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ABSTRACT 

 

Winter, Matthew Randall 

M.S.M .E. 

Rose-Hulman Institute of Technology 

February 2015 

The Development of Advanced Controls Laboratories 

Thesis Advisor: Dr. Bradley Burchett 

In this thesis, a series of advanced control labs have been developed for use in the 

senior/graduate-level advanced controls course.  Advanced controls laboratories are non-existent 

at many institutions, and since hands on laboratories are such an integral part of engineering 

education it was decided to develop a few.  The goal of these laboratories is to reinforce some of 

the more advanced topics in control theory.  Topics of the laboratories include Parameter 

Identification, Eigenstructure Assignment, Linear Optimal Regulators and Linear Quadratic 

Gaussian Control with Loop Transfer Recovery.  These laboratories are carried out on the 

Educational Control Products Model 210 Rectilinear Control System with the disturbance motor 

add on using MATLAB/Simulink Real Time Workshop with Real Time Windows Target. 
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GLOSSARY 

Eigenstructure Assignment — a procedure used to develop a linear gain matrix for feedback 
 control so that the resulting system has a desirable closed-loop response. 

Loop Transfer Recovery — a procedure that allows one to design a state feedback loop with 
 desirable properties and then to asymptotically “recover” those properties using an 
 appropriate choice of observer gains. 

Linear Quadratic Gaussian — one of the most fundamental optimal control problems.  It 
concerns an uncertain linear system disturbed by additive white Gaussian noise, 
having incomplete state information and undergoing control subject to quadratic  
costs. 

Linear Quadratic Regulator — the optimal theory of pole placement method where the cost is  
described by a quadratic function. 

Kalman Filter — an algorithm that uses a series of measurements observed over time, 
containing noise and other inaccuracies, and produces estimates of unknown variables  
that tend to be more precise than those based on a single measurement alone. 

Algebraic Riccati Equation — a type of quadratic matrix equation that arises in the context of 
infinite-horizon optimal control problems in continuous time or discrete time.  In 
such a problem, one cares about the value of some variable of interest arbitrarily far 
into the future, and one must optimally choose a value of a controlled variable right  
away, knowing that one will also behave optimally at all times in the future.  The 
optimal current values of the problem’s control variables at any time can be found 
using the solution of the Riccati equation and the current observations on evolving 
state variables.  With multiple state variables and multiple control variables, the  
Riccati equation will be a matrix equation.  
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1. INTRODUCTION 

1.1 Motivations 

 The function of engineers is to manipulate materials, energy and information for the 

benefit of mankind.  In order to do this, engineers must gain knowledge in other ways than 

purely classroom learning [1].  In controls classes, the addition of laboratories is a valuable step 

to helping students understand control theory [2].  At many universities advanced control 

engineering laboratories are non-existent, instead being reduced to pure simulation owing in part 

to the relatively high cost of the former and the changing motivation of faculties away from 

contributions to undergraduate education and more towards research productivity [1, 3].  To this 

end it was deemed appropriate to conceive of several laboratories to demonstrate some of the 

more theoretical concepts in advanced control theory using existing equipment. 

1.2 Historical Background 

 Hands-on control laboratories with hardware in the loop have been an important part of 

controls education since the introduction of analog computers at the University of Michigan’s 

Department of Aeronautical Engineering in 1956 [4].  Since then, the use of the personal 

computer has streamlined some of the more tedious steps in analog simulation leading to the 

release of commercially available prepackaged experiments by 1992 from companies such as 

Educational Control Products (ECP) and Feedback Instruments [4, 5].  Today, at Rose-Hulman 

Institute of Technology, students use MATLAB / Simulink Real Time Workshop (RTW) with 

Real Time Windows Target (RTWT) in conjunction with the ECP Model 210 Rectilinear 
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Control System (ECP210) and the ECP Model 205 Torsional Control System to gain insight into 

the basics of control theory through laboratories. 

1.3 Overview 

 A series of advanced control experiments have been developed for use in the 

senior/graduate level advanced controls course, ME506.  The ECP210 with the disturbance 

motor add-on is used for these experiments.  This plant is a precisely instrumented mechanical 

system that is configurable for a number of degrees of freedom and plant parameters.  The 

ECP210 can be seen in Figure 1.1.  

 

Figure 1.1:The ECP Rectilinear Control System (ECP 210) [6] 

 Chapter 2 describes the cart parameter identification procedure.  Chapter 3 describes a 

laboratory using eigenstructure assignement to decouple a multi-input multi-output system. 

Chapter 4 describes a laboratory about the implementation of a finite horizon linear optimal 

regulator that will solve a simple single-input single-output optimal control problem. Chapter 5 

describes a laboratory using the Linear Quadradic Gaussian with Loop Transfer Recovery to 

discuss how the Loop Transfer Recovery procedure produces better estimate of the states.  
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2. PARAMETER IDENTIFICATION 

2.1 Experiment Goals 

 The main goal of this laboratory is to identify important system characteristics of both of 

the carts and motors using a step response and a frequency response approach.  In order to obtain 

these characteristics, four trials of the physical model with varying mass are preformed and 

parameters such as damping ratio and natural frequency are calculated.  A set of over determined 

equations is used to determine the carts’ mass and spring constant.  The hardware gains of the 

motors and the damping coefficients of the system are then solved by back substitution using a 

5 × 5 upper triangular matrix.  These values should then be utilized in a purely theoretical step 

response to see how they compare to the actual data obtained.  Then the students should perform 

a frequency response of the second cart. 

2.2 Experimental Procedure 

 The experiment uses the ECP210, shown in Figure 1.1, consisting of two single-degree-

of-freedom mass-spring-damper systems.  The mass is adjustable by adding or removing plates 

in increments of 500 grams.  The masses were set in the carts where they were held down with a 

small screw so they would not move during the experiment. This test involved using three 

different added mass values of 1500 grams, 1000 grams, and 500 grams, as shown in Table 2.1, 

with the first cart attached on the left with a stiff spring and the second cart attached on the right 

with a light spring to the third cart which is fixed.  
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Table 2.1: Variable mass of Carts 

Case# Added Mass (g) Cart 1 Spring Cart 2 Spring 

1 1500 stiff light 

2 1000 stiff light 

3 500 stiff light 

4 0  stiff light 
 

The Simulink RTW for the step response is shown in Figure 2.1 below. 

 

Figure 2.1: Simulink RTW step response 

The frequency response should be conducted by running the trials in Table 2.2 

Table 2.2: Frequency and Amplitude 

Case Amplitude Frequency (Hz) Added Mass (g) 

1 0.02 3 500 

2 0.03 4 500 

3 0.02 5 500 

4 0.04 6 500 

5 0.06 7 500 

6 0.01 8 500 
 

The Simulink RTW for the frequency response is shown in Figure 2.2 below. 
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Figure 2.2: Simulink RTW frequency response 

It is imperative that the amplitude not be too high or else the disturbance motor could potentially 

break.  Students should use the findmag2 MATLAB function, attached in Appendix A, to find 

the magnitude of each response.  The frequencies are to be converted into radians per second, 

after which the common logarithm should be taken.  This is to be plotted against the magnitude 

in decibels and the intercept of the line of best fit shall be used to find the characteristic 

disturbance motor gain.   

 

2.3 Method of Analysis 

 After all trials are complete, the data must be analyzed. In order to do so a basic method 

of parameter identification is used [7]. The idealized mass-spring-damper system can be seen in 

Figure 2.3. 

 

Figure 2.3: Idealized Mass-Spring-Damper Model 
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 The equation of motion for a mass-spring-damper system is the following: 

 �

�
�̈ +

�

�
�̇ + � =

�(�)

�
 (2.1) 

 

where m is the equivalent mass constant, c is the damping constant, k is the spring constant and 

f(t) is the force input.  However, the force input is not what is transmitted directly to the 

hardware by Simulink.  Instead, there is an unknown hardware gain that scales the step 

magnitude into a force input on the system as follows:  

 �(�) = ����(�) (2.2) 
 

where ��� is the unknown hardware gain and �(�) is the Simulink input to the system.  

Substituting (2.2) into (2.1) gives:  

  �

�
�̈ +

�

�
�̇ + � =

����(�)

�
 (2.3) 

 

However, these values cannot simply be read from the plots created from the data. Instead, a plot 

of the step response provides key information that can be extracted, such as peak response 

(����� ), steady-state response (���), peak time (��), and percent overshoot	(��). A 

representative second-order step response plot with any given parameters and initial conditions 

equal to zero exhibits the performance measures as shown in Figure 2.4. 
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Figure 2.4: Representative Second Order Step Response 

 

With only this information one cannot go directly from the given by the plot back to equation 

(2.3). Therefore we re-write (2.3) in standard form as follows: 

 1

��
�
�̈ +

2�

��
�̇ + � = ��(�) (2.4) 

 

Now we are trying to find the natural frequency (��) of the system, the damping ratio (ζ) and K, 

the static gain, not to be confused with the spring constant, k. By finding the standard parameters, 

the system parameters can be found by matching coefficients with (2.3), which is the ultimate 

goal. To do so first solve for K using  

 
� =

���
��

 (2.5) 
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where ��is the magnitude of the step input. Next, the damping ratio must be found, but in order 

to accomplish that we first need to find the percent overshoot of the system, ��: 

 

 

Note that the values for ����� and ��� can easily be determined by referring back to graphs such 

as Figure 2.4. Now, ζ can be easily calculated using the value of �� as follows: 

 

Two of the three parameters from (2.4) have been found but the natural frequency still needs to 

be determined. Doing so requires two steps. First, solve for the damped natural frequency, �� , 

using the peak time, ��, from graphs such as Figure 2.4:  

 

Finally �� can be solved for using the values determined in (2.7) and (2.8) as follows:  

 

 The previous calculations have resulted in finding the three necessary values from (2.4). 

However, the main goal of the lab is to find m, c, k, and ��� for (2.3). Coefficient matching is 

now employed for this very purpose.  The same procedure is to be followed for both carts from 

Table 2.1.  Defining the natural frequency by comparing coefficients in (2.3) and (2.4) gives  

 
�� =

����� − ���

���
 (2.6) 

 

� = �
(ln(��))�

�� + (ln(��))�
 (2.7) 

 
�� =

�

��
 (2.8) 

 
�� = ���1 − �� (2.9) 
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where the subscript � indicates that four equations can be written, one for each case and ��� is 

the total mass of the cart for each case which gives 

 

where ���,���� is the equivalent mass of the cart and ������  is the amount of mass added to the 

cart as specified in Table 2.1.  By combining (2.10) with the definition of the damped natural 

frequency from (2.9) we get  

 

Rearranging (2.12) for each case gives the following set of equations: 

 

Now there are five unknowns, ��� and k. However, three additional equations can be written 

based on the known difference in the added masses:  

 

 

��,� = �
�

���
 (2.10) 

 ��� = ���,����+ ������  (2.11) 

 

��,� = �
�

���

� 1 − ��
� (2.12) 

 ������
� − �(1 − ��

�) = 0 (2.13) 
 ������

� − �(1 − ��
�) = 0 (2.14) 

 ������
� − �(1 − ��

�) = 0 (2.15) 
 ������

� − �(1 − ��
�) = 0 (2.16) 

 ��� − ��� = 0.5 (2.17) 
 ��� − ��� = 1 (2.18) 
 ��� − ��� = 0.5 (2.19) 
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This gives an over-determined set of equations which can be solved using linear algebra.  

Rewriting (2.13)-(2.19) in matrix-vector form results in (2.20).  We use (2.20) to solve for cart 

mass and stiffness. 

 

Solving (2.20) for the cart mass and spring stiffness should be done using the Least-Squares 

method, which finds values for �� and k that minimize the squared error between the left and 

right sides of the equation.   

Now that the spring constant has been obtained finding the other parameters is relatively 

straight forward.  By comparing the second terms in (2.3) and (2.4) we find 

 

which may be rewritten in matrix-vector form as 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
���
� 0 0 0 − (1 − ��

�)

0 ���
� 0 0 − (1 − ��

�)

0 0 ���
� 0 − (1 − ��

�)

0 0 0 ���
� − (1 − ��

�)

1 − 1 0 0 0
1 0 − 1 0 0
0 0 1 − 1 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
���

���

���

���

� ⎭
⎪
⎬

⎪
⎫

=

⎩
⎪⎪
⎨

⎪⎪
⎧
0
0
0
0
0.5
1.0
0.5⎭

⎪⎪
⎬

⎪⎪
⎫

 (2.20) 

 ��
�
=

2��
���

 (2.21) 
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This system is 5 × 5 upper triangular and should be solved by back substitution to determine the 

values of the damping constant. 

 Finally the hardware gain is computed in much the same manner as the damping constant.  

Comparing the coefficients in (2.3) and (2.4) we find 

 

Rearranging this into matrix vector form we find 

 

Again this system is 5 × 5 upper triangular and should be solved by back substitution to 

determine the values of the hardware gain.  

During the frequency response the cart’s equation of motion is 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 0 0 0 −

2��
���

0 1 0 0 −
2��
���

0 0 1 0 −
2��
���

0 0 0 1 −
2��
���

0 0 0 0 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
��
��
��
��
� ⎭
⎪
⎬

⎪
⎫

=

⎩
⎪
⎨

⎪
⎧
0
0
0
0
�⎭
⎪
⎬

⎪
⎫

 (2.22) 

 ���
�

= � (2.23) 

 

⎣
⎢
⎢
⎢
⎡
1 0 0 0 −��
0 1 0 0 −��

0 0 1 0 −��

0 0 0 1 −��

0 0 0 0 1 ⎦
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
�ℎ�1

�ℎ�2

�ℎ�3

�ℎ�4

� ⎭
⎪
⎬

⎪
⎫

=

⎩
⎪
⎨

⎪
⎧
0
0
0
0
�⎭
⎪
⎬

⎪
⎫

 (2.24) 

 ��̈ = ����(�) (2.25) 
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making the transfer function 

 

We desire the Bode gain of the system which is found at the poles of the transfer function 

 

2.4 Sample Results 

 Although the particular system characteristics may vary from lab station to lab station the 

values found while developing this series of laboratories are shown in Tables 2.3 and 2.4.  

Table 2.3: System Parameters for Cart 1 

Case 
��� 
(kg) 

�� 
(Ns/m) 

� 
(N/m) ����

 

1 2.2754 8.4623 741.1544 7212.4 

2 1.7869 7.1077 741.1544 7394.5 

3 1.3053 6.2053 741.1544 7458.6 

4 0.7435 4.6603 741.1544 7475.7 
 

Table 2.4: System Parameters for Cart 2 

Case 
��� 
(kg) 

�� 
(Ns/m) 

� 
(N/m) ����

 

1 2.0595 7.3801 326.6935 6203.7 

2 1.5162 6.0157 326.6935 6301.8 

3 1.0746 5.2893 326.6935 6389.6 

4 0.5926 4.9804 326.6935 6355.3 
 

 
�(�) =

���
���

 (2.26) 

 
����� =

���
�

 (2.27) 
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Plots comparing the theoretical step response to the hardware implementation for the first 

cart can be seen in Figures 2.5-2.8. 

 

Figure 2.5: Comparison of the Theoretical and Expiremental Step response for case 1 

 

Figure 2.6: Comparison of the Theoretical and Expiremental Step response for case 2 
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Figure 2.7: Comparison of the Theoretical and Expiremental Step response for case 3 

 

Figure 2.8: Comparison of the Theoretical and Expiremental Step response for case 4 

Plots comparing the theoretical step response to the hardware implementation for the 

second cart can be seen in Figures 2.9-2.12. 



15 

 

 

Figure 2.9: Comparison of the Theoretical and Expiremental Step response for case 1 

 

Figure 2.10: Comparison of the Theoretical and Expiremental Step response for case 2 
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Figure 2.11: Comparison of the Theoretical and Expiremental Step response for case 3 

 

Figure 2.12: Comparison of the Theoretical and Expiremental Step response for case 4 

 The magnitudes found from the frequency response can be seen in Table 2.5 
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Table 2.5: Magnitudes 

Case 
Magnitude 

(dB) 
Frequency 

(Hz) 

1 25 3 

2 19.28 4 

3 15.2 5 

4 12.05 6 

5 9.03 7 

6 6.6 8 
 

The plot of the magnitudes can be seen in Figure 2.13 

 

Figure 2.13: Response magnitude plotted against frequency 

The line of best fit, given by MATLAB’s plot fitter, is  

 

 
� = 	− 42.237� + 78.485 (2.28) 
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where �, is the magnitude in dB and � is the input frequency in dB.  This slope is close to our 

expected result.  Since the transfer function is given by (2.26)  

 

it can be shown that 

  

giving the expected result from a double integrator of a − 40
��

���
.  The intercept of this function is 

considered to be the Bode gain because Figure 2.13 is a linearized Bode plot and the poles of the 

transfer function are only at the origin.  Also, Table 2.4 shows that for 1 added mass the total 

mass of the cart is approximately 1 [��] so it is assumed that the mass term in (2.29) is 1 [��]. 

Converting the intercept from dB, the Bode gain is found to be 

 

 

 
�(��) =

���
���

 (2.29) 

 
|20log�� �(��)| = − 40�log��

���
�

� (log�� �) (2.30) 

 
����� = 8399.433  (2.31) 
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3. DECOUPLING BY EIGENSTRUCTURE ASSIGNMENT 

3.1 Experiment Goals 

 The main goal of this laboratory is to design and implement a controller to decouple a 

two degree of freedom system.  In order to do so the system must be analyzed and state matrices 

formed.  Then students should use the method of eigenstructure assignment put forward by 

Andry et al. to design a controller to decouple the two carts from each other [8].   

3.2 Experimental Procedure 

 The experiment again involves using the ECP210, shown in Figure 1.1, this time 

configured in a two-degree-of-freedom set-up as represented below in Figure 3.1.   

 

Figure 3.1: Model of the two degree of freedom system 

In Figure 3.1, �� is the total mass of the first cart, �� is the total mass of the second cart, �� is 

the spring constant of the light spring, �� is the spring constant of the stiff spring, �� is the 

viscous damping constant of the first cart, �� is the viscous damping constant of the second cart, 

�� is the displacement of the first cart and �� is the displacement of the second cart.  It should be 
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remembered that the inputs ��(�) and ��(�) are not what is specified in the Simulink block and 

should be rewritten by way of (2.2) that is 

 ��(�) = ����
��(�) (3.1) 

 ��(�) = ����
��(�) (3.2) 

 

After the equations of motion have been found for the system, a choice of the system parameters 

should be made from the various cases from Chapter 1. Following this, the system should be 

represented in state-space form as a system of � states, � inputs and � outputs such that:  

 �̇ = �� + �� (3.3) 
 � = �� (3.4) 
 

where � is the state vector and is � × 1, � is the input vector and is � × 1, � is the output vector 

and is � × 1, � is the state matrix and has dimensions � × �, � is the input matrix and has 

dimensions � × �, � is the output matrix and has dimensions � × �, and �̇ is the state vector’s 

time derivative:  

 
�̇ =

�

��
� (3.5) 

   

After the system is set up, a controller should be designed that decouples the two carts, which is 

described in the next section.  Following this, a pre-filter gain should be applied to the reference 

input to control the steady-state error to the applied step response [9].  Once these steps have 

been completed a theoretical step response should be implemented in Simulink similar to Figure 

3.2. 



21 

 

 

Figure 3.2: Simulink model of the two-degree-of-freedom system 

In Figure 3.2, � is the reference input and ��� is the pre-filter gain.  After the theoretical model is 

constructed the system should be physically implemented on the ECP210. 

3.3 Method of Analysis 

 The equations of motion of the two degree of freedom system shown in Figure 3.1 can be 

shown to be  

 ���̈1 + ���̇1 + (�� + ��)�� − ���� = ��(�) (3.6) 
 ���̈2 + ���̇2 + ���� − ���� = ��(�) (3.7) 
 

Substituting (3.1) and (3.2) into (3.6) and (3.7), respectively, the state-space system can be 

shown to be  

 

 

�

�̇�
�̈�
�̇�
�̈�

� =

⎣
⎢
⎢
⎢
⎢
⎡

0 1 0 0

−
(�� + ��)

��
−

��
��

��
��

0

0 0 0 1
��
��

0 −
��
��

−
��
��⎦

⎥
⎥
⎥
⎥
⎤

�

��
�̇�
��
�̇�

� +

⎣
⎢
⎢
⎢
⎢
⎡

0 0
����

��
0

0 0

0
����

�� ⎦
⎥
⎥
⎥
⎥
⎤

	� (3.8) 
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Using the control law 

 � = −�� + ����  (3.9) 
 
where � is the controller gain, it is possible to rewrite (3.3) as 

 �̇ = (� − ��)� + �����  (3.10) 
 
From (3.10) we can obtain the closed-loop eigenvalue problem 

 (� − ��)�� = ���� (3.11) 
 
where ��	(�= 1,2,…,�) is a desired closed-loop eigenvalue and �� is a closed-loop eigenvector. 

This can be rearranged to 

 
[��� − � |�] �

��
��
� = {�} (3.12) 

 
where 

 
�� = ��� (3.13) 

 
Let 

 
�� = �

��
��
� (3.14) 

 
�� = [��� − � |�] (3.15) 

 
To satisfy the eigenvalue problem, �� must lie in the nullspace of	��. The nullspace is given from 

the singular value decomposition where 

 
null(��) = span([����,…,��]) (3.16) 
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where � is the right singular vector found by singular value decomposition, the subscript � 

represents the rank of the matrix ��, and the subscript � represents the number of right singular 

vectors.  It is then desired to contrive �� for each �� as a linear combination of ����,…	,�� such 

that the decoupling requirements are satisfied: 

 
�� = ������� + ⋯+ ������� (3.17) 

 

where ���	(� = 1,2,…,� − �) is some scalar.  Assuming that �� are distinct, [�� ⋯ ��] is 

invertible and  

 
� = [�� ⋯ ��][�� ⋯ ��]�� (3.18) 

 

 Now that the closed loop gain of the system has been calculated, it is now desirable to 

calculate a pre-filter to help control the steady state error.  Consider the control law 

 
� = −�� + � (3.19) 

 
Which provides a reference input to the system, but the steady state error of the system will be 

non-zero.  If the desired values of the state and the control are ��� and ��� then the control 

should be  

 
� = −�� + ����  (3.20) 

 

Where ���  is determined such that the system will have zero steady-state error to any constant 

input.  In the steady state (3.3) and (3.4) reduce to  
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� = ���� + ���� (3.21) 

 
��� = ���� (3.22) 

 

It is desirable to solve for the values where  

 
��� = ���,∀��� (3.23) 

 

To do this we set 

 
��� = ����� (3.24) 

 
��� = ����� (3.25) 

 
substituting (3.24) and (3.25) into (3.21) and (3.22) and rewriting as a matrix equation yields:  

 
�
� �
� �

� �
��

��
� = �

�
�
� (3.26) 

 
where � is an identity matrix of size �.  After solving for �� and �� the control law can be 

written as  

 
� = −�(� − ���) + ��� (3.27) 

 
Rearraging (3.27) and comparing to (3.20), ��� can be shown to be [8] 

 
��� = (�� + ���) (3.28) 
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3.4 Sample Calculation and Results 

 The system characteristics used to develop this laboratory are shown in Table 3.1. 

 

Table 3.1: Parameters Used  

Cart 
��� 
(kg) 

�� 
(Ns/m) 

�� 
(N/m) ����

 

1 2.275 8.5 326.7 7212.4 

2 2.06 7.4 741.2 6203.7 
 

This leads the system matrices to be 

 

� = �

0 1 0 0

− 469 .3 − 3.72 325.7 0

0 0 0 1

359.9 0 − 359.9 − 3.58

� (3.29) 

 

� = �

0 0

3167 0

0 0

0 3012

� (3.30) 

 
� = �

1 0 0 0

0 0 1 0
� (3.31) 

 

Only two eigenvalues need to be assigned to decouple the system; the other two eigenvalues will 

come out as the complex conjugates of the assigned eigenvalues.  Assigned poles should be kept 

away from natural eigenvalues as well as away from the origin in the left-hand plane, i.e., they 

should have fast responses.  For this example the values in Table 3.2 were selected.  
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Table 3.2: Assigned Eigenvalues  

Cart �� 

1 − 4 ± �11 

2 − 3 ± �21 
 

After forming the singular value decomposition the values of  �� need to be contrived in order to 

decouple the system: 

 

�� =

⎩
⎪
⎨

⎪
⎧
×
×
0
0
�����⎭
⎪
⎬

⎪
⎫

= ������ + ������ (3.32) 

 

�� =

⎩
⎨

⎧
0
0
×
×
��
���⎭

⎬

⎫

= ������ + ������ (3.33) 

 
where  is some number that will come about as a result of contriving values of ��.  Now (3.32) 

and (3.33) should be rewritten as 

 
�
v13,5 v13,6
v14,5 v14,6

� �
�11
�12

� = �
0
0
� (3.34) 

 
�
v21,5 v21,6
v22,5 v22,6

� �
�21
�22

� = �
0
0
� (3.35) 

 

from (3.34) and (3.35) it is obvious that the values of � are the null space of the appropriate 

matrix.  For the this example �� and �� were found to be  
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�� =







































0095.00037.0

0083.00046.0

0

0

0227.0996.0

0793.00309.

j

j

j

j

 (3.36) 

 

�� =







































0009.00012.0

0003.00048.0

978.02034.0

003.0047.0

0

0

j

j

j

j
 (3.37) 

 
After solving (3.18) � is found to be  

 
� = �

−0.1048 0.0014 0.1028 0
0.1195 0 0.0299 0.0008

� (3.38) 

 
Now that � has been found, solving (3.26), �� and �� are found to be 

 
�� = �

0.1481 −0.1028
−0.1195 0.1195

� (3.39) 

 

�� = �

1 0
0 0
0 1
0 0

� (3.40) 

 
Solving (3.28),  

 
��� = �

0.0432 0
0 0.1494

� (3.41) 

 

 A plot of the theoretical decoupling can be seen in Figure 3.3. 
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Figure 3.3: Theoretical response of the system 

The actual response can be seen in Figure 3.4. 

  

Figure 3.4: Actual response of the system 

A comparison between the theoretical and actual cart responses can be seen in Figures 3.5-3.6. 
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Figure 3.5: Comparison of Cart 1’s theoretical and actual responses 

  

Figure 3.6: Comparison of Cart 2’s theoretical and actual responses 

 The system is not perfectly decoupled; as seen in Figure 3.5, the second cart is 

influencing the first.  This is due to imperfections in the model.  
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4. LINEAR OPTIMAL REGULATOR 

4.1 Experiment Goals 

The main goal of this laboratory is to implement a finite horizon linear optimal regulator 

(LOR).  This regulator will solve a simple single-input single-output optimal control problem.  

This laboratory will also serve to highlight the flaws in the assumption that our system is only 

acted on by viscous friction. 

4.2 Experimental Procedure 

 This experiment once again utilizes the ECP210 system.  This time, however the system 

is set up utilizing just the second cart, a single 500 g mass and the hardware gain found from the 

frequency response in Chapter 2.  The representative system is shown in Figure 4.1 

 

Figure 4.1: Single Mass Cart System 

where � is approximately unity [kg] and �(�) is given by 

 �(�) = ��(�) (4.1) 
 

where � is the Bode gain found from Chapter 2. Like the frequency response, this system is 

treated as having negligible viscous damping.  The state equation for this system is  
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 �̇ = �� + ��(�) (4.2) 
 

In matrix-vector form (4.1) can be written as 

 

The optimal control effort �(�) to return the mass to zero position from an arbitrary starting 

point can be calculated as 

 �(�) = −R�����(�) (4.4) 
 

where R is the penalty on the control effort and a scalar, and �(�) is the costate.  With this 

information, as well as information in the next section, a simulation can be created such as the 

one shown in Figure 4.2. 

 

 

Figure 4.2: LOR Simulink Block Diagram 

 
�
�̇
�̈
� = �

0 1
0 0

� �
�
�̇
� + �

0
�
� �(�) (4.3) 
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An embedded MATLAB function is necessary to calculate the costate in real time. R should 

initially be set as  

 R = ‖�‖�
�
 (4.5) 

 

This will produce little to no effort from the controller, but serves as a base point from which to 

find a value for R that minimizes steady-state error without amplifying sensor noise. 

4.3 Method of Analysis 

 The chosen cost function is  

 
� =

1

2
������������ + �

1

2
(���� + ��R�)	��

��

��

 (4.6) 

 

where � is the penalty on the transient state deviation, � is the penalty on the finite state, �� is the 

final time, �� is the initial time and � is the performance index.  It should be noted that � and � 

are positive semi-definite � × � matrices. 

 The corresponding Hamiltonian function is 

 
� =

1

2
(���� + ��R�) +	��(�� + ��) (4.7) 

 

The Euler-Lagrange equations are 

 
�̇ = −

��

��
= −�� − 	��� (4.8) 

 ��

��
= � → � = R� + ��� (4.9) 

 

and 
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 ����� = ������ (4.10) 

 

Choosing R > 0	the control law is given by (4.4).  By substituting (4.4) into the state equation 

(4.2) and concatenating the state and costate equation (4.8), a 2� × 2� system can be obtained:  

 
�
�̇
�̇
� = �

� −�R����

−� −�� � �
�
�
� (4.11) 

 

By substituting (4.10) into (4.11), (4.11) may be solved using state transition matrices	���  

 
�
�(�)

�(�)
� = �

��� ���

��� ���
� �

�����

������
� (4.12) 

 

such that 

 ����� = (��� + ����)
���(�) (4.13) 

 

and 

 �(�) = (��� + ����)����� (4.14) 

 
Therefore the costate at any time � is 

 �(�) = (��� + ����)(��� + ����)
���(�) (4.15) 

 
The state transition matrices can be found using the matrix exponential 

 
�
��� ���

��� ���
� = exp �

�T −�R���T
�T −��T

� (4.16) 

 

where 

 T = � − �� (4.17) 
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It should be noted that (4.16) may not be taken in a piecewise fashion [10].  The closed form 

solution to (4.16) is 

 

�
��� ���

��� ���
� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 −

1

2
��� +

1

2
�� −

1

2
��� +

1

2
�� − T −

1

2
��� −

1

2
�� + 1

0
1

2
��� +

1

2
��

1

2
��� +

1

2
�� − 1

1

2
��� −

1

2
��

0 0 1 0

0
1

2
��� −

1

2
��

1

2
��� −

1

2
��

1

2
��� +

1

2
�� ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.19) 

 

This solution, (4.19), is implemented in the embedded MATLAB function block in both the 

theoretical simulation shown in Figure 4.2 and the actual Simulink RTW block diagram in 

Figure 4.3 below.   

 

Figure 4.3: Simulink RTW Block Diagram 
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4.4 Sample Results 

 The final values of R and � used to develop this laboratory are shown in Table 4.1. 

Table 4.1: Parameters Used  

Case � R 

1 10238 1.0489× 10� 

2 10238 5.2405× 10� 

3 10238 3.4936 × 10� 

4 10238 2.6202 × 10� 

5 10238 2.3291 × 10� 

6 10238 2.23 × 10� 

7 10238 2.139 × 10� 

8 10238 2.0962 × 10� 

9 10238 1.7468 × 10� 
 

Additionally, the � and � matrices are  

 
� = �

75 0
0 1

� (4.18) 

 

and  

 
� = �

0 0
0 1

� (4.19) 

 

Plots comparing the displacement and velocity of the theoretical response for the 

different cases of the hardware implementation can be seen in Figures 4.4-4.21. 
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Figure 4.4: Case 1 Displacement Comparison 

 

Figure 4.5: Case 1 Velocity Comparison 



37 

 

 

Figure 4.6: Case 2 Displacement Comparison 

 

Figure 4.7: Case 2 Velocity Comparison 
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Figure 4.8: Case 3 Displacement Comparison 

 

Figure 4.9: Case 3 Velocity Comparison 
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Figure 4.10: Case 4 Displacement Comparison 

 

Figure 4.11: Case 4 Velocity Comparison 
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Figure 4.12: Case 5 Displacement Comparison 

 

Figure 4.13: Case 5 Velocity Comparison 
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Figure 4.14: Case 6 Displacement Comparison 

 

Figure 4.15: Case 6 Velocity Comparison 
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Figure 4.16: Case 7 Displacement Comparison 

 

Figure 4.17: Case 7 Velocity Comparison 
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Figure 4.18: Case 8 Displacement Comparison 

 

Figure 4.19: Case 8 Velocity Comparison 
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Figure 4.20: Case 9 Displacement Comparison 

 

Figure 4.21: Case 9 Velocity Comparison 

 Students should see that there is a problem with assuming no friction or damping.  The 

problem is that small values of � give a deadband and non-linear behavior seen in Figures 4.4-
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4.9.  Larger values of � give better behavior, however, the motor begins to saturate, as seen in 

Figures 4.18-4.21. 
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5. LINEAR QUADRATIC GAUSSIAN WITH LOOP TRANSFER RECOVERY 

5.1 Experiment Goals 

The main goal of this laboratory is to implement a Linear Quadratic Gaussian (LQG) 

controller.  Students should be able to implement a state feedback controller on the ECP 

hardware and apply the Loop Transfer Recovery (LTR) method to tune the estimator so that the 

LQG design better approximates the Linear Quadratic Regulator (LQR).  Students will then 

compare time responses of the actual and estimated states of the hardware response. 

5.2 Experimental Procedure 

The experiment again involves using the ECP210, shown in Figure 1.1, this time 

configured in a two degree of freedom set up as represented below in Figure 5.1.   

 

Figure 5.1: Model of the two degree of freedom system 

In Figure 5.1, �� is the total mass of the first cart, �� is the total mass of the second cart, �� is 

the spring constant of the light spring, �� is the spring constant of the stiff spring, �� is the 

viscous damping constant of the first cart, �� is the viscous damping constant of the second cart, 

�� is the displacement of the first cart and �� is the displacement of the second cart.  It should be 
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remembered that the inputs ��(�) and ��(�) are not what is specified in the Simulink block and 

should be rewritten by way of (5.1) and (5.2) 

 ��(�) = ����
��(�) (5.1) 

 ��(�) = ����
��(�) (5.2) 

 

After the equations of motion have been found for the system, a choice of the system parameters 

should be made from the various cases from Chapter 1. Following this the system should be 

represented in state-space form as a system of � states, � inputs and � outputs such that:  

 �̇ = �� + �� + �� (5.3) 
 � = �� + � (5.4) 
 

and the state estimate equations are  

 ��̇ = ��� + �� + ���(� − ��) (5.5) 

 �� = ��� (5.6) 
 

where � is the process noise matrix and has dimensions � × �, v is additive white Gaussian 

process noise, � is additive Gaussian measurement noise,  �� is the estimate of the state, ��� is 

the Kalman gain, �� is the estimate of the output and ��̇ is the first time derivative of the estimate 

of the state.  After the system is set up, the controller gain and Kalman gain are to be calculated 

using the control algebraic Riccati equation and the filter algebraic Riccati equation, respectively.  

Students should then apply the LTR method to tune the estimator to better mimic the LQR’s 

performance.  A singular value plot overlaying the LQR’s singular values with the singular 

values of the LQG and the various iterations of the LTR should be formed to illustrate the loop 

shaping of the LTR method.  Then, as before, a pre-filter gain should be applied to the reference 

input to control the steady-state error to the applied step input [9].  The students should run the 
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unaltered LQG on the hardware, shown in Figure 5.2, and then implement iterations of the LTR 

method.  

 

Figure 5.2: Simulink RTW 

The plots of both the outputs and their estimates should then be compared from the various 

iterations of the LTR method.  

5.3 Method of Analysis 

 To start calculations for the gains of the LQG, the controller gains shall be calculated first.  

To do this it is assumed that the controller is a perfect LQR and thus (5.3) and (5.4) become  

 �̇ = �� + �� (5.7) 
 � = �� (5.8) 
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Substituting the control law 

 � = �� = −������ (5.9) 
 

into the new state equations and concatenating the state and costate equations, using a similar 

cost function as (4.6), to  a 2� × 2� can be obtained as  

 
�
�̇
�̇
� = �

� −������

−� −�� � �
�
�
� (5.10) 

 

where � is a symmetric positive semidefinite real constant matrix and � is a symmetric positive 

definite real constant matrix.  The control law (5.9) implies that � and � are related by a 

transformation � such that 

 � = �x (5.11) 
 

or 

 �� = −������ (5.12) 
 

By the product rule, the time derivative of � is 

 �̇ = �̇� + ��̇ (5.13) 
 

Substituting this into the costate equation, 

 �̇� + ��̇ = −�� − ��� (5.14) 
 

Substituting the state equation for �̇ into (5.14), 

 �̇� + �(�� − �������) = −�� − ��� (5.15) 
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Inserting (5.11) into (5.15), 

 �̇� + �(�� − ��������) = −�� − ���� (5.16) 
 

Collecting terms, 

 �̇� + (�� − �������� + � + ���)� = � (5.17) 
 

assuming steady state and since it is desired to find � for any � 

 (�� − �������� + � + ���) = � (5.18) 
 

This is the Control Algebraic Riccati Equation (CARE) solving for �, � can be found from 

(5.12). 

 Once the controller gain is determined the Kalman gain should be determined. The first 

step in this is choosing an arbitrary positive definite matrix � such that � > � and ��� exists.  

� is given such that [�,�] is stabilizable, that is if all unstable modes are controllable.  Let 

 � = ��� (5.19) 
 

then the Filter Algebraic Riccati Equation (FARE) should be solved.  

 �� + ��� + � − ��������� = � (5.20) 
 

where � is the solution of the FARE. The Kalman gain, which is the gain of the Kalman filter, is 

calculated from the FARE  

 ��� = ������ (5.21) 
 

The FARE has duality with the CARE as displayed in Table 5.1 [9].  
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Table 5.1: Duality Properties  

FARE ���� 

� �� 

� �� 

� � 

� �
�
� 

� � 

� � 

(�,�) detectable (�,�) stabilizable 

(�,�) stabilizable ��,�
�

�� detectable 

 

Once the LQG controller has been designed it is time to implement the LTR method.  For this 

laboratory this is rather simple.   It is necessary to set  

 � = ��� (5.22) 
 

and   

 � = ��� + ����� (5.23) 
 

where � is a scalar parameter.  The Kalman gain should be recalculated with increasing values of 

� until the LQG is close to the LQR [9, 11, 12]. 

 

5.4 Sample Results 

The parameters used for the development of this laboratory can be seen in Table 5.2 
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Table 5.2: Parameters Used  

Cart 
��� 
(kg) 

�� 
(Ns/m) 

�� 
(N/m) ����

 

1 1.7869 7.1077 326.7 7394.5 

2 2.06 7.4 741.2 6203.7 
 

For the development of this laboratory � was chosen to be 

 

� = 	 �

31.472 31.472
40.579 40.579
− 37.301 − 37.301
41.338 41.338

� (5.24) 

 

and � as 

 � =	 �
1 0
0 1

� (5.25) 

 

Also �, was chosen as 

 
� =	 �

7.5 0
0 7.5

� (5.20) 

 

The parameter � for each LTR system was chosen as  

 
� = 	10

�
��  (5.26) 

 

for � = 1,2,3,4.  To develop the control gain, � was selected as 

 � = 	��� (5.27) 

  

where 
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� = �

0 0.2 1 0
0 0.2 1 0

�	 (5.28) 

 

With this information � is found from (5.12) 

  
� =	 �

− 0.0137 0.0086 0.364 0.0041
−0.0149 0.003 0.3511 0.0136

� (5.29) 

 

The Kalman gains for each case can be seen in Table 5.3  

Table 5.3: Kalman Gain for each case  

LQG � = 1 � = 2 � = 3 � = 4 

�

33.83 − 28.51
− 11.50 273.77
− 28.51 38.68
6 .42 − 236 .8

� �

120.7 − 68
632 444.5
68 109.5

329.1 4.629

� �

160 − 5
11872 460
− 5 142
329 8672

� �

213 − 4
21815 496
− 4 186
328 15919

� �

285 − 3
39614 457
− 3 246
325 28892

� 

 

This leads to the singular values plot seen in Figure 5.3 

 

Figure 5.3: Singular values of the systems to be compared 
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Students should see from the singular values plot that increasing � will lead to better 

approximations of the LQR.  

 Plots comparing the measured states with their estimates can be seen in Figures 5.4-5.13 

 

Figure 5.4: LQG first cart position with its estimate 
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Figure 5.5: LQG second cart position with its estimate 

 

Figure 5.6:	First cart position with its estimate for	� = 1 
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Figure 5.7: Second cart position with its estimate for	� = 1 

 

Figure 5.8: First cart position with its estimate for � = 2 
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Figure 5.9:Second cart position with its estimate for � = 2 

   

Figure 5.10: First cart position with its estimate for � = 3 
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Figure 5.11:Second cart position with its estimate for � = 3 

 

Figure 5.12: First cart position with its estimate � = 4 
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Figure 5.13: Second cart position with its estimate � = 4 

Students should note that higher � leads to better estimates especially in the estimate of 

the second cart. 
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6. Conclusion and Future Work 

6.1 Conclusion 

 A series of advanced control laboratories has been developed and demonstrated for 

educational purposes in advanced controls courses.  The learning objectives as well as the 

control techniques of each laboratory have been spelled out and demonstrated.  Students should 

realize the problems that arise from using a linear model, and the limitations of what can be done 

with hardware when compared to what can be done mathematically.  However, the overall goal 

of this laboratory series is to provide students with hands on hardware in the loop laboratories 

using advanced control techniques.  This environment was adapted from existing equipment, 

required no new purchases and showed the viability of using advanced control techniques on the 

ECP210 despite it not being designed to do so.  The primary challenge of developing this lab 

series was the difference in the strength of the disturbance motor compared to the primary motor 

of the ECP210.  This was especially true of the MIMO parts of the laboratory series where the 

motors were interacting with each other.   

6.1 Future Work 

A natural extension of the work presented is its actual implementation in an educational 

environment.  This should be paired with post-course student surveys to see if the students’ 

knowledge and confidence on the topics were significantly increased.  Additionally more control 



61 

 

topics could be added to eventually justify a dedicated laboratory credit.  These topics could 

include Nyquist design criteria, LQR control, and H� control. 
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APENDIX A 

The findmag2 used in analyzing the frequency response data: 

function [Magx] = findmag2(x,u) 
% 
% utility to find the magnitude from freq resp data: 
% 
% [Magx] = findmag2(x,u) 
% 
% Determines the Bode magnitude ratio from a set of frequency response data 
% x = response of first mass 
% u = amplitude of input 
% 
% Assumes that the data set is 5000 samples long 
% (Equivalent to 20s of ECP data under RTW) 
n = 500; 
p1 = polyfit(1:(n+1),x(end-n:end)',1); 
  
Enc1cm = x(end-n:end) - (polyval(p1,1:(n+1)))'; 
  
Magx = max(Enc1cm)/u; 
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