatest area. This
paper proves the classic isoperimetric problem using a generalization of calibration
techniques which we call metacalibration. We then generalize to arbitrary dimen-
sions and to spherical spaces.
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1 Introduction

The isoperimetric problem is a classical problem of geometry. The basic question asks, among
all figures with the same perimeter (iso-perimetric means “same perimeter”), which has the
greatest area. The original problem is deceptively difficult to prove, and thus escaped a
rigorous proof until Weierstrass in 1879 [9].

Isoperimetric problems have a long history. The first example we have in history is a
story given about Dido, Queen of Cartage in Africa. She sailed to northern Africa from
Phoenicia, and the locals agreed to give her as much land as she could enclose with the skin
of an ox. Being clever, she cut the oxhide into very thin strips, and thereby had enough
length to encircle an entire nearby hill. By using the shape of a circle, she maximized her
gains from the deal [8].

As with most geometric problems, the ancient Greeks also worked on this problem. The
earliest result was given by Zenodorus in a now lost text. Other ancient authors cite him
though, letting us know that he proved that the circle has greater area than any polygon
with the same perimeter [1]. This is an impressive result, considering the tools available to
him.

New and powerful tools for optimization problems in general, and thus the isoperimetric
problem as well, were discovered with the invention of calculus by Newton and Leibniz.
Their work provided one of the first systematic ways to prove minimization. But one of the
main problems with the methods was that it was very difficult to prove that a optimizing
figure actually exists. (For example, remember the classic calculus example, f(x) = x3 − x,
which has a local minimum at 3−1/2 but has no global minimum.)

For instance, Steiner in 1838 gave an argument that seemed to show that the circle
maximized area [6]. His argument showed that the maximizer must be both convex and
symmetric in all directions. The only figure satisfying this is the circle, but that does not
show that the circle is actually the maximizer. It only showed that if such a maximizer did
exist, it must be the circle. Weierstrass, in 1879, was finally able to show that the circle was
in fact the true maximizer [9].

Up till recently, most approaches to this type of problem employed indirect methods such
as calculus of variations. This method is very similar to the idea of finding an extremum
by taking the first derivative. However, the complexity involved is a serious barrier in many
problems. Also, there is the worry of finding a local rather than a global maximum and the
difficulty of proving that there is in fact a global maximum at all.

Direct methods, such as calibration, work differently. Rather than look at other shapes
close to the original figure (like a derivative), it picks the figure it thinks is best and then
directly compares it in some way to every other figure we are considering. Calibration cannot
handle isoperimetry directly, and so we usually look at the dual problem of finding the figure
of constant area with minimized perimeter. Calibration, along with other direct methods,
would then be attempting to show that for µ, the proposed minimizer, and σ, an element in
the class of competitors for the problem, and P , a measurement function,

P (µ) ≤ P (σ)
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(For the isoperimetric problem, this class of competitors is likely the set of manifolds enclosing
a particular area, and P measures the total perimeter of the figure.) However, proving this
this inequality as stated is the original problem, only with µ fixed. Calibrations introduces
an intermediate inequality to make proving this easier. It uses a closed vector field ϕ to show
that

P (µ) =

∫
µ

ϕ · ~n =

∫
σ

ϕ · ~n ≤ P (σ).

If this set of inequalities can be set up, then µ minimizes P . Calibration has been very
successful at solving problems involving fixed boundaries due to some of the properties of
vector fields and their integration, but so far has been stumped by problems of fixed area,
such as the dual of the isoperimetric problem mentioned above.

Metacalibration, developed by Dr. Gary Lawlor of Brigham Young University, employs
a similar methodology to calibration but introduces new tools allowing it to solve new types
of problems. One such class of problems are what we call equitent problems, which seek to
find the minimum perimeter or surface area to contain a given area and span a boundary.
For example, what shape spans the four vertices of a square and contains a certain area?
Some work has already been done on these problems [3].

The basis of the metacalibration proof is the attempt to find any intermediate function
G on the figures such that we can set up the set of inequalities

P (µ) = G(µ) ≤ G(σ) ≤ P (σ).

The similarity of metacalibration to standard calibration can be seen by interpreting G
as the integral of a vector field over the figure. Then the equations become

P (µ) =

∫
µ

ϕµ · ~n ≤
∫
σ

ϕσ · ~n ≤ P (σ).

which is almost exactly the same as calibration. But notice how ϕ changes based on each
figure. This small, seemingly insignificant change is actually quite powerful. Metacalibration
received its name from this similarity.

In this paper, we will use metacalibrations to prove that the circle is perimeter minimizing
among figures enclosing a given area. We will then use the same method to prove that the
n-ball is perimeter minimizing in Rn, though we will omit many details that are the same
as in the proof for the circle. This will be followed by the proof of the isoperimetric problem
on the surface of a n-sphere, again with some details omitted.

2 Isoperimetric Problem in R2

First we will give the full proof in R2 to introduce the style of proof. To prove that the circle
minimizes perimeter, we need only to show the three (in)equalities, namely P (µ) = G(µ) ≤
G(σ) ≤ P (σ). To do so, we first need a few preliminary lemmas.
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Lemma 2.1. Given an A and l, there exists a unique circle enclosing area A below a line,
intersecting that line with length l.

Proof. Construct the circle with center (0, y) that passes through the points (−l/2, 0) and
(l/2, 0). Note that the center of a circle passing through these two points must be on the
y-axis.

We can look at the area of this circle below the x-axis as a function of y, A(y). As
y increases, the part of the new circle below the axis is contained by the part of the old
circle below the axis, and so A(y) is strictly decreasing. Since between any two of these
circles there is another, A(y) is also continuous. As y goes to infinity, A(y) approaches zero.
As y goes to negative infinity, A(y) approaches infinity. Thus, since A(y) is a continuous,
monotonic function, for each area a ∈ [0,∞], there exists an y such that A(y) = a. Since
A(y) is monotonic, y is unique.

Let C be the set of competitors, namely the set of 1-dimensional piecewise smooth closed
curves enclosing area a0. For any σ ∈ C, we set the bottom of the figure to be y = 0 and the
top to be y = h. We can parameterize the figure vertically by t in the sense that at each t,
there is an intersection between σ and the line {y = t}. This intersection may be empty. At
t, let A(t) be the area of the interior of σ below the line {y = t}, and let l(t) be the length
of intersection of that line with the interior of σ. We will suppress notation, and leave out
the t’s.

For each t ∈ [0, h], we define τ(t) to be the figure described in Lemma 2.1. Note how τ(t)
depends on σ. For each σ, τ(t) will produce different circles. An example is shown in Figure
1. Let r1(t) be the radius of τ(t). Finally, let α be the angle between the slicing line and τ .

Figure 1: Constructing τ(t)

Let p(t) be the perimeter of σ below {y = t}, and g(t) be the perimeter of τ below
{y = t}. We define G(σ) = g(h) and P (σ) = p(h). Since A(h) = a0 and l(h) = 0, τ(h) is
a circle of area a0 for all σ. Thus g(h) is constant for all σ, and is equal to P (µ), where µ
is the circle of area a0. Thus P (µ) = G(µ) = G(σ). So, in order to prove minimization, we
need only show that G(σ) ≤ P (σ), or in other words that g(h) ≤ p(h) for all σ.
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In order to compare g(h) and p(h), we will use their derivatives, ∂g
∂t

and ∂p
∂t

, and so in order
to apply the second fundamental theorem of calculus, we need that both of the derivatives
are continuous except on a countable set, and that g and p are indeed antiderivatives of the
derivatives. The first is true since σ is piecewise smooth. The second requires that p and g
are continuous, which is not true when there is a flat horizontal portion of perimeter of σ at
some t, such as at t = 1

2
in Figure 2.

Figure 2: A figure with p(t) discontinuous at t = 1/2

Lemma 2.2. Any competitor σ can be rotated in order to remove any such discontinuities.

Proof. For each θ ∈ [0, π) let the Lθ be the total length of any straight line segments in the
perimeter of σ having slope tan(θ). Suppose Lθ < 0 for all θ. We then count how many of
Lθ are in each of the sets [1,∞], [1/2, 1], [1/3, 1/2], · · · . Since there are countably many of
these sets, but uncountably many angles, at least one of these sets must have infinite Lθ in it.
Then the sum of Lθ must be infinite, and so σ could not be the minimizer, as it has infinite
perimeter. Thus, there is at least one angle in which σ has zero perimeter. Then rotate σ
to make one of these angles horizontal in order to remove all discontinuities in p(t).

We now prove a lower bound of ∂p
∂t

.

Lemma 2.3. For all σ ∈ C and all t ∈ [0, h],

∂p

∂t
≥ 2

√
1 +

(
1

2

∂l

∂t

)2

Proof. We take a slice of σ between y = t and y = t+ ε. Since ε is arbitrarily small, we can
consider the boundary of σ to be straight lines. If there are four or more edges (i.e. pieces of
boundary of σ), we can slide the separate pieces of σ together to reduce the total perimeter
by reducing to two edges.
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Now suppose the edges of σ are not symmetric. In Figure 3, the outer edges, which
represent σ, are not symmetric. If we define l1 and l2 to be the distance from a common
point on the line y = t and on x = c, as in the figure, then it is easy to see that

∂p

∂t
=

√
1 +

(
∂l1
∂t

)2

+

√
1 +

(
∂l2
∂t

)2

If we treat ∂l1
∂t

and ∂l2
∂t

as variables, with their sum being ∂l
∂t

, we can directly minimize

this. By some calculus, we can see that ∂l1
∂t

= ∂l2
∂t

= 1
2
∂l
∂t

minimizes the quantity, and so we
have that

∂p

∂t
≥ 2

√
1 +

(
1

2

∂l

∂t

)2

Figure 3: Minimizing ∂p
∂t

Theorem 2.4. In R2, for a given area a0, the figure enclosing a0 that minimizes perimeter
is the circle of appropriate area.

Proof. Since we have a lower bound on ∂p
∂t

, we will show that

∂g

∂t
≤ 2

√
1 +

(
1

2

∂l

∂t

)2

and then use that to prove the last needed inequality.
By the chain rule,

∂g

∂t
=
∂g

∂l

∂l

∂t
+
∂g

∂A

∂A

∂t
(1)

We will find three of these partial derivatives.
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First, since A(t) changes as the length of the cross-section of σ,

∂A

∂t
= l

Next, a standard finding of differential geometry gives us

∂g

∂A
= κ =

1

r1

where κ is the mean curvature of the circle τ , and r1 is the radius. (See, for example, Frank
Morgan’s Riemannian Geometry: A Beginner’s Guide [4].)

Figure 4: Extending by ε to find ∂g
∂l

Next, to find ∂g
∂l

, we will extend l by ε, and bend the boundary of τ in the new direction,
as shown in Figure 4. Again by the chain rule, we have that

∂g

∂l
=
∂g

∂l
+
∂g

∂A

∂A

∂l

Since the increase in area (see Figure 4) varies as ε
3
2 ,

∂A

∂l
= lim

ε→0

∆A

∆l
≈ lim

ε→0

ε3/2

ε
= 0

In the limit, α is also the angle between the slicing line and the modified τ . We find that
the perimeter is extended by ε cos (α). When we take the limit as ε→ 0 we find that

∂g

∂l
= lim

ε→0

∆g

∆l
= lim

ε→0

ε cos(α)

ε
= cos (α)
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By replacement, equation (1) becomes

∂g

∂t
= cos (α)

∂l

∂t
+

l

r1

= 2

(
cos (α)

1

2

∂l

∂t
+

l

2r1

)
(2)

Figure 5: Finding sin(α)

A radius of τ and half of the slicing line form two sides of a triangle, as shown in Figure
5. Trigonometry then shows us that

l

2r1
= cos

(
α− π

2

)
= sin (α)

Thus equation (2) becomes

∂g

∂t
= 2

(
cos (α)

1

2

∂l

∂t
+ sin (α)

)

= 2〈cos (α), sin (α)〉 ·
〈

1

2

∂l

∂t
, 1

〉
≤ 2

∥∥∥∥〈1

2

∂l

∂t
, 1

〉∥∥∥∥ (3)

by the Cauchy-Schwartz inequality.
By combining Lemma 2.3 and inequality (3) we get

∂g

∂t
≤ 2

∥∥∥∥〈1

2

∂l

∂t
, 1

〉∥∥∥∥ = 2

√
1 +

(
1

2

∂l

∂t

)2

≤ ∂p

∂t

and so

g(h)− g(0) =

∫ h

0

∂g

∂t
dt ≤

∫ h

0

∂p

∂t
dt = p(h)− p(0)
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Since g(0) = p(0) = 0, we have that

g(h) ≤ p(h)

and by our definitions, that shows that

G(σ) ≤ P (σ)

Thus we have proved by metacalibration that the circle encloses a given area with the
least perimeter.

3 Isoperimetric Problem in Rn

The proof in n dimensions follows the same outline, but of course with different details.
We will leave out some of the details that are similar. We work in Rn+1 rather than Rn to
simplify several coefficients and subscripts, but the proof is exactly same.

Theorem 3.1. In Rn, for a given n-volume v0, the figure enclosing v0 that minimizes (n−1)-
dimensional perimeter is the n-ball of appropriate volume.

From here on, volume means (n+1)-dimensional volume, area means n-dimensional area,
and perimeter means n-dimensional surface area.

Let C be the set of competitors, namely the set of n-dimensional piecewise smooth com-
pact manifolds (essentially surfaces) enclosing volume v0. We use the standard x1, x2, · · ·xn+1

for our basis. For any σ ∈ C, we set the bottom of the figure to be xn+1 = 0, and the top
to be xn+1 = h. We can parameterize the figure by t in the sense that at each t, there is an
intersection between σ and the plane {xn+1 = t}. This intersection may be empty. At t, let
V be the volume of the interior of σ below the plane {xn+1 = t}, and let A be the area of
intersection of that plane with the interior of σ.

For each t ∈ [0, h], we construct τ as follows. On some plane, pick a n-ball of area A. We
call the radius of this ball r2. Let τ(t) be the portion of the (n + 1)-ball below that plane
that intersects this n-ball and that also contains volume V below that plane. Let r1 be the
radius of τ(t). That τ(t) is unique up to translation given V and A is shown by a proof very
similar to Lemma 2.1, so we do not include the proof.

Let p(t) be the perimeter of σ below {xn+1 = t}, and g(t) be the perimeter of τ below
{xn+1 = t}. We again define G(σ) = g(h) and P (σ) = p(h). Since V (h) = v0 and A(h) = 0,
τ(h) is a (n+ 1)-ball for all σ. Thus g(h) is constant for all σ, and is equal to P (µ), where µ
is the sphere of volume v0. Thus P (µ) = G(µ) = G(σ). So, in order to prove minimization,
we need only show that G(σ) ≤ P (σ), or in other words that g(h) ≤ p(h) for all σ.

Let α be the incident angle between the slicing plane and the tangent plane to τ at any
point of their intersection. This is analogous to how we picked α in the R2 case.

We will again be comparing g(t) and p(t) by their derivatives, ∂g
∂t

and ∂p
∂t

, and so in order
to apply the second fundamental theorem of calculus, we need that both of the derivatives
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are continuous except on a countable set, and that g and p are indeed antiderivatives of the
derivatives. The first is true since σ is piecewise smooth. The second requires that p and
g are continuous, which is not true when there is a flat horizontal portion of perimeter at
some t, as before.

We again find an upper bound on ∂p
∂t

.

Lemma 3.2. For all σ ∈ C and all t ∈ [0, h],

∂p

∂t
≥ nCnr

n−1
2

√
1 +

(
∂r2
∂t

)2

We omit the proof of this lemma. It is similar in principle to Lemma 2.3, though it relies
on the lower dimensional case. The nCnr

n−1
2 comes from calculating the surface area for a

solid of revolution, where Cn is the volume of a unit (n− 1) ball.
The proof that we can rotate our figure σ to remove such discontinuities is completely

equivalent to Lemma 2.2, and so we omit it.

Proof of Theorem 3.1. By the chain rule,

∂g

∂t
=

∂g

∂r2

∂r2
∂t

+
∂g

∂V

∂V

∂t
(4)

where r2 is the radius of the slice of τ(t). We will find three of these partial derivatives.
First, since V (t) changes as the area of the cross-section of σ,

∂V

∂t
= A(t) = Cnr

n
2

where Cn is the volume of an unit (n− 1)-ball.
Next, a standard finding of differential geometry gives us

∂g

∂V
= κ =

n

r1

where κ is the mean curvature of the (n+ 1)-ball τ , and r1 is the radius. Again, see [4].
Next, to find ∂g

∂r2
, we proceed as we did before in finding ∂g

∂l
. By extending r2 instead of

l, we extend a whole ring of τ , instead of just a line. Thus, the width of the ring is the same
as the old ∂g

∂l
. We then calculate the volume of a solid of revolution to find that

∂g

∂r2
= cos (α)nCnr

n−1
2

By replacement, equation (4) becomes

∂g

∂t
= cos (α)nCnr

n−1
2

∂r2
∂t

+
n

r1
Cnr

n
2
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= nCnr
n−1
2

(
cos (α)

∂r2
∂t

+
r2
r1

)
(5)

A radius of τ and of the ball in τ that intersects the slicing plane form two sides of a
triangle, as shown in Figure 5, though with r2 instead of l/2. Trigonometry then shows us
that

r2
r1

= cos
(
α− π

2

)
= sin (α)

Thus equation (5) becomes

∂g

∂t
= nCnr

n−1
2

(
cos (α)

∂r2
∂t

+ sin (α)

)

= nCnr
n−1
2 〈cos (α), sin (α)〉 ·

〈
∂r2
∂t
, 1

〉
≤ nCnr

n−1
2

∥∥∥∥〈∂r2∂t , 1
〉∥∥∥∥ (6)

by the Cauchy-Schwartz inequality.
By combining Lemma 3.2 and inequality (6) we get

∂g

∂t
≤ nCnr

n−1
2

∥∥∥∥〈∂r2∂t , 1
〉∥∥∥∥ = nCnr

n−1
2

√
1 +

(
∂r2
∂t

)2

≤ ∂p

∂t

and so

g(h)− g(0) =

∫ h

0

∂g

∂t
dt ≤

∫ h

0

∂p

∂t
dt = p(h)− p(0)

Since g(0) = p(0) = 0, we have that

g(h) ≤ p(h)

and by our definitions, that shows that

G(σ) ≤ P (σ)

Thus we have proved by metacalibration that the n-ball encloses a given volume with
minimum perimeter.

4 Isoperimetric Problem on a n-Sphere

The general principle of this proof is the same as the previous ones, but there are some new
pieces to the proof. As before, we will omit some details that are very similar to the previous
section.

Theorem 4.1. On the surface of a standard n-sphere, for a given n-dimensional volume v0,
the figure enclosing v0 that minimizes perimeter is an n-dimensional geodesic ball.



Page 44 RHIT Undergrad. Math. J., Vol. 11, No. 2

In this section, volume refers to n-dimensional volume, and area refers to (n− 1) dimen-
sional volume, and perimeter refers to (n− 1)-dimensional boundary of a manifold.

Let C be the set of competitors, namely the set of (n− 1)-dimensional piecewise smooth
compact manifolds (again think surfaces) enclosing volume v0 on the surface of a n-sphere.
We use standard spherical coordinates, (θ1, θ2, · · · θn−1, φ). For any σ ∈ C, we can parame-
terize the figure by t in the sense that at each t, there is an intersection between σ and the
line {φ = t}. This intersection may be empty. We call such lines φ lines. At t, let V be the
volume of σ below the φ line {φ = t}, and let A be the area of intersection of that φ line
with the interior of σ.

For each t ∈ [0, π], we construct τ as follows. Along the φ line {φ = t}, pick a (n − 1)
ball of area A. We call the geodesic radius of this ball r3. If we consider this ball to be in
Rn+1, we can consider the flat radius of this ball as well. Call this flat radius r2. Let τ(t)
be the portion of the n ball below that φ line that intersects this (n− 1) ball and that also
contains volume V below the φ line. That τ(t) is unique up to translation along the φ line
given V and A is shown by a proof again very similar to Lemma 2.1.

Let p(t) be the perimeter of σ below {φ = t}, and g(t) be the perimeter of τ below
{φ = t}. We again define P (σ) = p(π) and G(σ) = g(π). Since V (π) = v0 and A(π) = 0,
τ(π) is a n-ball of volume v0 for all σ. Thus g(h) is constant for all σ, and is equal to
P (µ), where µ is the n-ball of volume v0. Thus P (µ) = G(µ) = G(σ). So, in order to prove
minimization, we need only show that G(σ) ≤ P (σ), or in other words that g(π) ≤ p(π) for
all σ.

Let α be the incident angle between the φ line and the tangent plane to τ at any point
of their intersection. This is again analogous to how we picked α in the R2 isoperimetric
problem. Some of the measured quantities are shown in Figure 6 for the case where n = 3.
It is of course very difficult to draw a 4-dimensional sphere on paper, and so this shows just
a piece of the problem. For n = 3, the φ lines are 3 balls, or spheres, as is τ .

Figure 6: A slice of a sphere on a 4 ball
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We will again be comparing g(t) and p(t) by their derivatives, ∂g
∂t

and ∂p
∂t

, and so in order
to apply the second fundamental theorem of calculus, we need that both of the derivatives
are continuous except on a countable set, and that g and p are indeed antiderivatives of the
derivatives. The first is true since σ is piecewise smooth. The second requires that p and
g are continuous, which is not true when there is a flat horizontal portion of perimeter at
some t, as before.

By a proof very similar to Lemma 2.2, we can move the pole of our φ lines to remove
such discontinuities.

Lemma 4.2. For all σ ∈ C and all t ∈ (0, π),

∂p

∂t
≥ nCnr

n−1
2

√
1 +

(
dr3
dt
− e
)2

where e is the the change in r3 due to the natural expansion and contraction of φ lines as φ
increases.

Again, we omit the proof of this lemma. It is almost the same as the omitted proof for
Lemma 3.2, and again relies on the lower dimensional case. The nCnr

n−1
2 is similarly from

calculating the surface area for a solid of revolution, where Cn is the volume of a unit (n−1)
ball.

Proof of Theorem 3.1. By the chain rule,

dg

dt
=
∂g

∂φ

dφ

dt
+
∂g

∂r3

dr3
dt

+
∂g

∂V

dV

dt
(7)

We will set φ ≡ t, and so dφ
dt

= 1.
We will find two of these partial derivatives. The last term here will cancel later, and so

we will leave it as it is.
For ∂g

∂r3
, consider a similar figure to that for ∂g

∂r2
in the previous section. Very similarly,

we can find the change in perimeter, and take a limit, giving us that

∂g

∂r3
= cos (α)nCnr

n−1
2

Next, for ∂g
∂φ

, instead of calculating directly, we will consider a different figure. Create

τ(t), but instead of changing it as usual, extend the n-ball infinitesimally, as in Figure 7.
Another way to think of this would be to have the competitor σ actually be the n-ball. Call
this new extended figure ν, and its perimeter pν(t).

This gives us a new application of the chain rule. However, several pieces are the same
as before, as they are true for all n-balls on a n-sphere. Thus we get

dpν
dt

=
∂g

∂φ
+ cos (α)nCnr

n−1
2

dr3
dt

+
∂g

∂V

dV

dt
(8)
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Figure 7: An extension of τ

where ∂g
∂V

dV
dt

is the same in both pictures because ∂g
∂V

is the same for all such figures, and
dV
dt

is just A. Note that ∂g
∂φ

and dr3
dt

are in fact different here than before, but since they will
only be used briefly, we will use the same notation.

If we set ∆t = ε, then we find that ∆pν = ε
sin(α)

nCnr
n−1
2 and ∆r3 = ε(cot(α) + e), where

e represents the change in r3 due to the natural expansion of φ lines on a n-sphere. This is
illustrated in Figure 8. If we then take the limit as ε→ 0, we find that

dpν
dt

= lim
ε→0

∆pν
ε

=
1

sin (α)
nCnr

n−1
2

dr3
dt

= lim
ε→0

∆r3
ε

= cot (α) + e

Figure 8: Finding dpν
dt

and dr3
dt

Using those equations, and rearranging equation (8) we get

∂g

∂φ
= nCnr

n−1
2

(
1

sin (α)
− cos (α)(cot (α) + e)

)
− ∂g

∂V

dV

dt
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= nCnr
n−1
2

((
1− cos2 (α)

sin (α)

)
− cos (α)e

)
− ∂g

∂V

dV

dt

= nCnr
n−1
2 (sin (α)− cos (α)e)− ∂g

∂V

dV

dt

Replacing ∂g
∂φ

in equation (7), we get

dg

dt
= nCnr

n−1
2 (sin (α)− cos (α)e)− ∂g

∂V

dV

dt
+ nCnr

n−1
2 cos (α)

dr3
dt

+
∂g

∂V

dV

dt

= nCnr
n−1
2

(
sin (α) + cos (α)

(
dr3
dt
− e
))

If we split up this into two vectors and use the Cauchy-Schwartz inequality we find an
upper bound for dg

dt

dg

dt
= nCnr

n−1
2 (〈cos (α), sin (α)〉 ·

〈
dr3
dt
− e, 1

〉

≤ nCnr
n−1
2

∥∥∥∥〈dr3dt − e, 1
〉∥∥∥∥ (9)

By combining Lemma 4.2 and inequality (9), we get

dg

dt
≤ nCnr

n−1
2

∥∥∥∥〈dr3dt − e, 1
〉∥∥∥∥ = nCnr

n−1
2

√
1 +

(
dr3
dt
− e
)2

≤ dp

dt

and so

g(π)− g(0) =

∫ π

0

dg

dt
dt ≤

∫ π

0

dp

dt
dt = p(π)− p(0)

Since g(0) = p(0) = 0, we have that

g(π) ≤ p(π)

and by our definitions, that shows that

G(σ) ≤ P (σ)

Thus we have proved by metacalibration that, on the n-sphere, the n-ball encloses a given
volume with least perimeter.
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5 Further Research

This paper has presented a proof for an already solved problem, but by the new and powerful
method of metacalibration. The results prove may not be difficult to solve with traditional
methods, but metacalibration has the potential to solve previously unsolved problems. The
isoperimetric problem in more generalized symmetric spaces has been studied, but only a
few results have been reached [2] [7]. We think that the method presented in this paper can
and will be successful in this area.

Metacalibration has also been useful in solving other minimization problems, such as
bubbles trapped in tetrahedral soap films [3], the double bubble in Rn [5], and others. A
natural next step would be to attempt to prove that the standard triple bubble in the plane
is perimeter minimizing, which we are currently working on.
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