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Contemporary Mathematics

Superelliptic surfaces as p-gonal surfaces

S. Allen Broughton

Dedicated to Emilio Bujalance for his sixtieth anniversary

Abstract. In this brief, expository paper, we discuss superelliptic surfaces
and p-gonal surfaces, which generalize hyperelliptic surfaces. A superelliptic

surface, or more generally, a p-gonal surface, has a conformal automorphism
w of prime order such that S/ 〈w〉 has genus zero. Alternatively, the surface

has an equation of the form yp = f(x) for some rational function f(x). We

discuss normal forms, automorphism groups, and families of p-gonal surfaces.

1. Introduction

There is a strong interest in superelliptic and p-gonal surfaces. Historically,
the surfaces, especially hyperelliptic surfaces, were linked to the study of certain
integrals. Most recently, they are of interest in cryptography and fields of moduli.
Among all surfaces, p-gonal surfaces are the surfaces with the simplest and most
tractable equations. In this brief article we talk about normal forms of p-gonal
surfaces, their automorphisms, and very briefly about families of p-gonal surfaces.
Space does not allow discussion of applications to cryptography or fields of definition
of superelliptic surfaces. See [19] and [20] for references on these topics.

Acknowledgement 1.1. The author thanks the Mathematics department
of Linköping University for the hosting the conference for which this paper was
written. The author also thanks Aaron Wootton for useful conversations in the
preparation of this paper. Our joint paper [9] in this conference proceedings has
many ideas and development parallel to the current paper. In addition, the author
thanks Milagros Izquierdo for pointing out some references.

2. The equation point of view of p-gonal surfaces

2.1. Hyperelliptic surfaces. Hyperelliptic surfaces (curves) were introduced

in studying the surface of the function
√
f(x) and related integrals

∫ √
f(x)dx

where f(x) is a rational function, or alternatively the Riemann surface determined
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2 S. ALLEN BROUGHTON

by y2 = f(x). By using elementary algebra we may assume that f(x) is a square
free polynomial. For, we may write f(x) = u2(x)v(x) where v(x) is a square free
polynomial and u(x) is a rational function. Setting y′ = y

u(x) , x
′ = x we see that

(y′)
2

=
y2

u2(x)
=
u2(x)v(x)

u2(x)
= v(x′).

The transformation φ(x, y) = (x′, y′) = ( y
u(x) , x) is a birational transformation of

P2 carrying the surface y2 = f(x) to (y′)
2

= v(x′). Since we are only interested
in surfaces up to birational equivalence, let us assume that f(x) is a square free
polynomial and that S is the surface (projective plane curve) defined by

(2.1) y2 = f(x).

All of the finite points of S are smooth. At infinity the equation of S has the form

y2 − xth(1/x) =
(
y − xt/2

√
h(1/x)

)(
y + xt/2

√
h(1/x)

)
for some polynomial h

with nonzero constant term. If t = deg(f) is even, then the projective completion of
S has two branches at infinity otherwise it has a cusp. The normalization Sν → S is
the smooth compactification of S−{singular points}. Therefore, the normalization
Sν → S is 1-1 over the finite points of S and has one or two points lying over the
infinite points of S, depending on the parity of t.

The map ι : (x, y) → (x,−y) is an involution of S that fixes only the points
(ai, 0) in the finite part of S. The involution ι lifts to the normalization Sν → S
and we also denote this map by ι. The action of the involution ι on Sν fixes all the
lifts of the (ai, 0). In the case Sν has a single point at infinity lying over the infinite
point of S, the lift of ι fixes the infinite point, in case there are two points, the lift
interchanges them. The quotient map π : Sν → Sν/ 〈ι〉 is given by (x, y)→ x at the
finite points and hence Sν/ 〈ι〉 w P1. So we arrive at another characterization of a
hyperelliptic surface namely a smooth surface S with an involutory automorphism
ι such that S/ 〈ι〉 w P1. Indeed, starting out with such a surface a plane model
given by equation 2.1 can be found.

2.2. n-gonal surfaces and equations. Now generalizing, we consider sur-
faces of the form yn = f(x) motivated by the study of the function n

√
f(x). These

surfaces are called cyclic n-gonal surfaces. Using calculations as above, we can
show that S has a plane model of the form

(2.2) yn = f(x) =

s∏
i=1

(x− ai)ti

where the ai and ti satisfy

(1) the ai are distinct,
(2) 0 < ti < n, and
(3) gcd(n, t1, . . . , ts) = 1.

The third condition comes from the assumed irreducibility of the surface, for oth-
erwise yn − f(x) factors. In addition we may wish to impose the following

(4) n divides t = t1 + · · ·+ ts = deg(f).

The finite singular points of S are the points (ai, 0) where ti > 1. By writing
yn − f(x) as yn − (x− ai)tiφi(x) with φi(ai) 6= 0 we see that S has di = gcd(ti, n)
local branches at (ai, 0). So the surface has a cusp or single branch at (ai, 0) if
gcd(n, ti) = 1 and is even smooth if ti = 1. It also follows that the normalization
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Sν → S has di points lying over (ai, 0). If t = deg(f) = n then S has n smooth
points at infinity. Otherwise S has a single point at infinity. Writing, as before,
yn − f(x) = yn − xth(1/x) we see that in every case S has gcd(t, n) local branches
at infinity and the normalization Sν → S has gcd(t, n) points lying over the infinite
point(s) of S. We call Sν the smooth model and S the plane model though we
frequently loosely identify the two surfaces.

The projection π : Sν → P1 induced by (x, y) → x is ramified over all of the
points ai with ramification degree mi = n

di
and ramified over∞ with degree n

gcd(t,n) .

If condition 4 holds π : Sν → P1 has di points lying over ai and n points lying over
all other points, including the point ∞. By a simple ramified covering argument,
the genus σ of Sν is given by

(2.3) σ =
1

2

(
2 + (s− 2)n−

s∑
i=1

di

)
.

Sometimes it is convenient to shift the branch points away from infinity, i.e.,
to ensure that t is divisible by n. To this end pick r so that t+ r is divisible by n,
0 < r < n and pick any linear fractional transformation, L, of the coordinates

x′ = L(x) =
αx+ β

γx+ δ
, x = L−1(x′) =

δx′ − β
−γx′ + α

, and αδ − βγ = 1.

It follows that

(2.4) −γx′ + α =
1

γx+ δ
.

Further, impose the restrictions that

(2.5) ∀i L(ai) 6=∞, and γ 6= 0.

Next set K =
s∏
i=1

(γai + δ)
ti , which is nonzero because of equation 2.5. Then, using

x = δx′−β
−γx′+α , we obtain

yn = f

(
δx′ − β
−γx′ + α

)
=

s∏
i=1

(
δx′ − β
−γx′ + α

− ai
)ti

= K
(−γx′ + α)r

(−γx′ + α)t+r

s∏
i=1

(
x′ − αai + β

γai + δ

)ti
= K(−γ)r (γx+ δ)

t+r

(
x′ − α

γ

)r s∏
i=1

(x′ − L(ai))
ti

and so (
1

n
√
K(−γ)r

y

(γx+ δ)
t+r
n

)n
=

(
x′ − α

γ

)r s∏
i=1

(x′ − L(ai))
ti .

Now set

y′ =
1

n
√
K(−γ)r

y

(γx+ δ)
t+r
n

,

as+1 = ∞,

bi = L(ai), bs+1 =
α

γ
= L(∞), ts+1 = r,
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and we get

(2.6) (y′)
n

=

s+1∏
i=1

(x′ − bi)
ti .

Because a1, . . . , as+1 are distinct, so are b1, . . . , bs+1 and we arrive at a birationally
equivalent surface where t1 + · · · + ts+1 is divisible by n. There are only a finite
number of bad choices for the linear fractional transformation L.

For the remainder of this paper we will assume conditions 1-4 above, unless
otherwise noted. We shall call (a1, a2, . . . , as) the branch points of S, ti the local
degree at ai, and (t1, t2, . . . , ts) the multi-degree of S. If condition 4 holds we call
(t1, t2, . . . , ts) a complete multi-degree.

Remark 2.1. If deg(f) is not divisible by n then we add the additional branch
point as+1 = ∞, and set ts+1 = r defined as above. Then 1-4 all hold. We
call ts+1 the local degree at ∞ and (t1, t2, . . . , ts+1) is a complete multi-degree.
It is convenient to also consider yn = f(x) when f(x) is a rational function. A
denominator factor of the form (x− ai)ti , 0 < ti < n, contributes −ti to the multi-
degree. Using the birational equivalence transformations above, the contribution
−ti changes to n− ti when f(x) is converted to normal polynomial form.

We may determine when two cyclic n-gonal surfaces are birationally equivalent
using the following proposition.

Proposition 2.2. Suppose that two cyclic n-gonal surfaces with the same
multi-degree have branch points (a1, a2 . . . , as) and (b1, b2 . . . , bs). Then the sur-
faces are conformally equivalent if there is an L ∈ PSL2(C) and a permutation
ϑ ∈ Σs, preserving multi-degrees (tϑi = ti), so that

bi = L(aϑi).

for all i.

Proof. In the proof of equation 2.6 we can assume that r = 0 and then observe
s∏
i=1

(x− L(ai))
ti =

s∏
i=1

(x− L(aϑi))
tϑi =

s∏
i=1

(x− bi)ti

�

2.3. Cyclic n-gonal actions. If ω is a nth root of unity, then (x, y)→ (x, ωy)
is an automorphism of S which fixes the points (ai, 0) and no others in the finite
part of S. Let C be the cyclic group of automorphisms obtained by letting ω range
over all nth roots of unity. The action of C on S, and its lift to Sν , is called a cyclic
n-gonal action. The map π : Sν → S → P1, (x, y) → x is a quotient map for the
projection Sν → Sν/C, and is called the cyclic n-gonal morphism. The degree of
ramification of π over ai is mi = n/gcd(ti, n). In fact there are di = gcd(ti, n) points
lying over ai, and at each such point P the stabilizer of the C action, CP , is the
unique subgroup of C of order mi. The quotient group C/CP transitively permutes
the points lying over π(P ). The map is unramified over ∞ because n divides t and
there are n distinct points over ∞. Let w be the generator of C corresponding to
ω = exp(2πi/n). At any point ãj in Sν lying over lying over aj , the rotation number

of w, i.e., the differential dw|ãj is exp
(

2πitj
n

)
.
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Now, if S is any closed Riemann surface with a conformal automorphism w
such that S/ 〈w〉 w P1, then using standard field theory, it can be shown that the

function field C(S) = C
(
x, n
√
f(x)

)
, for some f(x). Hence, S has a plane model

of the form given in equation 2.2, satisfying conditions 1-4 above. We state this as
a proposition.

Proposition 2.3. A closed Riemann surface is a cyclic n-gonal surface if and
only if either of the following two equivalent conditions hold.

(1) The surface S has a conformal automorphism w of order n such that
S/ 〈w〉 has genus zero

(2) The surface S has a plane model of the form given in equation 2.2 and
conditions 1-4 in subsection 2.2 are satisfied.

2.4. Cyclic p-gonal and superelliptic surfaces.

Definition 2.4. A cyclic p-gonal surface is any closed Riemann surface S with
a conformal automorphism w of prime order p such that S/ 〈w〉 has genus zero or
alternatively has a plane model of the form

yp = f(x) =

s∏
i=1

(x− ai)ti

where the ai and ti satisfy

(1) the ai are distinct,
(2) 0 < ti < p, and
(3) p divides t = t1 + · · ·+ ts = deg(f).

Remark 2.5. The singularities of the plane model of S are all cusps except
possibly a point at infinity with p smooth branches. Moreover, in the genus formula
2.3 all di = 1 and hence the genus is given by

(2.7) σ =
1

2
(s− 2)(p− 1).

Observe that σ only depends on the number of branch points and not on the multi-
degree.

Finally, we give the standard definition of a superelliptic surface (see [18] for
instance) and a generalization of superelliptic introduced discussed in [8] and [9].

Definition 2.6. A superelliptic surface is any p-gonal surface with a plane
smooth model of the form yp = f(x) where f(x) is square free and p does not
divide the degree of f(x).

Definition 2.7. A generalized superelliptic surface is any n-gonal surface with
a plane model of the form yn = f(x) where the multi-degree (t1, . . . , ts) of f(x)
satisfies

(1) 0 < ti < n,
(2) gcd(n, tj) = 1 for all s,
(3) n divides t = t1 + · · ·+ ts = deg(f).
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Remark 2.8. A superelliptic surface is simply a p-gonal surface given by Defini-
tion 2.4 where the multi-degree is (1, 1, . . . , 1, t∞) with 0 < t∞ < p. For a generalized
superelliptic S the stabilizer CP of a point P ∈ S satisfies CP = C or CP = 〈1〉 .
This is guaranteed by condition 2 of the definition. A p-gonal surface is automat-
ically a generalized superelliptic surface but need not be superelliptic. For genus
3 there are two 7-gonal surfaces: the superelliptic surface given by y7 = x(x − 1)
with multi-degree (1, 1, 5) and the non-superelliptic surface y7 = x(x − 1)2 with
multi-degree (1, 2, 4).

3. The action point of view of p-gonal surfaces

We now use the cyclic action point of view to describe p-gonal surfaces. Here
we will describe group theoretically a cyclic p-gonal surface as a branch set and
a class of generating vectors of C. This allows us to handle equivalence without
constructing birational maps. To this end, we introduce Fuchsian groups which
captures both the conformal and automorphic structure of the surface.

3.1. Covering actions by Fuchsian groups. A (co-compact) Fuchsian group
Γ, a discrete group acting on the hyperbolic plane H, has a presentation by hyper-
bolic and elliptic generators and relations:

generators : {αi, βi, γj , 1 ≤ i ≤ σ, 1 ≤ j ≤ s}

relations :

σ∏
i=1

[αi, βi]

s∏
j=1

γj = γm1
1 = · · · = γms

s = 1

with mi ≥ 2. The signature of Γ is

S(Γ) = (σ : m1, . . . ,ms)

which we shorten to (m1, . . . ,ms), when the genus is zero. Here are important
invariants of and facts about Fuchsian groups.

• The genus of Γ: σ(Γ) = σ is the genus of H/Γ. If s = 0 then Γ is torsion
free and usually denoted by Π, as it is isomorphic to π1(S).

• The area of a fundamental region of Γ in H is given by A(Γ) = 2πµ(Γ)

where, µ(Γ) = 2(σ − 1) +
∑s
j=1

(
1− 1

mj

)
.

• The Teichmüller dimension d(Γ) of Γ, the dimension of the Teichmüller
space of Fuchsian groups with signature S(Γ), is given by

d(Γ) = 3(σ − 1) + s.

• If γ ∈ Γ fixes a point z ∈ H the γ is conjugate to a power of some γi.

For any group G acting conformally on a surface S we have pair of Fuchsian
groups Π E Γ such that Π is torsion free, S w H/Π, and the action of G on S is
given by the action of Γ/Π on H/Π. The isomorphism is given by an exact sequence.

(3.1) Π ↪→ Γ
η
� G

such that the order of elliptic elements is preserved under η. The map η is called a
surface-kernel epimorphism, and the isomorphism between Γ/Π and G is denoted
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by η : Γ/Π←→ G. Also observe that S/G w H/Γ. All the proceeding is summarized
in the following commutative diagram.

(3.2)
H πΠ→ S
πΓ ↓ ↓ πG
H/Γ w S/G

Now assume Γ is an arbitrary Fuchsian group with σ = 0, but not necessarily
arising from a group action as in the exact sequence 3.1. We have H/Γ w P1 and
our relations then simplify:

(3.3)

s∏
j=1

γj = γm1
1 = · · · = γms

s = 1.

Each γj fixes a unique point zj such that πΓ is ramified over aj = πΓ(zj) ∈ P1

with degree mj . In this case Γ is determined up to conjugacy by the branch points
(a1, a2, . . . , as) and the signature (m1, . . . ,ms). If (a′1, a

′
2, . . . , a

′
s) is the branch set

of a Γ′ with signature (m′1, . . . ,m
′
s) then Γ and Γ′ are conjugate if and only if there

is an L ∈ PSL2(C) and a permutation ϑ ∈ Σs, such that

a′i = L(aϑi), m
′
i = mϑi.

3.2. Generating vectors. With η as in 3.1, set cj = η(γj), then the s-tuple
(c1, . . . , cs) satisfies

c1 · c2 · · · cs = 1(3.4)

o(ci) = mi > 1

G = 〈c1, . . . , cs〉

Such a tuple is called an (m1, . . . ,ms)-generating vector of G. Given such a vector
then cj = η(γj) defines a surface kernel epimorphism and an action of G on S =
H/ ker(η). If ω ∈ Aut(G) then c′j = ω(cj) defines another generating vector such
that the epimorphism η′ = ω ◦ η satisfies c′j = η′(γj) and ker(η) = ker(η′). We
conclude that Aut(G)-equivalent generating vectors define the same surface with
Aut(G)-equivalent G-actions.

Remark 3.1. If G = Zn then generating vectors are in 1-1 correspondence
with the s-tuples satisfying

(1) 0 < ti < n,
(2) gcd(n, t1, . . . , ts) = 1
(3) t1 + · · ·+ ts = 0 mod n.

Of course, these are simply the equations satisfied by multi-degrees in the
previous section. The two multi-degrees (t1, . . . , ts) and (et1, . . . , ets) mod n are
Aut(Zn)-equivalent if e 6= 0 mod n and these are the only equivalences. If n = p is
prime then mi = p for all i and 2 automatically holds. The number of generating
vectors can be computed using inclusion-exclusion, see [7].
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3.3. Conformally equivalent actions. We would like to determine when
two conformal G-actions on surfaces are conformally equivalent. So assume that
(m1, . . . ,ms)-actions of G on S1 and S2 are defined via surface kernel epimorphisms
η1 : Γ1 → G and η2 : Γ2 → G then the conformal actions of G on S1 and S2 are
conformally equivalent if and only if there is an φ ∈ Aut(H), and ω ∈Aut(G) such
that the following diagram commutes.

(3.5)
Π1 ↪→ Γ1

η1

� G
↓ Adφ ↓ Adφ ↓ ω

Π2 ↪→ Γ2

η2

� G

In the diagram, Π1 = ker(η1), Π2 = ker(η2), and Adφ(γ) = φγφ−1 denotes the
adjoint action of φ on γ. There is an induced conformal equivalence h : S1 ↔ S2

which intertwines the G-actions on S1 and S2 :

(3.6)
G

η1
↪→ Aut (S1)

↓ ω ↓ Adh
G

η2

� Aut (S2)

Next, we want to determine conformal equivalence of p-gonal surfaces simply
in terms of the branch set and the multi-degree without producing the element φ,
i.e., work directly on P1 and the generating vectors (c1, . . . , cs). To this end, we
say that two generating vectors define topologically equivalent actions if there is a

homeomorphism h̃ of H normalizing Γ such that the following diagram commutes.

(3.7)

Γ
η
� G

↓ Adh̃ ↓ ω

Γ
η′

� G

In the case ker(η) = ker(η′) = Π, there is a homeomorphism h of S and h of P1

such that such that the following diagrams are commutative.

(3.8)
H h̃→ H
↓ πΠ ↓ πΠ

S
h→ S

and
H h̃→ H
↓ πΓ ↓ πΓ

P1 h→ P1

Moreover, given an h on P1 mapping the branch set to itself, in an order-preserving

manner, the covering h̃ may be found. The map h̃ is conformal if and only if h
is conformal. A particular homeomorphism, that may be constructed, switches
adjacent branch points inducing the switch aj → aj+1, aj+1 → aj , mj → mj+1,
mj+1 → mj . In the superelliptic case the change in branching orders is always

permissible. By lifting the appropriately chosen h, we get γj → γjγj+1γ
−1
j , γj+1 →

γj , and hence cj → cjcj+1c
−1
j , cj+1 → cj . If G is abelian we simply get cj → cj+1,

cj+1 → cj . It can be shown that the totality of the homeomorphism action is induced
by the switch maps and so the action on generating vectors is simply permutation.
Thus we arrive at the following.

Proposition 3.2. Let S be a cyclic p-gonal surface branched over (a1, a2, . . . , as)
with generating vector (multi-degree) (t1, t2, . . . , ts). If S′ is another such surface
with corresponding (a′1, a

′
2, . . . , a

′
s) and (t′1, t

′
2, . . . , t

′
s) then S and S′ are conformally
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equivalent p-gonal surfaces if and only if there is L ∈ PSL2(C) and a permutation
ϑ ∈ Σs, and e 6= 0 mod p such that

a′i = L(aϑi), t
′
i = etϑi.

Remark 3.3. We note that the conformal equivalence can be constructed as a
birational transformation, and so the Fuchsian group construction is not completely
necessary. However, the statement extends to elementary abelian actions but there
is no easy construction of birational maps. See [7].

4. Automorphism groups of cyclic n-gonal surfaces

There is a great deal of interest in the automorphism group A = Aut(S) of a
cyclic n-gonal surface as these surfaces have tractable automorphism groups. In-
deed, the automorphism group can generally be computed directly from the equa-
tions but the Fuchsian group methods are easier. Of special interest, is the normal
case where N = NorA(C) = A, which we discuss next. Automorphisms in A − N
are called exceptional. See [8], [9], and [21] for a discussion of these automorphisms.

4.1. The normal case. In the normal case, K = N/C = A/C is an auto-
morphism group of the sphere, one of five types of Platonic groups Zk, Dk, A4, Σ4,
A5. One “simply” solves an extension problem

C ↪→ N � K.

For large genus we automatically have C E A using Accola’s theorem on strong
branching [1]. In the next theorem we state the normality theorem in more general
contexts because they all follow from Accola’s work in exactly the same way.

Theorem 4.1. Let S be a cyclic n-gonal surface of genus σ with cyclic group
C. Then the following hold.

(1) If n = p is a prime and σ > (p− 1)2, then C is normal in Aut(S) [1].
(2) Suppose S is generalized superelliptic i.e., gcd(n, ti) = 1 for all. Then, if

σ > (n− 1)2, C is normal in Aut(S) [17].
(3) Suppose the action of C is weakly malnormal i.e., for all g ∈ Aut(S) either

gCg−1 = C or gCg−1 ∩ C = 〈1〉 Then, if σ > (n − 1)2, C is normal in
Aut(S) [8].

Remark 4.2. Accola’s method critically uses results from algebraic geometry
and there is no group theoretic proof known to the author. For genus greater than 1
the hyperelliptic involution is always central. A result on centrality for superelliptic
surfaces is given in Proposition 4.8. The involution is also unique, namely, for any
surface S there can only be one involution ι such that S/ 〈ι〉 has genus zero. An
analogue for p-gonal surfaces is that if w1, w2 ∈ Aut(S) of the same prime order p
are such that S/ 〈w1〉 and S/ 〈w2〉 both have genus 0 then w1 and w2 are power-
conjugate [15].

Remark 4.3. Since σ = 1
2 (s − 2)(p − 1) then the condition σ > (p − 1)2 is

satisfied when s > 2p. So when p is of even moderate size, N < A, is possible for
high degree polynomials.

Here are some works on the problem of determination of automorphism groups,
in increasing generality on the properties of the cyclic action. See also [9].
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• The case n = 2 (hyperelliptic case) has been studied extensively: Brandt,
Bujulance, Etayo, Gamboa, Gromadzki, Martinez, Shaska – [5], [10], [18],

• The case where n = 3, (cyclic trigonal surfaces): Accola, Bujalance, Cirre,
Costa, Duma, Gromadski, Izquierdo, Martinez, Radtke, Ying – [2], [11],
[14], [13], [23].

• The case where n = p, for p a prime: Bartolini, Brandt, Costa, Gonzalez-
Diez, Harvey, Izquierdo, Wootton – [4], [5], [15], [16], [21].

• General n where the cyclic n-gonal morphism S → S/C is fully ramified:
Kontogeorgis [17].

• General n with weak malnormality conditions: Broughton & Wootton [8].
• The paper [4] includes some cases missed in previous works and in [17].

Example 4.4. Here are some low genus p-gonal surfaces. The two surfaces
with exceptional automorphisms (N < A) are the well-known Klein quartic and
Bring’s curve.

Table 1

genus A N K |A/N | |C| (t1, . . . , ts)
3 Z14 Z14 Z2 1 7 (1, 1, 5)
3 PSL2(7) Z3 n Z7 Z3 8 7 (1, 2, 4)
4 Σ5 Z4 n Z5 Z4 6 5 (1, 2, 3, 4)
4 Z4 n Z5 Z4 n Z5 Z4 1 5 (1, 1, 4, 4)
4 Z15 = Z3 × Z5 Z3 × Z5 Z3 1 5 (1, 1, 1, 2)

The two normalizers Z4 n Z5 are not isomorphic.

4.2. Action on multi-degrees and examples. Let us finish this section by
giving examples of defining equations and automorphism groups for K = Z` and
K = D`, where ` and p are relatively prime. The method we use is described in
detail for all K in [22]. Before proceeding we need to know the adjoint action of
K on C, and the K-action on the local degrees tj .

The adjoint action, Adg(x) = gxg−1 introduced in 3.3, defines a representation

Ad : N → Aut(C). Since C is abelian, Ad factors through K: Ad : K → Aut(C).
Since C = Zp has prime order Aut(C) = Z∗p is cyclic and this severely limits the
K-action except in the case where K = Z`. Next, let us see how K acts on the local
degrees. Let ãi and ãj be points lying over branch points ai and aj , and suppose

that there is an h ∈ N such that h(ãi) = ãj and hence the image h ∈ K satisfies

h(ai) = aj . The standard generator w of C fixes ãi and ãj and the rotation numbers
of w are dw|ãi = exp(2πiti), dg|ãj = exp(2πitj). Since h−1wh = Adh−1(w) = we,
for some e, then

exp(2πieti) = d(we)|ãi = dh−1dw|ãjdh = dw|ãj = exp(2πitj).

Thus

(4.1) tj = eti mod p, i.e., tj = Ad(h
−1

)ti mod p.

It follows that if h fixes a point then Ad(h
−1

) acts trivially. The orbits of K on
P1 will be important in what follows. We call an orbit singular if the points have
non-trivial K-stabilizers, otherwise the orbits are regular.
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Example 4.5. Suppose K = Z`. We use the action of K = Z` on P1 generated
by x→ ζx where ζ = exp( 2πi

` ). The group N must be Z`×Zp = Z`p or Z`nZp with

the Z` action is generated by j → e′j on the additive group Zp, where (e′)` = 1
mod p, Pick e so that ee′ = 1 mod p. The action has two fixed points at 0 and ∞.
Suppose first, that none of the branch points is 0 or ∞. Then the branch points
are made up of regular orbits of K of the form

{
a, aζ, . . . , aζ`−1

}
. Each such orbit

contributes a factor to f(x) of the form
`−1∏
i=0

(
x− aζi

)ei
, possibly to some power.

Thus

f(x) =
∏
a∈B

`−1∏
i=0

(
x− aζi

)ei
,

where B is some finite list, possibly with repeated elements. Since 1+e+· · ·+e`−1 =
0 mod p then deg(f) = 0 mod p and so ∞ is not a branch point. If 0 or ∞ is a
branch point then equation 4.1 shows that the Z` action on Zp must be trivial so
K = Z`p by relative primeness arguments. Note we may also argue that K = Z`p
by using ramification arguments whether p and ` are relatively prime or not. Then

f(x) = zt0
∏
a∈B

`−1∏
i=0

(
x− aζi

)
,

where 0 < t0 < p. If t∞ < p is the local degree at ∞ with then t0 + t∞ + `b = 0

mod p, Where b = |B| is the number of repetitions of the factor
`−1∏
i=0

(
x− aζi

)
.

Example 4.6. Suppose K = D`. We use the action of K = D` on P1 gen-
erated by x → ζx and z → 1

z . The group K must be D` × Zp or D` n Zp with
the non-trivial D` action generated by j → −j = (p − 1)j, the only non-trivial
involution in Aut(C). The abelianization of D` is Z2 for ` odd and Z2 × Z2 for `
even, so there are several non-trivial choices for Ad. For simplicity let us focus on `
odd, so that Ad is trivial on the subgroup Z` C D` The action of D` has three sin-
gular orbits (orbits with fixed points)

{
1, ζ, . . . , ζ`−1

}
,
{
−1,−ζ, . . . ,−ζ`−1

}
, and

{0,∞}. A regular orbit has the form
{
a, aζ, . . . , aζ`−1

}
∪
{
a−1, a−1ζ, . . . , a−1ζ`−1

}
for a 6= ±1. In the trivial action case each regular orbit contributes a factor of the

form
`−1∏
i=0

(
x− aζi

) `−1∏
i=0

(
x− a−1ζi

)
possibly to some power, the singular orbits can

contribute zt0 , and powers of
`−1∏
i=0

(
x− ζi

)
and

`−1∏
i=0

(
x+ ζi

)
. Now the transformation

z → 1
z interchanges 0 and ∞ and so the local degrees t0 and t∞ must be the same.

The sum condition must satisfy

t0 + t∞ + br`+ b1`+ b−1` = 0 mod p

where br, b1, b−1 are the number of repetitions of the factors

`−1∏
i=0

(
x− aζi

) `−1∏
i=0

(
x− a−1ζi

)
,

`−1∏
i=0

(
x− ζi

)
, and

`−1∏
i=0

(
x+ ζi

)
.

Now suppose that Ad is not trivial. Then the singular orbits
{

1, ζ, . . . , ζ`−1
}
,{

−1,−ζ, . . . ,−ζ`−1
}

cannot contribute any factors since the stabilizers of these
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points have non-trivial Ad values. Regular orbits contribute factors of the type

`−1∏
i=0

(
x− aζi

)
`−1∏
i=0

(x− a−1ζi)

or

`−1∏
i=0

(
x− aζi

) `−1∏
i=0

(
x− a−1ζi

)p−1

and we see that t∞ = −t0 mod p. So we have t0 + p− t0 + br`+ (p− 1)br` = 0 mod
p, which is no constraint at all.

Remark 4.7. The general form of factors for any K-action will be(∏
k∈K

(
x− k · a

)Ad(k)

) 1
r

where r is the order of the stabilizer of the point a ∈ P1.

Shaska observed [19] that for many automorphism groups of low genus that if
a cyclic prime order subgroup had a genus quotient then the subgroup was central.
This generalizes the hyperelliptic case. It turns out that many of these surfaces are
superelliptic. In fact, we have the following.

Proposition 4.8. Let S be a superelliptic surface with cyclic p-gonal subgroup
C. Then C is central N .

Proof. The multi-degree has the form (1, . . . , 1, t∞), and there must be at
least two ones. But then it is not possible for any automorphism in K to satisfy
equation 4.1 for all ti unless the action is trivial. �

5. Families of p-gonal surfaces

In this section we very briefly discuss families of p-gonal surfaces. Given our
cyclic p-gonal equation

(5.1) yp = f(x) =

s∏
i=1

(x− ai)ti

we can look at families of surfaces in three different ways.

(1) For each complete multi-degree T = (t1, t2, . . . , ts) consider the family
of surfaces parameterized by the branch points (a1, a2, . . . , as) ∈ Cs −
diagonals. The genus of the surfaces so constructed has the constant

value (s−2)(p−1)
2 . If two multi-degrees are equivalent by the equivalence

given in Remark 3.4 then a family of equivalent surfaces is determined.
(2) Each family described in (1) for a fixed T and p determines a family

of surfaces, or equisymmetric stratum, in the moduli space of surfaces

of genus (s−2)(p−1)
2 . These equisymmetric strata are defined in [6]. The

complex dimension of this family is s − 3 as our next proposition shows.
The union of these families for all T is called the p-gonal locus of the
moduli space. For p = 2 this is the well known hyperelliptic locus of the
moduli space. The trigonal (p = 3) locus for genus 4 is discussed in [23].
Some recent results on the topology of this branch locus for p > 3 are
given in [3] and [12].
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(3) Each polynomial f(x) defines vector of coefficients in Ct, where t = deg(f).
By expanding the right hand side of equation 5.1, we see that each multi-
degree defines a locally closed subvariety of Ct. If t is held fixed and s
and T are allowed to vary, Ct is a union of these subvarieties (minus a
small piece corresponding to reducible surfaces). The genus of the surface
varies over different subvarieties. The set where all ti equal 1 is open and
dense and the genus of the surfaces is largest over this set. In [19] Shaska
adopts this approach to determine equations of hyperelliptic surfaces with
prescribed automorphism group.

Proposition 5.1. Let T = (t1, t2, . . . , ts) be a complete multi-degree and ΣT
be the subgroup of permutations of Σs that preserve T . Let PSL2(C) × ΣT act
(partially) on Cs − diagonals by (L, ϑ) · (a1, a2, . . . , as) = (L(aϑ1), . . . , L(aϑs)).
Then

MCn,T = (Cs − diagonals)/(PSL2(C)× ΣT )

of complex dimension s−3 is “almost” a moduli space of p-gonal surfaces of multi-
degree T .

Rather than prove the statement, we make some remarks that justify the word
almost.

(1) Every cyclic p-gonal action with multi-degree T is accounted for in the
quotient space.

(2) The action of PSL2(C) is only partial and exceptional automorphisms
(where N < A) need to be taken into account. The partial action can be

fixed by looking at
(
P1
)s

but then the cyclic model needs to be fixed.
(3) Each MCn,T corresponds to a moduli space of the same dimension, of

Fuchsian groups determined by the signature (p, p, . . . , p), specifically there
is a finite to one map MCn,T →M(p,p,...,p).

Example 5.2. Here is a table of multi-degrees for a small number of branch
points, moduli space dimension m = s− 3, prime p, and genus σ.

p = 3 p = 5
s = 3,m = 0 σ = 1, (1, 1, 1) σ = 2, (1, 1, 2)
s = 4,m = 1 σ = 2, (1, 1, 2, 2) σ = 4, (1, 1, 1, 2), (1, 1, 4, 4), (1, 2, 3, 4)

p = 7 p = 11
s = 3,m = 0 σ = 3, (1, 1, 5), (1, 2, 4) σ = 5, (1, 1, 9)
s = 4,m = 1 σ = 6, (1, 1, 1, 4), (1, 1, 6, 6) σ = 10, (1, 1, 1, 8), (1, 1, 10, 10)

(1) The pure superelliptic case is always present, unless p divides s.
(2) All the cases potentially have automorphisms, depending on the position

of the branch points.
(3) In the moduli space of surfaces of genus 4 the 5-gonal locus consists of

three strata of dimension 1.
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